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Norms of Elementary Operators

RICHARD M. TIMONEY

Abstract. We make some simple remarks about the norm
problem for elementary operators in the contexts of algebras

of operators on Banach spaces and C*-algebras. We illustrate
a lack of symmetry in the problem for algebras containing
the finite rank operators and also for the Calkin algebra.
An isomorphic symmetry is shown for subhomogeneous C*-

algebras.

For A an algebra, an operator T : A → A is called an elementary
operator if T can be expressed in the form

Ta =
∑̀

i=1

aiabi (1)

with ai and bi (1 ≤ i ≤ `) in A. For A a C∗-algebra, one may
allow ai and bi to be in the multiplier algebra of A (see [3]). Such
representations of T may not be unique. We write È (A) for the class
of elementary operators on A. We will always be considering normed
algebras A and so there is a natural operator norm on È (A) (which
is contained in the bounded linear operators on A).

The so-called norm problem (see [5] for a survey) asks for ‖T‖ to
be expressed in terms of ‖ai‖ and ‖bi‖ (or, more realistically, in terms
of the norms of some combination of the ai and some combination of
the bi such as in the Haagerup norm mentioned below). In the case
` = 1 and Ta = a1ab1, we know from [4] that if A is ultraprime then
there is a constant cA > 0 such that cA‖a1‖‖b1‖ ≤ ‖T‖. In fact, we
can take the existence of cA as the definition of A being ultraprime.
Of course ‖T‖ ≤ ‖a1‖‖b1‖ for any normed algebra A.

For A ultraprime, the map from the algebraic tensor product A⊗A

to È (A) which maps
∑`

j=1 aj ⊗ bj to T ∈ È (A) of the form (1) is
bijective (see [4, Theorem 5.1]). Hence we can define T f ∈ È (A) (for
T ∈ È (A) as in (1)) by T fa =

∑`
i=1 biaai.



14 RICHARD M. TIMONEY

In a recent preprint V. Runde [8] considers algebras A of operators
on infinite dimensional reflexive Banach spaces E with the approx-
imation property. If A contains the finite rank operators F(E), he
has shown that the map T 7→ T f is not norm continuous on È (A).
Following [8], we refer to T 7→ T f as the flip map on È (A).

Note that algebras A with F(E) ⊆ A ⊆ B(E) (= the bounded
operators on a Banach space E) are always ultraprime. Our main
result is an elementary proof of the following variant of the result of
Runde [8].

Theorem 1. Assume that E is a Banach space that contains an
infinite dimensional complemented subspace with a Schauder basis,
and suppose A is an algebra of bounded operators on E with F(E) ⊆
A. (We give A the operator norm.) Then the map T 7→ T f is not
norm continuous on È (A).

Proof. Let (en)∞n=1 be a basic sequence in E with closed linear
span complemented in E via a projection P . Then the projections
πn

(∑∞
j=1 xjej

)
=

∑n
j=1 xjej are uniformly bounded on the span of

the ej and so Pn = πn ◦ P are uniformly bounded on E, and belong
to F(E).

Consider the biorthogonal functionals fj to the en (on the span of
the en) given by fj (

∑∞
n=1 xnen) = xj and then Fj = fj ◦ P . Define

Eij ∈ F(E) by Eij(x) = Fj(x)ei. Consider Tn ∈ È (A) given by

Tna =
n∑

i=1

Ei1aE1i (a ∈ A).

For x ∈ E, we have

(Tna)(x) =
n∑

i=1

Ei1(a(E1i(x)))

=
n∑

i=1

Ei1(a(Fi(x)e1)) =
n∑

i=1

Fi(x)Ei1(a(e1))

=
n∑

i=1

Fi(x)F1(a(e1))ei = F1(ae1)
n∑

i=1

Fi(x)ei

= F1(ae1)Pn(x)

Thus ‖Tna‖ ≤ ‖F1‖‖e1‖‖Pn‖‖a‖ or ‖Tn‖ ≤ ‖F1‖‖e1‖‖Pn‖ and con-
sequently supn ‖Tn‖ < ∞.
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Working with T f
n , we get from a similar calculation

(T f
n a)(x) =

n∑

i=1

E1i(a(Ei1(x))) = F1(x)
n∑

i=1

Fi(a(ei))e1

Taking a = Pn, we have (T f
n Pn)(x) = F1(x)

∑n
i=1 e1 = nF1(x)e1.

Thus ‖T f
n Pn‖ = n‖F1‖‖e1‖ → ∞ as n →∞. As supn ‖Pn‖ < ∞, it

follows that ‖T f
n ‖ → ∞ as n →∞. ¤

Remark 1. We consider now the case where E = `2 is a (separable)
Hilbert space and we assume that A is a C*-algebra of operators on
`2. We are then restricted to the two examples A = K(`2) = the
compact operators and A = B(`2), if A is to contain all the finite
rank operators (as is required to apply the theorem).

We could also consider the completely bounded norm of operators
T ∈ È (A). For T ∈ È (A) given by (1), the completely bounded norm

is ‖T‖cb = inf
√∥∥∥∑`

j=1 aja
∗
j

∥∥∥
∥∥∥∑`

k=1 b∗kbk

∥∥∥, where the infimum is

taken over all possible representations of T . In fact this is a well-
known relation between ‖T‖cb and the Haagerup norm on the tensor
product A ⊗ A for these examples (see [2, 9]). The Tn constructed
as above from an orthonormal basis (ei)∞i=1 have supn ‖Tn‖cb < ∞
while ‖T f

n ‖, and hence ‖T f
n ‖cb, is unbounded.

Further, Tn is actually completely positive (see [6] for the defini-
tion) and we could even modify Tn to be unital by adding a term
(id− πn)a(id− πn).

Remark 2. In the case of general C*-algebras, there are results
on elementary operators where subhomogeneous C*-algebras behave
as though they were finite dimensional. At the opposite extreme,
antiliminal C*-algebras sometimes have the same behaviour. (See
for example [1, 10].)

Subhomogeneous C*-algebras are those where there is a finite
bound on the dimensions of irreducible ∗-representations. Write A
for the algebra and Â for the class of all inequivalent irreducible rep-
resentations π : A → B(Hπ) of A. Then A subhomogeneous means
that supπ∈Â dim Hπ = k < ∞. (We call A k-subhomogeneous when
we want to refer to an upper bound for the dimensions.) Abelian A
are the 1-subhomogeneous C*-algebras and of course then the flip
map is the identity on È (A).
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The atomic representation of A (see [7, 4.3.7]) is given by

πa : A →
⊕

π∈Â

B(Hπ) : a 7→ (π(a))π∈Â.

Here
⊕

π∈Â B(Hπ) means the `∞ sum and it is a dual C*-algebra
in a natural way. Hence it is a von Neumann or W*-algebra. The
range of πa is weak*-dense in A =

⊕
π∈Â B(Hπ), and there is a

simple way to extend any T ∈ È (A) to an elementary operator
on A. This extension is the unique weak*-continuous Ta : A → A
satisfying Ta ◦ πa = πa ◦ T .

From this perspective, one can see that an elementary operator
T ∈ È (A) given by (1) is zero if and only if

∑̀

j=1

π(aj)⊗ π(bj) = 0 ∈ B(Hπ)⊗ B(Hπ)

for each π ∈ Â. From this we can deduce that T f is well-defined
(independent of the representation (1) of T ) when A is a C*-algebra,
even though A may not be ultraprime.

We can pass to Ta from T ∈ È (A) of the form (1) and note that
(T f )a = (Ta)f . Also ‖T‖ is the supremum over π ∈ Â of the norms
of the elementary operators

x ∈ B(Hπ) 7→
∑̀

j=1

π(aj)xπ(bj).

We can apply finite-dimensional estimates (depending on the dimen-
sion) to deduce that ‖T f‖ ≤ Ck‖T‖ when A is k-subhomogeneous.

The simplest example of an antiliminal C*-algebra is the so-called
Calkin algebra A = B(`2)/K(`2). Our examples Tn are built using
finite rank ai and bi and so they vanish when quotiented by the
compact operators. However, we can replace them with rather simi-
lar infinite multiplicity examples that will survive the quotient map.
One way to do that is to note that `2 is unitarily equivalent to the
Hilbert space tensor product `2 ⊗2 `2. We can take

Sna =
n∑

i=1

(Ei1 ⊗ id`2)a(E1i ⊗ id`2)

and show via a similar computation to that used for Tn that even
on the Calkin algebra, supn ‖Sn‖cb < ∞ while ‖Sf

n‖ is unbounded.
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Question 1. For which Banach spaces E does the conclusion of
Theorem 1 hold for all algebras of operators on E that contain the
finite ranks?

Theorem 1 covers quite a few common spaces, but not all E cov-
ered by the result of [8]. Moreover `∞ fails to satisfy the hypotheses
of Theorem 1, but the proof can be carried through in that case.

Question 2. Is the flip T 7→ T f unbounded on È (A) for all non-
subhomogeneous C*-algebras A?
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Editorial Note. An argument similar to Theorem 1 for the case of Hilbert

space was provided by A. W. Wickstead (private communication).


