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Abstrat: This is an overview of C

�

-algebrai quantum groups. We

begin with elementary Hopf algebra theory and de�ne a �nite quantum

group as a Hopf

�

-algebra that is a Frobenius algebra. The duality

theory for �nite quantum groups is thoroughly developed and inludes

a generalization of the Planherel Formula.

Next we onsider the more general ase of ompat quantum

groups as de�ned by S. L. Woronowiz. We show how ompat groups

and duals of disrete groups �t into this ategory. The famous example

quantum SU(2) found by Woronowiz is then treated. It was the �rst

example of a ompat quantum group that is not a Ka algebra.

We develop the �nite-dimensional o-representation theory and

disuss the generalized Tannaka-Krein Theorem. The Haar funtional

(whose existene is one of the major ahievements of Woronowiz's

theory) is used to establish a Peter-Weyl type theorem for matrix ele-

ments of unitary o-representations. As opposed to the situation for

Ka algebras the antipode is in general not involutive. This deviation

is governed by a one-parameter group of automorphisms, whih is also

related to the fat that the Haar funtional is not a trae.

The algebra of `regular funtions' of a ompat quantum group

is a Hopf

�

-algebra. It is a dense subalgebra of the C

�

-algebra our-

ring in the de�nition of the quantum group. The proof of these fats

uses the left regular o-representation. It is an in�nite-dimensional

o-representation, whih is a notion involving multiplier algebras.

Compat quantum groups may be investigated via left regular o-

representations, or rather multipliative unitaries. We give an aount

of this approah due to S. Baaj and G. Skandalis and later modi�ed

by Woronowiz.

In the �nal part of this survey, to be published in the next issue

of the Bulletin, we onsider the ategory of multiplier Hopf

�

-algebras

8
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introdued by A. Van Daele, we show how C

�

-algebrai quantum groups

are related to the examples of quantum groups studied by V. G. Drin-

feld and his ollaborators, and we onsider briey the theory of general

loally ompat quantum groups, stating the reently established de�n-

ition of a loally ompat quantum group given by S. Vaas and the �rst

author.

Throughout this paper we use the symbol � to denote an algeb-

rai tensor produt and 
 to denote its topologial ompletion with

respet to the minimal tensor-produt norm. The only exeptions are

made when we disuss h-adi ompletions in Setion 6 (part II).
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1. Introdution

The aim of this paper is to introdue the reader to the fasin-

ating subjet of quantum groups from the C

�

-algebra point of

view. Quantum groups were disovered a generation ago, and have

sine then developed in radially di�erent diretions motivated

both from physis and mathematis. There exist several exellent

treatments overing parts of the vast topi of quantum groups (see

[14℄,[25℄), but none seem to be seriously onerned with portraying

in a broad manner the work done in the C

�

-algebra framework.

An explanation for this may be that important work on the gen-

eral loally ompat quantum group ase has been aessible only

in preprint form.

Loosely speaking, quantum groups are essentially groups

or group-like objets that are quantizations of groups. We shall

explain this in great detail later, but, for the moment, let us on-

sider the situation more heuristially. Perhaps one of the most

fruitful ideas in mathematis is to study geometrial spaes via

naturally assoiated rings or algebras. A lassial example is that
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of a ompat Hausdor� spae X and the C

�

-algebra C(X) of on-

tinuous funtions on X . It is well known that all the topolo-

gial information of the spae X is ontained in the C

�

-algebrai

struture of C(X). In fat, Gelfand's theorem tells us that the

funtor X 7! C(X) is an anti-equivalene from the ategory of

ompat Hausdor� spaes to the ategory of ommutative unital

C

�

-algebras.

With the disovery of quantum physis it soon beame lear

that non-ommutative algebras ould be used to explain geometry

on the sale of atoms and moleules. Quantum physis ould then

be seen as a generalization of the theory of lassial geometrial

spaes to a theory of a suitable ategory of algebras, in suh a way

that the full subategory of ommutative algebras orresponds to

the lassial geometrial spaes. In this way non-ommutative

algebras an oneptually be thought of as `sets of funtions on

quantum spaes'. The onept of quantization is more spei�

than explained here. It is intimately onneted to Poisson man-

ifolds and Poisson brakets measuring the deviation in the non-

ommutative produt from the ommutative pointwise produt in

terms of a deformation parameter (thought of as Plank's on-

stant). Setion 6 (part II) is devoted to explaining this.

Of ourse, the appropriate ategory of algebras studied

depends on what properties of the spae one is interested in.

Thus, the algebras (given with pointwise operations) may onsist

of polynomials (algebrai geometry), omplex-analyti funtions

(omplex geometry), smooth funtions (di�erential geometry),

ontinuous funtions (topology) or measurable funtions (meas-

ure theory).

Quantum physis is in its nature a probabilisti theory. It

was J. von Neumann who gave a rigorous mathematial founda-

tion for quantum mehanis, using von Neumann algebras, whih

together with the theory of weights generalizes the lassial the-

ory of Borel integration. With their powerful struture theory, von

Neumann algebras have proved suessful in many areas of math-

ematis. In fat, the earliest attempt to give a generalization of

Pontryagin's duality theorem for abelian loally ompat groups

to arbitrary loally ompat groups used ertain von Neumann
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algebras known as Ka algebras (see [8℄).

Von Neumann algebras are C

�

-algebras of a speial kind.

Whereas von Neumann algebras generalize Borel measure theory,

C

�

-algebras form, via Gelfand's theorem, natural generalizations

of loally ompat Hausdor� spaes. This suggests that loally

ompat quantum groups should be de�ned using C

�

-algebras.

A leading proponent of this approah is the Polish physiist and

mathematiian S. L. Woronowiz, see [39℄. His viewpoint is very

muh in the spirit of non-ommutative geometry developed by

A. Connes (see [4℄), who uses non-ommutative C

�

-algebras as a

framework for powerful and useful notions of di�erential geometry

on quantum spaes.

The C

�

-algebra struture takes are of the quantum spaes

only as topologial spaes. More struture has to be imposed to

apture a possible group-like struture on these quantum spaes.

After all, it is lear that topologial groups may be homeomorphi

without being isomorphi | there exist, for instane, two non-

isomorphi groups onsisting of eight elements. For �nite groups

the extra struture we are talking about is that of a Hopf algebra.

Here the group multipliation is enoded in what is alled a o-

multipliation.

Suppose G is a �nite group and let C (G) denote the unital

�

-algebra of omplex valued funtions onG. The o-multipliation

� is the unital

�

-homomorphism from C (G) to the algebrai tensor

produt C (G) � C (G) de�ned by �(f)(s; t) = f(st) for all f 2

C (G) and s; t 2 G. Here we have identi�ed C (G)� C (G) with the

unital

�

-algebra C (G �G) of omplex valued funtions on G�G.

Thus � is simply the transpose of the multipliation of G by the

ontravariant funtorG 7! C (G) from the ategory of �nite groups

to the ategory of �nite-dimensional ommutative C

�

-algebras.

The assoiativity of the group multipliation gives the identity

(� � �)� = (� � �)�, known as o-assoiativity . In this way

the funtor, G 7! C (G), is used to transfer systematially group

notions (suh as the existene of the unit element and the inverse,

together with their axioms) to notions about algebras (suh as

the existene of the o-unit and the o-inverse with orresponding

identities). In the ategory of algebras these notions makes sense
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even for algebras that are not ommutative and one arrives at

the more general onept of a Hopf algebra. As we shall see in

Setion 2 , �nite quantum groups are Hopf algebras with a good

�

-operation. In Setion 2 we develop the theory of suh quantum

groups to familiarize the reader with the funtor, G 7! C (G), and

the theory of Hopf algebras.

For �nite groups the topology involved is the disrete one,

and the generalization to �nite quantum groups runs as smoothly

as one ould hope. For ompat groups one onsiders instead the

funtor, G 7! C(G), going into the ategory of unital C

�

-algebras,

where C(G) is the algebra of ontinuous funtions on the ompat

group G. One may de�ne � using the same formula as before. In

general �(C(G)) � C(G � G) is not ontained in the algebrai

tensor produt C(G) � C(G). But C(G � G) may be identi�ed

with the topologial ompletion C(G) 
 C(G) of C(G) � C(G)

with respet to a natural C

�

-norm, so one arrives at a topologial

version of Hopf algebras.

There is no problem de�ning the o-unit and o-inverse on

C(G). In the mid-eighties a whole new lass of group-like objets

were disovered, and it beame evident from these important

examples | whih learly deserved to be alled quantum groups

| that the unit and o-inverse ould not in general be de�ned as

bounded operators on the non-ommutative C

�

-algebras involved.

They also ruled out Ka algebras as determining a too restritive

lass of quantum groups, exatly for the reason that the o-unit

and the o-inverse were treated as bounded operators (on the von

Neumann algebras involved).

It was Woronowiz who proposed the �rst de�nition (see

[37℄) of a ompat quantum group general enough to ontain

his newly-disovered quantum group, a twisted version SU

q

(2)

(see [38℄), of the lassial matrix group SU(2). He proved the

existene of the Haar state for suh quantum groups and used

it to extend the lassial Peter-Weyl Theorem to the ategory of

ompat quantum groups that he alled ompat matrix pseudo-

groups . Soon after, he proved a generalization of the elebrated

Tannaka-Krein Theorem, whih made it lear that the theory of

ompat quantum groups was in essene a theory of �nite dimen-
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sional unitary o-representations. The matrix elements of these

o-representations form a dense unital

�

-algebra of the C

�

-algebra

of the quantum group, generalizing the algebra of regular fun-

tions on lassial groups. The o-unit and o-inverse an be

de�ned most naturally on this algebra. We outline Woronowiz's

theory of ompat quantum groups in Setion 3 and Setion 4.

In a subsequent paper [22℄ Woronowiz de�ned the dual of

a ompat quantum group, thereby generalizing lassial disrete

groups. For a disrete group G it is natural to onsider the fun-

tor G 7! C

0

(G), where C

0

(G) is the non-unital C

�

-algebra of

(ontinuous) funtions on the disrete group G vanishing at in�n-

ity. The formula for the o-multipliation � given above does not

neessarily have range ontained in C

0

(G�G); rather, it belongs to

the unital C

�

-algebra C

b

(G�G) of bounded funtions on G, whih

may be identi�ed with the multiplier algebra of C

0

(G) 
 C

0

(G).

Thus one is led to the notion of multiplier Hopf algebras .

That the topology does not play a major role in the theory

of ompat and disrete quantum groups beame evident from

A. Van Daele's de�nition of algebrai quantum groups [29℄. It is

a purely algebrai de�nition and the ategory thus de�ned on-

tains Woronowiz's ompat and disrete quantum groups. Also

Van Daele proved a generalization of Pontryagin's duality the-

orem within this ategory. The important notion is that of the

Haar funtional orresponding to the Haar integral for lassial

groups. It is used to de�ne the Fourier transform whih identi�es

the onvolution algebra of the quantum group with the algebra

of funtions on its dual quantum group. In Setion 5 (part II)

we outline the theory of multiplier Hopf algebras and identify the

ompat and disrete quantum groups of Woronowiz.

For a ompat Lie group there are other algebras naturally

attahed to it, namely its assoiated Lie algebra and the universal

enveloping algebra of the Lie algebra onsisting of left-invariant

di�erential operators on the Lie group. This an be embedded

as a unital Hopf

�

-algebra into the maximal dual of the Hopf

�

-

algebra of regular funtions on the Lie group. Unlike the ase of

the onvolution algebra (whih may also be seen as an algebra

of linear funtionals on the algebra of regular funtions), these
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linear funtionals are of ourse not bounded, so the C

�

-algebras

ome in very indiretly as algebras to whih these di�erential

operators are aÆliated. Most of the interesting new examples

of quantum groups where found as deformations or quantizations

of these o-ommutative Hopf algebras in the monumental work

by V. G. Drinfeld and his ollaborators. Setion 6 (part II) is

devoted to explain some of their work and how it is related to

Woronowiz's theory.

In Setion 7 (part II), we give a reent de�nition of lo-

ally ompat quantum groups proposed by the �rst author and

S. Vaas (see [16℄). It is well known that the unitary representa-

tion theory of non-ompat loally ompat groups is highly non-

trivial. For the matrix group SL(2;R), for instane, there are no

�nite-dimensional unitary representations. The role of topology

beomes muh more signi�ant in treating non-ompat loally

ompat quantum groups, and the left and right invariant Haar

weights play a vital role.

2. Hopf

�

-algebras, Finite Quantum Groups and

Duality

We reformulate the theory of �nite groups in terms of �nite

quantum groups by onsidering algebras of funtions naturally

attahed to the groups. These algebras arry additional stru-

tures leading to the notion of a Hopf

�

-algebra. Hopf algebras

have been subjet to intensive studies by algebraists over the

last deades, [1℄. A �nite quantum group is a �nite-dimensional

Hopf

�

-algebra whih in addition is a C

�

-algebra or Frobenius

algebra. In the ategory of �nite quantum groups thus de�ned,

the �nite groups are identi�ed as the full subategories of ommut-

ative or o-ommutative Hopf

�

-algebras, and the �nite abelian

groups as the Hopf

�

-algebras whih are both ommutative and

o-ommutative. In this setion we establish a duality result

within the ategory of �nite quantum groups that generalizes

Pontryagin's duality theorem for �nite abelian groups.

The ruial role played by Haar funtionals on the Hopf

�

-algebras involved, orresponding to Haar integrals for groups,

will be evident. Among the important identities obtained is the
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generalization of Planherel's formula for �nite abelian groups.

It turns out that the duality theory developed here (whih uses

the Haar funtionals so manifestly) has found its formulation in

the broad framework of multiplier Hopf

�

-algebras developed by

A. Van Daele (see Setion 5 (part II)). They ontain all ompat

and disrete groups.

Historially the funtion algebra K(G), introdued below,

led to the theory of ompat quantum groups developed by Woro-

nowiz in the C

�

-algebra ontext (see [31℄ and [37℄). The onvolu-

tion algebra C [G℄, also de�ned below, suggested the approah to

quantum groups in terms of Ka algebras [8℄. Later we shall study

a third approah by onsidering the universal enveloping algebras

of Lie algebras, whih are again Hopf

�

-algebras, but now onsist-

ing of unbounded elements. This approah is emphasized by the

Russian shool and inludes the monumental work by Drinfeld,

[7℄.

Here we have hosen to stik to the �nite-dimensional ase

due to the tehnial diÆulties otherwise enountered, and we

hope that our rather detailed aount, inluding proofs, will reveal

the essential ideas neessary to resolve problems arising in the

development of the more general theory.

The �rst example, and the most relevant to our approah,

omes with the funtion algebra K(G) of a group G. To simplify

matters, we shall assume G to be �nite. Later, loally ompat

(in�nite) groups will enter the arena, and this approah proposes

C

�

-algebras as a framework for loally ompat quantum groups.

Let K(G) be the set of all omplex-valued funtions on G.

It is a unital

�

-algebra under the following operations:

� (�f)(s) = � f(s);

� (f + g)(s) = f(s) + g(s);

� (fg)(s) = f(s)g(s);

� f

�

(s) = f(s);

� 1(s) = 1;

where f; g 2 K(G), � 2 C and s 2 G. Throughout this paper

we use the symbol � to denote the algebrai tensor produt of

two vetor spaes. Sine G is �nite, we may identify the algebras
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K(G) � K(G) and K(G � G) via the formula (f 
 g)(s; t) =

f(s) g(t) for all f; g 2 K(G) and s; t 2 G. We transpose the group

struture to K(G) by introduing:

� A unital

�

-homomorphism � : K(G)! K(G)�K(G) suh that

�(f)(s; t) = f(st).

� A unital

�

-homomorphism " : K(G)! C suh that "(f) = f(e).

� A unital involutive

�

-automorphism S : K(G) ! K(G) suh

that S(f)(s) = f(s

�1

).

Here f 2 K(G) and s; t 2 G, whereas e denotes the neutral ele-

ment in G.

The group axioms an be expressed in terms of these maps

by the following identities:

1. (�� �)� = (���)�;

2. ("� �)� = (�� ")� = �;

3. m(S � �)� = m(�� S)� = 1 "(:);

where � is the identity map on K(G) and m : K(G) �K(G) !

K(G) is the multipliation on K(G) lifted to the tensor produt

K(G)�K(G), som(x
y) = xy for x; y 2 K(G). The �rst identity

is a onsequene of the assoiativity of the group multipliation.

The seond identity expresses the fat that e is the neutral element

of G and the last one stems from the axiom for inverse elements.

What we have at hand is an example of a ommutative Hopf

�

-algebra. Let us reall the general de�nition:

De�nition 2.1 Consider a unital

�

-algebra A (with multiplia-

tion m : A�A! A : a
 b 7! ab ) and a unital

�

-homomorphism

� : A! A�A satisfying o-assoiativity, i.e. (���)� = (���)�.

Assume furthermore the existene of linear maps " : A ! C and

S : A! A ful�lling the onditions:

("� �)� = (�� ")� = �; (2:1:1)

m(S � �)� = m(�� S)� = 1 "(:) : (2:1:2)

The pair (A;�) is alled a Hopf

�

-algebra.

The linear maps " and S are uniquely determined by the

onditions (1) and (2) (see [1℄). They are alled o-unit and anti-

pode, respetively, whereas the term o-multipliation is used for

�. We ollet some basi properties:
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Proposition 2.2 Consider a Hopf

�

-algebra (A;�) with o-unit

" and antipode S. Then

1. " is a unital

�

-homomorphism and "S = ".

2. S is anti-multipliative and S(S(a

�

)

�

) = a for all a 2 A.

3. �(S � S)� = �S, where � : A � A ! A � A is the ip-

automorphism given by �(a
 b) = b
 a for all a; b 2 A.

We say that two Hopf

�

-algebras (A

1

;�

1

) and (A

2

;�

2

) are

isomorphi if there exists a

�

-isomorphism � : A

1

! A

2

suh that

(� � �)�

1

= �

2

�. Notie that the uniqueness of the o-unit and

the antipode implies that "

2

� = "

1

and S

2

� = �S

1

.

The two linear maps T

1

; T

2

: A�A! A�A determined by

T

1

(a
 b) = �(a)(1
 b) and T

2

(a
 b) = (a
 1)�(b) ;

where a; b 2 A, play a fundamental role in the theory of quantum

groups. They are linear isomorphisms with inverses given by

T

�1

1

(a
b) = ((��S)�(a)) (1
b) and T

�1

2

(a
b) = (a
1) ((S��)�(b))

for a; b 2 A.

Returning to our example (K(G);�), the formulas in Pro-

position 2.2 are seen to be dual versions of the well known iden-

tities e

�1

= e, (gh)

�1

= h

�1

g

�1

and (g

�1

)

�1

= g in the group G.

The maps T

1

and T

2

are transposes of the bijetive maps

G�G! G�G : (s; t) 7! (st; t) and G�G! G�G : (s; t) 7! (s; st);

respetively, where s; t 2 G. The bijetivity of T

1

and T

2

expresses

the fat that the maps s 7! st and s 7! ts from G to G, where

s; t 2 G, are bijetive. Sine G is �nite it means that eah of them

is either surjetive or injetive.

It is easy to prove that the set of haraters (that is, unital

�

-homomorphisms) on K(G) is a group isomorphi to G under

multipliation given by �� = (�
�)� for haraters �; � of K(G).

Thus if G

1

and G

2

are �nite groups, then they are isomorphi

if and only if the assoiated Hopf

�

-algebras (K(G

1

);�

1

) and

(K(G

2

);�

2

) are isomorphi.
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Furthermore, for a �nite group G, observe that K(G) is

a �nite-dimensional ommutative C

�

-algebra with respet to the

supremum norm. Applying Gelfand's theorem, it is not hard to see

that every Hopf

�

-algebra (A;�), with A a �nite-dimensional om-

mutative C

�

-algebra, is isomorphi to (K(G);�) for some �nite

group G. We thus arrive at the following de�nition of a �nite

quantum group.

De�nition 2.3 A �nite quantum group (A;�) is a Hopf

�

-

algebra for whih A is a �nite-dimensional Frobenius algebra, i.e.

a

�

a = 0, a = 0 for all a 2 A.

A linear funtional h on A is alled a Haar funtional on a

Hopf

�

-algebra (A;�) if h(1) 6= 0 and (h� �)� = 1h(�).

Assume that h

1

,h

2

are linear funtionals on A suh that

h

1

(1) = h

2

(1) 6= 0 and (h

1

� �)� = 1h

1

(�) and (� � h

2

)� =

1h

2

(�). Then, for all a 2 A, we have h

2

(1)h

1

(a) = h

2

�

h

1

(a) 1

�

=

h

2

�

(h

1

� �)�(a) ) = h

1

�

(� � h

2

)�(a) ) = h

1

(1)h

2

(a), and hene

h

1

= h

2

.

If follows from statement 3 in Proposition 2.2 that a Haar

funtional h on (A;�) satis�es (� � hS)� = 1 (hS)(�) and

(hS)(1) = h(1). Thus h = hS and (� � h)� = 1h(�) and h

is unique up to multipliation by a salar.

Any �nite quantum group (A;�) possesses a unique (up to

a salar) positive Haar funtional h, i.e. a Haar funtional suh

that h(a

�

a) � 0 for all a 2 A. Moreover, h is faithful. We disuss

this in Setion 3 in the more general ontext of ompat quantum

groups.

These results are evident for A ommutative: Suppose G

is a �nite group and de�ne a linear funtional h : K(G) ! C by

h(f) =

P

s2G

f(s) for all f 2 K(G). It is of ourse the integral

orresponding to the ounting measure on G.

Clearly (h� �)(F )(t) =

P

s2G

F (s; t) for all F 2 K(G�G)

and t 2 G. Therefore

(h� �)(�(f))(t) =

X

s2G

�(f)(s; t) =

X

s2G

f(st) =

X

s2G

f(s) = h(f) 1(t)

for all t 2 G and f 2 K(G). So h is the Haar funtional on

(K(G);�). Clearly it is positive and faithful.
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Given a disrete group G (not neessarily �nite), we on-

strut a Hopf

�

-algebra (C [G℄;

^

�) from G, whih as we shall see

later, is dual to the Hopf

�

-algebra (K(G);�).

As a set, C [G℄ onsists of the omplex valued funtions with

�nite support. It is a unital

�

-algebra under the following opera-

tions:

� (�f)(s) = � f(s);

� (f + g)(s) = f(s) + g(s);

� (fg)(s) =

P

t2G

f(t) g(t

�1

s);

� f

�

(s) = f(s

�1

);

where f; g 2 C [G℄, � 2 C and s 2 G. Notie that the sum above

is �nite beause f has �nite support.

For s 2 G, de�ne Æ

s

2 C [G℄ to be equal to 1 at the point s

and equal to 0 elsewhere. Obviously (Æ

s

)

s2G

forms a basis for the

vetor spae C [G℄. The formulas Æ

s

Æ

t

= Æ

st

and (Æ

s

)

�

= Æ

s

�1
for

s; t 2 G will be useful in the sequel. For instane, it is immediate

from them that Æ

e

is the unit element in C [G℄. Using the map

G ! C [G℄ : s 7! Æ

s

, we an regard G as a subgroup of the group

of invertible elements in C [G℄.

We de�ne linear maps spei�ed on the basis (Æ

s

)

s2G

:

�

^

� : C [G℄ ! C [G℄ � C [G℄ by

^

�(Æ

s

) = Æ

s


 Æ

s

,

� "̂ : C [G℄ ! C by "̂(Æ

s

) = 1,

�

^

S : C [G℄ ! C [G℄ by

^

S(Æ

s

) = Æ

s

�1
,

where s 2 G. It follows that (C [G℄;

^

�) is a Hopf

�

-algebra with

o-unit "̂ and antipode

^

S:

The o-assoiativity expresses the assoiativity of the tensor

produt 
, i.e.

(

^

�� �)

^

�(Æ

s

) = (Æ

s


 Æ

s

)
 Æ

s

= Æ

s


 (Æ

s


 Æ

s

) = (��

^

�)

^

�(Æ

s

);

where s 2 G.

Denoting the multipliation map C [G℄ � C [G℄ ! C [G℄ by

m̂, we have

^

S(Æ

s

) Æ

s

= Æ

s

�1
Æ

s

= Æ

s

�1

s

= Æ

e

for all s 2 G, and

hene

m̂(

^

S � �)

^

�(Æ

s

) =

^

S(Æ

s

) Æ

s

= Æ

e

= Æ

e

"̂(Æ

s

) = m̂(��

^

S)

^

�(Æ

s

) :
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The identity (2.1.1) for the o-unit is proved in a similar

fashion. It should be noted that the group multipliation is

enoded in the onvolution produt m̂ this time, and not in the

o-multipliation, as is the ase for (K(G);�).

Note again that

^

�(Æ

s

) = Æ

s


 Æ

s

for every s 2 G. Suppose

(A;�) is a Hopf

�

-algebra. An element a 2 A is alled group-like

if a 6= 0 and

^

�(a) = a
a. This notion is justi�ed by the fat that

every group-like element in (C [G℄;

^

�) is of the form Æ

s

for some

s 2 G:

Suppose f 2 C [G℄ is group-like and write f =

P

s2G

f(s) Æ

s

.

Then

X

s2G

f(s) Æ

s


 Æ

s

=

^

�(f) = f 
 f =

X

s;t2G

f(s) f(t) Æ

s


 Æ

t

:

Sine (Æ

s


 Æ

t

)

s;t2G

is a basis for C [G℄ � C [G℄, it follows that

f(s) Æ

s

= f(s) f for all s 2 G. As f 6= 0, there exists r 2 G suh

that f(r) 6= 0 and thus f = Æ

r

.

De�ne a linear funtional

^

h : C [G℄ ! C by

^

h(f) = f(e) for

f 2 C [G℄. Hene,

^

h(Æ

e

) = 1 and

^

h(Æ

s

) = 0 for all s 2 G n feg.

Beause

(

^

h� �)

^

�(Æ

s

) =

^

h(Æ

s

) Æ

s

= Æ

e

^

h(Æ

s

)

for all s 2 G, we onlude that

^

h is the Haar funtional on

(C [G℄;

^

�). Now

^

h(f

�

f) = (f

�

f)(e) =

X

s2G

jf(s)j

2

for all f 2 C [G℄, so

^

h is positive and faithful.

In the rest of this setion we assume that G is a �nite

group. By faithfulness of the Haar funtional

^

h, we onlude that

(C [G℄;

^

�) is a �nite quantum group in the sense of De�nition 2.3.

Notie that (C [G℄;

^

�) is a o-ommutative Hopf

�

-algebra,

i.e. �

^

� =

^

�, where � denotes the ip-automorphism. In fat,

every �nite o-ommutative quantum group is isomorphi to
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(C [G℄;

^

�) for some �nite group G. This assertion is evident from

the duality result below.

Let (A;�) be a �nite quantum group with a positive faithful

Haar funtional h. The set of group-like elements of (A;�) forms

a subgroup of the group of unitaries: Let a; b 2 A be group-like.

Then "(a) = 1 and a

�1

= S(a). Hene ab 6= 0 and thus ab is

group-like. Also h(a)a = (h 
 �)�(a) = h(a)I , and therefore

h(a) = 0 unless a = I . Sine a

�

is group-like, a

�

a is group-like.

As h(a

�

a) > 0, we thus get a

�

a = I . Similarly aa

�

= I and so

S(a) = a

�

.

Furthermore, we shall see in Setion 3 that the set of group-

like elements of (A;�) forms a linear basis if and only if (A;�) is

o-ommutative.

We begin by de�ning the dual Hopf

�

-algebra (

^

A;

^

�) of a

�nite-dimensional Hopf

�

-algebra (A;�) with o-unit " and anti-

pode S. Let

^

A be the vetor spae of linear funtionals on A. We

use the o-multipliation, the antipode and the

�

-operation on A

to de�ne a multipliation and

�

-operation on

^

A:

� (!�)(a) = (! � �)�(a);

� !

�

(a) = !(S(a)

�

)

for all !; � 2

^

A and a 2 A. Equipped with these operations

^

A

aquires the status of a unital

�

-algebra with unit ".

Sine A is �nite-dimensional, we may identify

^

A �

^

A with

the vetor spae of linear funtionals on A � A via the formula

(! 
 �)(a
 b) = !(a)�(b), where !; � 2

^

A and a; b 2 A.

Using this identi�ation, the multipliation on A yields a o-

multipliation

^

� :

^

A!

^

A�

^

A on

^

A suh that

^

�(!)(a
b) = !(ab)

for all ! 2

^

A and a; b 2 A.

Similarly the unit 1 and the antipode S on (A;�) de�ne

a o-unit "̂ : A ! C and an antipode

^

S :

^

A !

^

A on (

^

A;

^

�),

respetively, given by the formulas:

� "̂(!) = !(1);

�

^

S(!)(a) = !(S(a));

where ! 2

^

A and a 2 A. Hene (

^

A;

^

�) is a Hopf

�

-algebra.
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Consider two �nite-dimensional Hopf

�

-algebras (A

1

;�

1

)

and (A

2

;�

2

) and a Hopf

�

-algebra isomorphism F : A

1

! A

2

.

Then we an also dualize the mapping F to the mapping

^

F :

^

A

2

!

^

A

1

given by

^

F (!) = F! for all ! 2

^

A

2

. It is an

easy exerise to hek that

^

F is a Hopf

�

-algebra isomorphism

from (

^

A

2

;

^

�

2

) to (

^

A

1

;

^

�

1

).

Two Hopf

�

-algebras (A

1

;�

1

) and (A

2

;�

2

) are alled a dual

pair if and only if there exists a non-degenerate bilinear form

h�; �i : A

1

�A

2

! C suh that:

1. ha

1

b

1

; a

2

i = ha

1


 b

1

;�

2

(a

2

)i;

2. ha

1

; a

2

b

2

i = h�

1

(a

1

); a

2


 b

2

i;

3. ha

�

1

; a

2

i = ha

1

; S

2

(a

2

)

�

i;

4. ha

1

; a

�

2

i = hS

1

(a

1

)

�

; a

2

i;

5. hS

1

(a

1

); a

2

i = ha

1

; S

2

(a

2

)i;

6. ha

1

; 1i = "

1

(a

1

) and h1; a

2

i = "

2

(a

2

)

for all a

1

; b

1

2 A

1

and a

2

; b

2

2 A

2

. Equations 1 and 2 involve

the extended bilinear form h�; �i : (A

1

� A

1

) � (A

2

� A

2

) ! C

determined by the equality ha

1

� b

1

; a

2

� b

2

i = ha

1

; a

2

i hb

1

; b

2

i for

all a

1

; b

1

2 A

1

, a

2

; b

2

2 A

2

. Uniqueness of the o-unit and the

antipode implies that equations 3 to 6 are redundant. Invoking

the non-degeneray of h�; �i, we see that (A

1

;�

1

) is ommutative

if and only if (A

2

;�

2

) is o-ommutative.

The Hopf

�

-algebras (A;�) and (

^

A;

^

�) form a dual pair

under the bilinear form h�; �i : A �

^

A ! C given by the formula

ha; !i = !(a) for all a 2 A, ! 2

^

A. In fat, all dual pairs are of

this form.

Suppose (A;�) is a �nite quantum group with Haar state h.

For a 2 A de�ne ah 2

^

A suh that (ah)(x) = h(xa), where x 2 A.

Sine h is faithful, the linear map A!

^

A : a 7! ah is injetive and

onsequently bijetive beause A and

^

A have the same dimension.

Thus

^

A = f ah j a 2 A g.

We should point out that the above vetor spae isomorph-

ism fails to be an isomorphism on the level of Hopf

�

-algebras (it

is not even multipliative). However, we an use it to pull bak

the Hopf

�

-algebra struture on the dual (

^

A;

^

�) to A. In the ase
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that A = K(G) this pull-bak Hopf

�

-algebra is idential to the

Hopf

�

-algebra (C [G℄;

^

�).

Let (

^

A;

^

�) be the dual Hopf

�

-algebra of (A;�). De�ne

the linear funtional

^

h on

^

A by

^

h(ah) = "(a) for a 2 A. Notie

that

^

h is well de�ned beause A !

^

A : a 7! ah is a vetor spae

isomorphism. We prove some properties for

^

h:

Proposition 2.4 Suppose a 2 A and � 2

^

A. Then we have

(�

^

h)(ah) = �(S(a)).

Proof: Pik b 2 A suh that � = bh. Using the

�

-operation and

the surjetivity of T

2

, we see that there exist elements p

1

; : : : ; p

n

and q

1

; : : : ; q

n

in A suh that a
 b =

P

n

i=1

�(p

i

)(q

i


 1). Apply-

ing m(S 
 �) to this equality, we get S(a)b =

P

n

i=1

"(p

i

)S(q

i

).

Inserting x 2 A, we alulate

((ah)�)(x) = (ah� �)�(x)

= (h� h)(�(x)(a 
 b))

=

n

X

i=1

(h� h)(�(xp

i

)(q

i


 1))

=

n

X

i=1

h(xp

i

)h(q

i

)

=

n

X

i=1

h(xp

i

)h(S(q

i

)) :

Hene (ah)� =

P

n

i=1

h(S(q

i

)) p

i

h, whih implies that

(�

^

h)(ah) =

^

h((ah)�) =

n

X

i=1

h(S(q

i

))

^

h(p

i

h)

=

n

X

i=1

h(S(q

i

)) "(p

i

) = h(S(a)b)

= �(S(a)) ;

as desired. �
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As will be lear later, the following orollary is the quantum

analogue of Planherel's theorem.

Corollary 2.5 The formula

^

h((ah)

�

(ah)) = h(a

�

a) holds for all

a 2 A.

Proof: We have (ah)

�

(x) = (ah)(S(x)

�

) = h(S(x)

�

a) =

h(a

�

S(x)) = h

�

S(xS

�1

(a

�

))

�

= h(xS

�1

(a

�

)) for all x 2 A.

It follows that (ah)

�

= S

�1

(a

�

)h, whih implies in turn that

^

h((ah)

�

(ah)) =

^

h((S

�1

(a

�

)h)(ah)) = ((ah)

^

h)(S

�1

(a

�

)h)

(�)

=

(ah)

�

S(S

�1

(a

�

))

�

= h(a

�

a), where we used the previous pro-

position in the equality labelled (*). �

Proposition 2.6 The map

^

h is a Haar funtional on (

^

A;

^

�).

Proof: Choose b;  2 A. As before, we an �nd elements

p

1

; : : : ; p

n

2 A, q

1

; : : : ; q

n

2 A suh that b
 =

P

i=1

�(p

i

)(q

i


1).

Applying " � � to this equation yields "(b)  =

P

n

i=1

p

i

"(q

i

). So,

for x; y 2 A,

(

^

�(bh)(1
 h))(x
 y) = (bh
 h)((x
 1)�(y))

= (h
 h)((x
 1)�(y)(b
 )) =

P

n

i=1

(h
 h)((x
 1)�(yp

i

)(q

i


 1)):

Left invariane of h now implies that (

^

�(bh)(1 
 h))(x 
 y) =

P

n

i=1

h(xq

i

)h(yp

i

) for every x; y 2 A. Hene,

^

�(bh)(1
 h)

=

P

n

i=1

q

i

h 
 p

i

h. Therefore we have (

^

h � �)(

^

�(bh)(1 
 h)) =

P

n

i=1

^

h(q

i

h) p

i

h =

P

n

i=1

"(q

i

) p

i

h = "(b) h =

^

h(bh) h and on-

sequently (

^

h��)

^

�(bh) =

^

h(bh) 1, whih shows the right invariane

of

^

h.

Pik a 2 A suh that ah = ", so h(a) = "(1) = 1.

By the Cauhy-Shwarz inequality, 1 = jh(a)j

2

� h(1)h(a

�

a),

so h(a

�

a) 6= 0. By Planherel's formula,

^

h(") =

^

h("

�

") =

^

h((ah)

�

(ah)) = h(a

�

a) 6= 0. �
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Planherel's formula shows that

^

h is positive and faithful.

Thus

^

A is a Frobenius algebra and (

^

A;

^

�) is a �nite quantum

group. Therefore we have duality within the ategory of �nite

quantum groups.

Consider the ommutative and o-ommutative Hopf

�

-

algebras (K(G);�) and (C [G℄;

^

�), respetively, assoiated to a

�nite group G. They onstitute a dual pair under the bilinear

form h� j �i : K(G)� C [G℄ ! C given by

hf j gi =

X

s2G

f(s)g(s) = h(fg)

for all f 2 K(G) and g 2 C [G℄, where h is the Haar funtional on

(K(G);�).

Using this Haar funtional h, we de�ne a Hopf

�

-algebra

isomorphism � : C [G℄ !

d

K(G) : g 7! gh. Then hf j gi = hf; �(g)i

for all f 2 K(G) and g 2 C [G℄, where the latter form h�; �i is

the one giving the duality between (K(G);�) and (

d

K(G);

^

�) as

desribed above.

Suppose that G is an abelian �nite group and denote by

^

G the dual group of G. Reall that

^

G is the set of group homo-

morphisms from G to the irle T, and that

^

G is a group under

the pointwise produt.

Notie that

^

G is a subset of K(G). The Fourier transform

F : C [G℄ ! K(

^

G) is given in terms of the duality h� j �i between

K(G) and C [G℄ by F(g)(�) = h� j gi = h(�g), where g 2 C [G℄

and � 2

^

G. The same formula extends F(g) from

^

G to K(G).

Notie that the Fourier transform F : C [G℄ ! K(

^

G) is an

isomorphism of Hopf

�

-algebras. We restrit ourselves to showing

that F is a

�

-homomorphism:

� Let � 2

^

G. Beause � is a group homomorphism, by de�nition

of the o-multipliation � on K(G), we get �(�) = �
 �. Now

F(g

1

g

2

)(�) = h� j g

1

g

2

i = h�(�) j g

1


 g

2

i = h�
 � j g

1


 g

2

i

= h�; g

1

i h�; g

2

i = F(g

1

)(�)F(g

2

)(�) = (F(g

1

)F(g

2

))(�)

for all g

1

; g

2

2 C [G℄ and � 2

^

G.
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� Observe that S(�) = �

�

for every � 2

^

G. Thus

F(g

�

)(�) = h� j g

�

i = hS(�)

�

j gi = h� j gi = F(g)(�) = F(g)

�

(�)

for all g 2 C [G℄ and � 2

^

G.

Reall that K(G) and C [G℄ are equal as vetor spaes (but

not as algebras). Thus we may de�ne

~

F : K(G) ! K(

^

G) by

~

F(f) = F(f), where f 2 K(G). The Planherel Formula for a

�nite abelian group G states that

~

F is an isometry with respet to

the L

2

-norms given by the Haar measures on G and

^

G (if orretly

saled), i.e.

jGj

X

s2G

jf(s)j

2

=

X

�2

^

G

j

~

F(f)(�)j

2

for all f 2 K(G). We prove that the formula in Corollary 2.5

takes this form whenever (A;�) = (K(G);�), where now G is a

�nite abelian group:

Denote by h

0

the Haar funtional on (K(

^

G);�). Sine

�F

�1

: K(

^

G) !

d

K(G) is a Hopf

�

-algebra isomorphism, it fol-

lows by uniqueness of the Haar funtional h

0

that

^

h�F

�1

= h

0

for some  2 C . Now observe that

X

s2G

jf(s)j

2

= h(f

�

f) =

^

h((fh)

�

(fh)) =

^

h�F

�1

(

~

F(f)

�

~

F(f))

= h

0

(

~

F(f)

�

~

F(f)) = 

X

�2

^

G

j

~

F(f)(�)j

2

for all f 2 K(G). It remains to prove that  = jGj

�1

. To this end

insert f = 1 in the formula above and note that

~

F(1)(�) = h(�),

so

jGj =

X

s2G

j1(s)j

2

= 

X

�2

^

G

jh(�)j

2

:

Now

h(�)1 = (h� �)�(�) = h(�)�
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for all � 2

^

G, so h(�) = 0 for all � 6= 0. Thus jGj =  h(1)

2

=  jGj

2

as desired.

Given a �nite-dimensional Hopf

�

-algebra (A;�), we may,

of ourse, form the dual of the dual Hopf

�

-algebra (

^

A;

^

�) to get

the double dual Hopf

�

-algebra (

^

^

A;

^

^

�). In fat, sine A is �nite-

dimensional, we have a anonial isomorphism � : A !

^

^

A of

vetor spaes given by �(a)(!) = !(a) for all a 2 A and ! 2

^

A. A

loser investigation shows that � is a Hopf

�

-algebra isomorphism.

It follows that if (A;�) is a �nite-dimensional Hopf

�

-algebra, then

A is a Frobenius algebra if and only if

^

A is a Frobenius algebra.

Also the formula in Proposition 2.4 an be rewritten in terms of

the dual forms h�; �i

A

: A �

^

A ! C and h�; �i

^

A

:

^

A �

^

^

A ! C ,

namely,

h�

�1

(!

^

h); ahi

A

= hS(a); !i

A

and

hah; !

^

hi

^

A

= h

^

S(!); �(a)i

^

A

;

for all a 2 A and ! 2

^

A.

Consider again a �nite abelian group G. Taking into

aount the anonial Hopf

�

-algebra isomorphisms introdued in

the disussion above, we arrive at the following diagram:

K

�

^

^

G

�

F

�1

�������! C [

^

G℄

�

�������!

d

K(

^

G)

^

P

?

?

?

?

y

?

?

?

?

y

^

F

K(G)

�

�1

 �������

d

d

K(G)

^

�

�1

 �������

d

C [G℄

where we have de�ned the isomorphism

^

P : K

�

^

^

G

�

! K(G)

in suh a way that the diagram ommutes. The Hopf

�

-algebra

isomorphism

^

P has to be the transpose of a group isomorph-

ism P : G !

^

^

G , i.e.

^

P(f) = fP for all f 2 K(

^

^

G). This is

Pontryagin's duality theorem for �nite abelian groups. Of ourse,



28 IMS Bulletin 43, 1999 �

^

^

G '

^

G ' G via the lassi�ation of �nite abelian groups, but

these isomorphisms are not anonial.

A tedious but straightforward alulation shows that P is

given by the well known formula appearing in Pontryagin's duality

theorem for �nite abelian groups, i.e. P(s)(!) = !(s) for all s 2 G

and ! 2

^

G.

Remark 2.7 We state some general fats about �nite quantum

groups. It an be shown, [37℄, that for a �nite quantum group

(A;�) the Haar funtional h is traial, that is, h(ab) = h(ba)

for all a; b 2 A. Furthermore, the antipode is involutive and

�

-preserving, so a �nite quantum group is a Ka algebra (see [8℄

and Setion 3, and also Setion 7 (part II)). Any �nite-dimensional

Frobenius- or C

�

-algebra is a diret sum of full matrix algeb-

ras, and the irreduible

�

-representations of suh an algebra are

all obtained by projeting down on any of the fators in the

produt. The o-unit of a �nite quantum group is a 1-dimensional

�

-representation of A, and therefore A must ontain a opy of C .

The smallest non-abelian group is the group of permutations

of three elements, whih onsists of 6 elements. The orresponding

�nite quantum group is a 6-dimensional ommutative and non-

oommutative Hopf

�

-algebra. The following (see exerise 7 on

p. 68 in [14℄) is an example of a 4-dimensional Hopf algebra whih

is neither ommutative nor o-ommutative:

Denote by A the universal unital algebra generated by two

elements t and x satisfying the relations

t

2

= 1 x

2

= 0 xt = �tx :

The following formulas:

�(t) = t
 t �(x) = 1
 x+ x
 t

and

"(t) = 1 S(t) = 0

"(x) = 0 S(x) = tx :

de�ne a o-multipliation �, a o-unit " and an antipode S on A.
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However, this Hopf algebra is not a quantum group beause

there is no

�

-operation turning it into a Frobenius algebra. In

fat, it is easy to see that the antipode S satis�es S

4

= � and

that it is not involutive. The lowest dimensional �nite quantum

group whih is neither ommutative nor o-ommutative is the

`histori' example due to G. I. Ka and V. G. Paljutkin, published

in Russian in 1965. The algebra A for this quantum group is 8-

dimensional and is

�

-isomorphi to C � C � C � C �M

2

(C ). It

admits only one non-trivial Hopf

�

-algebra struture, [9℄.

3. Compat Quantum Groups

3.1. De�nition and Examples of Compat Quantum

Groups

The de�nition we adopt of a ompat quantum group is by now

widely aepted. It is due to Woronowiz [35℄ , who also de�ned

its immediate predeessor: a ompat matrix pseudo-group [37℄.

A ompat matrix pseudo-group is a generalization of a om-

pat matrix group. Its de�nition distinguishes a fundamental

o-representation, a role played by the identity representation in

the matrix group ase. It is well known that every ompat Lie

group has an injetive �nite-dimensional representation. There-

fore, ompat matrix pseudogroups an be regarded as quantum

analogues of ompat Lie groups.

Although the o-multipliation is de�ned on the C

�

-algebra

level, this is not the ase for the o-unit and antipode. They

may not be bounded. However, we shall see that there always

exists a Hopf

�

-algebra whih is dense in the C

�

-algebra. In the

lassial ase this is the algebra of regular funtions on the group.

For matrix groups it is the

�

-algebra generated by the o-ordinate

funtions, whih by the Stone-Weierstrass Theorem is dense in

the C

�

-algebra of ontinuous funtions on the group. One way

to overome the diÆulties with a o-unit and a o-inverse not

everywhere de�ned, is to invoke the maps T

1

and T

2

disussed in

the previous setion.
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A note on terminology: when onsidering the tensor produt

A 
B of C

�

-algebras A and B, we shall always take it to be the

C

�

-algebrai ompletion of the algebrai tensor produt A � B

with respet to the minimal tensor produt norm.

De�nition 3.1.1 A ompat quantum group is a pair (A;�),

where A is a unital C

�

-algebra and � : A ! A 
 A is a unital

�

-homomorphism suh that:

1. (�
 �)� = (�
�)�;

2. �(A)(A 
 1) is a dense subspae of A
A;

3. �(A)(1
A) is a dense subspae of A
A:

In this de�nition, �(A)(A 
 1) is the linear span of the set

f�(a)(b
 1) j a; b 2 A g (and similarly for �(A)(1 
A)).

Clearly, all �nite quantum groups are ompat quantum

groups beause, as we have seen, the maps T

1

and T

2

are bijetive.

Now we introdue the motivating example generalizing the �nite

quantum group (K(G);�), where G is a �nite group.

Example 3.1.2 Suppose G is a ompat topologial group and

let C(G) denote the set of ontinuous funtions on G. It is a

unital C

�

-algebra under the obvious pointwise-de�ned algebrai

operations and the uniform norm (f. the

�

-algebra K(G) when

G is �nite). The linear map � : C(G) � C(G) ! C(G � G)

determined by �(f 
 g)(s; t) = f(s) g(t) for f; g 2 C(G) and

s; t 2 G has a unique ontinuous extension to a

�

-isomorphism

from C(G)
 C(G) to C(G�G). We shall use this

�

-isomorphism

to identify C(G)
 C(G) with C(G �G).

De�ne the unital

�

-homomorphism � from C(G) into

C(G) 
 C(G) by setting �(f)(s; t) = f(st) for all f 2 C(G) and

s; t 2 G. The assoiativity of the group multipliation is then

reeted in the o-assoiativity of �, i.e. (�
 �)� = (� 
�)�.

De�ne the

�

-homomorphism T

1

from C(G) 
 C(G) to

C(G) 
 C(G) suh that T

1

(f)(s; t) = f(st; t) for f 2 C(G)
C(G)

and s; t 2 G. As in the �nite group ase, this map is invertible with

inverse given by T

�1

1

(f)(s; t) = f(st

�1

; t) for f 2 C(G) 
 C(G)

and s; t 2 G. Thus by ontinuity, T

1

(C(G) � C(G)) is dense in
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C(G) 
 C(G). Sine T

1

(a 
 b) = �(a)(1 
 b) for all a; b 2 C(G),

we have proved axiom 3 in De�nition 3.1.1. Axiom 2 is proved

similarly. Hene, (C(G);�) is a ompat quantum group.

The two

�

-homomorphisms S : C(G) ! C(G) and

" : C(G)! C de�ned by the formulas S(f)(s) = f(s

�1

) and

"(f) = f(e), where f 2 C(G) and s 2 G, play the role of the

antipode and the o-unit on (C(G);�), respetively. They are

obviously everywhere de�ned and bounded and furthermore, S

is an involutive

�

-isomorphism. Nothing of this is true in the

general ase and this poses a hallenging problem.

The pair (C(G);�) thus resembles very muh the notion

of a Hopf

�

-algebra in the sense of De�nition 2.1, in that we just

have to replae the algebrai tensor produt� with the topologial

tensor produt 
.

The previous example exhausts all ompat quantum groups

for whih the C

�

-algebra is ommutative. The proof, whih essen-

tially uses Gelfand's representation theorem for ommutative C*-

algebras, boils down to showing that a ompat semi-group satis-

fying the anellation laws is a ompat group, a well known fat.

The next example exhausts all o-ommutative ompat quantum

groups for whih the Haar state is faithful. We give a proof of this

fat at the end of this setion.

Example 3.1.3 We now onsider (C [G℄;

^

�), where G is a disrete

group. In Setion 2 we showed that (C [G℄;

^

�) is a unital Hopf

�

-

algebra with a positive and faithful Haar funtional

^

h.

In order to get a ompat quantum group, we need to show

that the unital

�

-algebra C [G℄ admits a C

�

-norm. We use the Haar

funtional to introdue a Hilbert spae and represent the unital

�

-algebra C [G℄ injetively as bounded operators on this Hilbert

spae.

The inner produt (� j �) on C [G℄ is de�ned by the equations

(f j g) =

^

h(g

�

f) for f; g 2 C [G℄. Denote the orresponding Hilbert

spae ompletion of C [G℄ by L

2

(

^

h) and the norm on it by k � k

2

.

Notie that kfk

2

2

=

P

s2G

jf(s)j

2

for f 2 C [G℄.
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Funtions f in C [G℄ an be represented as linear operators

L

f

in L

2

(

^

h) given by left multipliation on C [G℄: L

f

(g) = fg for

all g 2 C [G℄. We proeed by showing that the operators L

f

, where

f 2 C [G℄, are bounded on the dense subspae C [G℄ of L

2

(

^

h),

and thus have unique extensions to bounded operators �(f) on

L

2

(

^

h): To this end, reall that C [G℄ omes with a linear basis

(Æ

s

)

s2G

, where Æ

�

s

Æ

s

= Æ

e

for s 2 G. Hene kL

Æ

s

(g)k

2

2

= kÆ

s

gk

2

2

=

^

h((Æ

s

g)

�

(Æ

s

g)) =

^

h(g

�

Æ

�

s

Æ

s

g) =

^

h(g

�

Æ

e

g) =

^

h(g

�

g) = kgk

2

2

for all

r; s 2 G. We have shown that L

Æ

s

is isometri, hene bounded

of norm one. The result that L

f

is bounded for an arbitrary

f 2 C [G℄ now follows by the triangle inequality and the fat that

the elements (Æ

s

)

s2G

onstitute a linear basis for C [G℄.

It is not diÆult to hek that the map C [G℄ ! B(L

2

(

^

h)) :

f 7! �(f) is a unital injetive

�

-homomorphism. It is essentially

the GNS-representation of the funtional

^

h. The operator norm

k � k on B(L

2

(

^

h)) (the bounded operators on L

2

(

^

h)) is a C

�

-norm,

so we get a C

�

-norm k � k

r

on C [G℄ by de�ning kfk

r

= k�(f)k, for

f 2 C [G℄. Let C

�

r

(G) denote the C

�

-algebra ompletion of C [G℄

with respet to this norm. By de�nition of C

�

r

(G), there exists

a unique unital faithful representation � : C

�

r

(G) ! B(L

2

(

^

h))

whih extends the map C [G℄ ! B(L

2

(

^

h)) : f 7! �(f).

We prove that the o-multipliation

^

� on C [G℄ is bounded

with respet to k � k

r

, and therefore we have an extension to a

o-multipliation

^

�

r

on C

�

r

(G):

Let f 2 C [G℄. Consider a omplex-valued funtion F on

G�G, with �nite support, regarded as an element of L

2

(

^

h)
L

2

(

^

h).

We show that

k(� � �)(

^

�(f))Fk

2

� k�(f)k kFk

2

;

whih is suÆient to onlude that

^

�(f) has k � k

r

-norm less than

kfk

r

. It is not diÆult to see that

�

(� � �)(

^

�(f))F

�

(p; q) =

P

s2G

f(s)F (s

�1

p; s

�1

q) for p; q 2 G (it is enough to hek this
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formula for f of the form Æ

t

, t 2 G). Thus

k(� � �)(

^

�(f))Fk

2

2

=

X

p;q2G

j

X

s2G

f(s)F (s

�1

p; s

�1

q) j

2

=

X

q2G

X

p2G

j

X

s2G

f(s)F (s

�1

p; s

�1

pq) j

2

=

X

q2G

(

X

p2G

j (f F (�; � q))(p) j

2

)

=

X

q2G

k�(f)F (�; � q)k

2

2

�

X

q2G

k�(f)k

2

kF (�; � q)k

2

2

= k�(f)k

2

X

p;q2G

jF (p; pq)j

2

= k�(f)k

2

X

p;q2G

jF (p; q)j

2

= k�(f)k

2

kFk

2

2

:

That (C

�

r

(G);

^

�

r

) is a ompat quantum group now follows, sine

the redued C

�

-algebra C

�

r

(G) ontains the dense Hopf

�

-algebra

(C [G℄;

^

�).

A ruial result in the theory of ompat quantum groups is

the existene of the Haar state. This fat was proven by Woronow-

iz in the separable ase (see [31℄). The general ase was proven

by A. Van Daele (see [30℄). A proof under weaker onditions an

be found in [20℄. Preisely formulated, the existene result says

that:

Theorem 3.1.4 Consider a ompat quantum group (A;�).

There exists a unique state h on A suh that (h 
 �)�(a) =

(� 
 h)�(a) = h(a) 1 for all a 2 A. The funtional h is alled

the Haar state on (A;�).

The proof of the uniqueness of the Haar state is essentially

trivial. The following result holds: Let h

1

; h

2

be two states on A

suh that (h

1


 �)�(a) = h

1

(a) 1 and (� 
 h

2

)�(a) = h

2

(a) 1 for

a 2 A. Then h

1

= h

2

.

Unlike the lassial ase, the Haar state does not have to be

faithful. We give an example where faithfulness does not hold.
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Example 3.1.5 Let G be a disrete group and onsider again the

unital Hopf

�

-algebra (C [G℄;

^

�). We endow C [G℄ with a universal

C

�

-norm k � k

u

by de�ning kxk

u

to be the supremum of the set

fk�(x)k j K a Hilbert spae, � a unital

�

-representation of C [G℄ on Kg

for eah x 2 C [G℄. Consider Æ

s

for s 2 G and let � be a unital

�

-representation of C [G℄ on a Hilbert spae K. Then

k�(Æ

s

)k

2

= k�(Æ

s

)

�

�(Æ

s

)k = k�(Æ

�

s

Æ

s

)k = k�(Æ

e

)k = k1k = 1;

so kÆ

s

k

u

� 1. Finiteness of kxk

u

for arbitrary x 2 C (G) now

follows sine (Æ

s

)

s2G

is a linear basis for C [G℄.

Remembering that, in the de�nition of kxk

u

, the set we

are taking the supremum over ontains the number kxk

r

from

Example 3.1.2, we dedue that k � k

u

is a C

�

-norm on C [G℄

(not merely a C*-semi-norm). Denote the C

�

-algebra om-

pletion of C [G℄ with respet to k � k

u

by C

�

(G). This unital

C

�

-algebra is obviously universal in the following sense: Any

unital

�

-representation � of C[G℄ on a Hilbert spae has a unique

extension to a (bounded)

�

-representation of C

�

(G).

Let U : G! B(K) be a strongly ontinuous unitary repres-

entation of the group G and de�ne the map �

U

: C [G℄ ! B(K) by

�

U

(f) =

P

s2G

f(s)U(s) for f 2 C [G℄. It is easily seen that �

U

is

a unital

�

-representation and that �

U

(Æ

s

) = U(s) for s 2 G. Keep-

ing this in mind, we get a 1-1 orrespondene between strongly

ontinuous unitary representations of the group G and unital

�

-

representations of the C

�

-algebra C

�

(G).

It is well known that the unital C

�

-algebra C

�

(G)
C

�

(G)

an be faithfully represented on a Hilbert spae K | this is

true for any C

�

-algebra. Considering the following embeddings

C [G℄ � C [G℄ � C

�

(G)
 C

�

(G) ,! B(K), we may view � as a

unital

�

-representation of C [G℄ on K. Thus it has a bounded

extension

^

�

u

: C

�

(G)! B(K). Combining the fats that C [G℄ is

dense in C

�

(G), that

^

�

u

is ontinuous and that C

�

(G) 
 C

�

(G)

is losed in B(K), we see that

^

�

u

(C

�

(G)) � C

�

(G)
 C

�

(G). So

we get a unital

�

-homomorphism

^

�

u

: C

�

(G)! C

�

(G) 
 C

�

(G).

Hene, the pair (C

�

(G);

^

�

u

) is a ompat quantum group.
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For similar reasons, there exists a unital surjetive

�

-homomorphism �

u

: C

�

(G) ! C

�

r

(G) suh that �

u

(f) = f

for all f 2 C [G℄. This

�

-homomorphism is an isomorphism if and

only if G is amenable (whih is true if G is abelian or �nite).

Let

^

h

r

be the vetor state on C

�

r

(G) given by

^

h

r

(x) =

(�(x)Æ

e

j Æ

e

) for x 2 C

�

(G), where � is the representation of

C

�

r

(G) on B(L

2

(

^

h)) introdued in Example 3.1.3. Its restrition

to C [G℄ is of ourse the Haar funtional

^

h on C [G℄, so by ontinu-

ity,

^

h

r

is the Haar state on (C

�

r

(G);

^

�

r

). By de�nition of

^

h, we

see that

^

h(Æ

s

Æ

t

) =

^

h(Æ

st

) =

^

h(Æ

ts

) =

^

h(Æ

t

Æ

s

) for s; t 2 G so by

linearity and ontinuity,

^

h

r

is traial, i.e.

^

h

r

(xy) =

^

h

r

(yx) for all

x; y 2 C

�

r

(G). Sine �(Æ

s

)Æ

e

= Æ

s

for all s 2 G, we also see that

�(C

�

r

(G)) Æ

e

is dense in H .

Now take any x 2 C

�

r

(G) suh that

^

h

r

(x

�

x) = 0. Then we

get for all y 2 C

�

r

(G), that

(�(x)(�(y)Æ

e

) j �(x)(�(y)Æ

e

)) =

^

h

r

(y

�

x

�

xy) =

^

h

r

(x

�

xyy

�

)

=

^

h

r

�

(x

�

x)

1

2

yy

�

(x

�

x)

1

2

�

� kyk

2

^

h

r

(x

�

x) = 0 ;

whih implies that �(x)(�(y)Æ

e

) = 0, so �(x) = 0 and therefore

x = 0. We have shown that the Haar state

^

h

r

on (C

�

r

(G);

^

�

r

) is

faithful.

Sine (�

u


�

u

)

^

�

u

=

^

�

r

�

u

, we onlude by uniqueness that

the Haar state

^

h

u

on (C

�

(G);

^

�

u

) is given by

^

h

u

=

^

h

r

�

u

. It is

now lear that

^

h

u

is faithful if and only if the group G is amenable

(the lassial example of a non-amenable disrete group is the free

group on two generators).

As for the o-multipliation, one may argue that there exists

a unique bounded unital

�

-homomorphism "̂

u

: C

�

(G)! C whih

extends "̂, the o-unit of (C [G℄;

^

�), so "̂ is also bounded with

respet to k � k

r

when G is amenable.

We now give the standard example of a ompat quantum

group that is neither ommutative nor o-ommutative (more pre-

isely, it is a one-parameter family of ompat quantum groups).
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Thus it is not inluded in the ases (C(G);�) for G a om-

pat group nor (C [G℄;

^

�) for G a disrete group desribed above.

In fat, it was also one of the �rst examples not inluded in

the ategory of Ka algebras. The example is due to Woro-

nowiz (see [38℄) and is a `deformation' of the speial unitary

group SU(2). Woronowiz alled it twisted SU(2) (due to a twist

in the determinant) and we denote it by SU

q

(2), where q is a

deformation parameter. This example was disovered among a

huge range of examples found by Drinfeld (see [7℄) and M. Jimbo

(see [12℄), namely as a deformation U

q

(su(2)) of the universal

enveloping algebra U(su(2)) of the Lie algebra su(2) assoiated

to the Lie group SU(2). The onnetion between these two dual

approahes was �rst reognized and established by Y. S. Soibel-

man and L. L. Vaksman (see [28℄) and M. Rosso (see [24℄). They

used representations of U

q

(su(2)) as the linking mehanism (see

Setion 6 (part II)).

Soibelman & Vaksman also developed the harmoni ana-

lysis on twisted SU(2). They showed [28℄ how little Jaobi

q-polynomials ould be given a geometri interpretation on a

`quantum spae'. Later (see [17℄) S. Levendorski & Soibelman

generalized the method of representations to generate examples

of ompat matrix pseudogroups from Drinfeld's and Jimbo's

deformations of the simple Lie algebras.

This example is also typial of how `proper' quantum groups

(i.e. those that are neither ommutative nor o-ommutative) are

onstruted. In most ases, these examples tend to appear rather

ad ho, although deformation theory gives ertain restritions on

the possibilities.

Example 3.1.6 Let q 2 [�1; 1℄nf0g. De�ne A to be the universal

unital

�

-algebra generated by two elements � and  satisfying the

relations:

�

�

�+ 

�

 = 1 ��

�

+ q

2

 

�

= 1

 

�

= 

�

 q  � = � q 

�

� = �

�

:

The universality of A assures us that there exist a unital

�

-homomorphism � : A ! A � A, a unital

�

-homomorphism
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" : A ! C and an unital anti-homomorphism S : A ! A suh

that:

�(�) = �
 �� q 

�


  �() =  
 �+ �

�


 

S(�) = �

�

S(�

�

) = � S() = �q  S(

�

) = �q

�1



�

"(�) = 1 "() = 0 :

The o-assoiativity of � and ondition 2.1.1 of De�nition 2.1 fol-

low by inspetion on the generators � and  (remember that �

and " are

�

-homomorphisms). Sine the multipliation m is not

multipliative and S is anti-multipliative, we have to handle on-

dition 2.1.2 of De�nition 2.1 di�erently. De�ne the linear subspae

A

0

= f a 2 A j m(S � �)�(a) = "(a) 1 = m(�� S)�(a) g :

It is not diÆult to hek that A

0

is a unital subalgebra of A whih

ontains the elements �; �

�

; ; 

�

. Sine these elements generate

A as a unital algebra, we see that A = A

0

. Hene (A;�) is a

Hopf

�

-algebra with o-unit " and antipode S.

Notie that when q = 1, the algebra A is ommutative (but

not o-ommutative). Reall that SU(2) is de�ned to be the group

SU(2) =

��

a �

 a

�

j a;  2 C suh that jaj

2

+ jj

2

= 1

�

:

Introdue the oordinate funtions �

0

; 

0

2 C(SU(2)) given by

�

0

�

a �

 a

�

= a and 

0

�

a �

 a

�

= 

for all a;  2 C suh that jaj

2

+ jj

2

= 1. Denote by Pol(SU(2))

the unital

�

-subalgebra of C(SU(2)) generated by �

0

and 

0

.

By the Stone-Weierstrass Theorem, the

�

-algebra Pol(SU(2)) is

dense in the C

�

-algebra C(SU(2)). Furthermore observe that the

oordinate funtions �

0

and 

0

satisfy the same relations as �

and  do (when q = 1). Therefore we have a surjetive unital
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�

-homomorphism � : A ! Pol(SU(2)) suh that �(�) = �

0

and

�() = 

0

. The identity

�(x)

�

�(�) �(�

�

)

�() �(�

�

)

�

= �(x) ;

where � is a

�

-harater on A, is easily heked on the generators

and thus holds for all x 2 A. Hene �(x) = 0 , �(x) = 0 for all

�

-haraters � on A. So � is injetive if and only if the

�

-haraters

separate elements in A. It is well known that the

�

-haraters

separate elements in a ommutative C

�

-algebra and by restrition,

they supply a separating family of

�

-haraters for

�

-subalgebras.

In [38℄, Woronowiz proved that A has a universal C

�

-algebra

envelope A by onstruting enough unital

�

-representations and

working with a Hamel basis in A. Hene we may identify A with

Pol(SU(2)). In this way, we have reovered the ompat group

SU(2), and the Hopf

�

-algebra of oordinate funtions Pol(SU(2))

is isomorphi to the universal algebra A.

Let us now proeed to the more interesting ase when q 6= 1.

In this ase, (A;�) is neither ommutative nor o-ommutative.

In order to obtain a quantum group, we need a C

�

-norm on A

whih makes � : A ! A�A ontinuous.

Mimiking the onstrution for the norm on C

�

(G) in

Example 3.1.5, we introdue a universal norm k � k

u

on A by

setting kak

u

to be the supremum of the set

f k�(a)k j K a Hilbert spae, � a unital

�

-representation of A on Kg

for all a 2 A. The boundedness of the o-multipliation with

respet to this norm is then immediate. However, it requires some

argument to see that this really de�nes a norm.

The boundedness of kak

u

for any element a 2 A is proved

by verifying it on the generators � and  (this redution is jus-

ti�ed by the triangle inequality, the submultipliativity and the

�

-invariane of k � k

u

). But the relation �

�

� + 

�

 = 1 gives

k�k

u

� 1 and kk

u

� 1.

As usual, the property kxk

u

= 0 , x = 0 is the most

diÆult to prove. To prove it, it suÆes to produe an injetive
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unital

�

-representation of A: let H be a separable Hilbert spae

with orthonormal basis ( e

km

j k 2 N[f0g;m 2 Z ) and de�ne the

�

-representation � : A ! B(H) by the formulas:

�(�)e

km

=

p

1� q

2k

e

k�1;m

and �()e

km

= q

k

e

k;m+1

;

where we put e

�1;m

= 0. The

�

-representation is well de�ned

beause the operators �(�),�() satisfy the same relations as �,,

respetively, so we an appeal to the universal property of A. For

a proof of the injetivity of �, see [21℄.

The C

�

-algebra ompletion A

u

of A with respet to k � k

u

together with the ontinuous extension �

u

: A

u

! A

u


A

u

of �

form a pair (A

u

;�

u

) that onstitutes a ompat quantum group.

The representation � allows one to express the Haar state

h on (A

u

;�

u

) by the formula

h(a) = (1� q

2

)

1

X

k=0

q

2k

h�

u

(a)e

k;0

; e

k;0

i

for all a 2 A. Here h�; �i denotes the inner produt on H and

�

u

: A

u

! B(H) denotes the ontinuous extension of �. It is gen-

erally true that Haar funtionals on Hopf

�

-algebras are faithful

(see [1℄), so the restrition of h to A is faithful. It is possible, but

highly non-trivial, to show that h is faithful on the C

�

-algebra A

u

(see [21℄). However, we stress that the Haar state is not traial in

this ase, and for this reason SU

q

(2) is not a Ka algebra.

In all of the examples, exept Example 3.1.2, we started

from a Hopf

�

-algebra and ompleted it with respet to some suit-

able C

�

-norm. The appearane of a dense Hopf

�

-algebra is not a

oinidene. In fat, the following result holds in the general ase:

Theorem 3.1.7 Let (A;�) be a ompat quantum group. There

exists a unique Hopf

�

-algebra (A;�) suh that A is a dense unital

�

-subalgebra of A suh that �(A) � A�A and suh that � is the

restrition of � to A.

The

�

-algebra A is the maximal unital

�

-subalgebra of A

suh that the restrition of the o-multipliation � to it turns it

into a Hopf

�

-algebra.
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This maximal unital

�

-subalgebra A is ertainly ontained

in the unital

�

-subalgebra A

m

of A de�ned as the inverse image

�

�1

(A � A) of A � A under �. Also, it an be shown that

�(A

m

) � A

m

� A

m

. One an prove that if the Haar state is

faithful on A, then A

m

= A, so in this ase A

m

is indeed a dense

Hopf

�

-algebra.

If A is ommutative, then A onsists of the linear spae of

the oeÆient funtions of the �nite-dimensional unitary repres-

entations (i.e. the regular funtions) of the underlying ompat

group. We therefore refer to A in Theorem 3.1.7 as the algebra of

matrix oeÆients. This terminology will be justi�ed in the fol-

lowing subsetion, where we look into the o-representation theory

for ompat quantum groups.

3.2. Finite-Dimensional Co-representations, Tannaka-

Krein Duality and the Peter-Weyl Theorem

Although the proofs of some of the results in this subsetion

require the notion of an in�nite-dimensional o-representation |

in partiular, the left regular o-representation | whih involves

the language of multiplier algebras, the results an be formulated

in the setting of �nite-dimensional o-representations. This is due

to the quantum analogue of the lassial result that states that

every strongly-ontinuous representation of a ompat group is

deomposable into irreduible �nite-dimensional ones.

We shall need the leg numbering notation to de�ne a

o-representation. Consider a unital C

�

-algebra A and a �nite-

dimensional Hilbert spae H . De�ne unital

�

-homomorphisms

A
B(H)!A
A
B(H):p!p

13

and A
B(H)!A
A
B(H):p!p

23

suh that (a
 x)

13

= a
 1
 x and (a
 x)

23

= 1
 a
 x for all

a 2 A, x 2 B(H). Notie that the tensor produt 
 is just the

algebrai one beause H is �nite-dimensional.

For instrutive purposes, suppose G is a ompat group.

Let H be a �nite-dimensional Hilbert spae. De�ne the lin-

ear mapping � : C(G) 
 B(H) ! C(G;B(H)) suh that

�(f 
 x)(s) = f(s)x for all s 2 G, f 2 C(G) and x 2 B(H). It is

a

�

-isomorphism and we shall suppress this identi�ation in the

sequel.
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Let F be a funtion in C(G;B(H)). A straightforward al-

ulation shows that

(�
 �)(F )(s; t) = F (st); F

13

(s; t) = F (s); F

23

(s; t) = F (t)

for all s; t 2 G. So F is multipliative if and only if (�
 �)(F ) =

F

13

F

23

.

Clearly, strong ontinuity is equivalent to norm ontinuity

for �nite-dimensional representations. Hene U is a strongly on-

tinuous representation of G on a �nite-dimensional Hilbert spae

H if and only if U is an invertible element of the C

�

-algebra

C(G) 
B(H) suh that (�
 �)(U) = U

13

U

23

.

More generally, a �nite-dimensional o-representation of a

ompat quantum group (A;�) on a �nite-dimensional Hilbert

spae H is by de�nition an invertible element U 2 A
B(H) suh

that (� 
 �)(U) = U

13

U

23

. We use the term `o-representation'

derived from Hopf algebra theory to distinguish these objets from

`ordinary' representations of the C

�

-algebraA, whih have nothing

to do with representations of the possible underlying group.

The standard notions of group representation theory trans-

fer easily to this setting:

� Let U ,V be �nite-dimensional o-representations of (A;�) on

Hilbert spaes H ,K, respetively. An intertwiner T from U to V

is a linear mapping from H to K suh that V (1
T ) = (1
T )U .

The set of intertwiners will be denoted by Mor(U; V ). The o-

representations U and V are equivalent , denoted U

�

=

V , if there

exists an invertible intertwiner from U to V .

� A subspaeK ofH is alled invariant for a �nite-dimensional o-

representation U of (A;�) onH if (1
P

K

)U(1
P

K

) = U(1
P

K

),

where P

K

is the orthogonal projetion of H onto K. We say that

U is irreduible if it has no non-trivial invariant subspaes.

A �nite-dimensional o-representation U of (A;�) on H

is alled unitary if it is a unitary element in the unital C

�

-

algebra A
B(H). The following assertion, whih requires a

fairly straightforward argument, shows that there is no restrition

in working with �nite-dimensional unitary o-representations.
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Proposition 3.2.1 Suppose U is a �nite-dimensional o-

representation of (A;�) on H , and let h be the Haar state on

(A;�). Put Q = (h 
 �)(U

�

U), whih is an invertible positive

operator on H , and de�ne V = (1 
 Q

1

2

)U(1 
 Q

�

1

2

). Then

V is a �nite-dimensional unitary o-representation of (A;�)

on H and Q

1

2

2 Mor(U; V ). Thus any �nite-dimensional o-

representation of (A;�) is equivalent to a �nite-dimensional

unitary o-representation of (A;�).

For any �nite-dimensional o-representations U 2 B(H)
A

and V 2 B(K)
 A of (A;�), the set Mor(U; V ) is a subspae of

the vetor spae B(H;K) of all linear operators from H to K.

Shur's lemma states:

� The o-representation U is irreduible if and only if Mor(U;U) =

C 1.

� If U and V are irreduible, then

Mor(U; V ) =

�

0 if U 6

�

=

V

C F for F invertible 2 B(H;K) if U

�

=

V .

Consider an additional �nite-dimensional o-representation

W of (A;�). Given intertwiners S 2 Mor(U; V ) and T 2

Mor(V;W ), the omposition T Æ S belongs to Mor(U;W ). If

S is invertible, then S

�1

2 Mor(V; U). Therefore the relation

�

=

is indeed an equivalene relation.

If U and V are �nite-dimensional unitary o-representations,

then S

�

belongs to Mor(V; U) for S 2 Mor(U; V ). Combining

this with the polar deomposition of operators between Hilbert

spaes, we �nd that �nite-dimensional unitary o-representations

are equivalent if and only if they are unitarily equivalent (i.e. there

exists a unitary intertwiner).

Consider �nite-dimensional o-representations U and V

of (A;�) on H and K respetively. We may form the �nite-

dimensional diret sum o-representation U � V and the �nite-

dimensional tensor produt o-representation U 
 V of (A;�):

� Using the anonial embedding (A 
 B(H)) � (A 
 B(K)) =

A
 (B(H)�B(K)) � A
B(H�K), we regard U �V := (U; V )
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as an element in A 
 B(H �K). It is easy to hek that U � V

is a �nite-dimensional o-representation of (A;�) on H �K.

� Putting U 
 V = U

12

V

13

, we obtain a �nite-dimensional o-

representation of (A;�) on H 
K, where we have used the iden-

ti�ation B(H)
B(K) = B(H 
K).

It should be noted that we are using a leg notation whih

di�ers slightly from the one introdued above. Here we look at

the obvious

�

-homomorphisms:

A
B(H)! A
B(H)
B(K) : p! p

12

and

A
B(K)! A
B(H)
B(K) : p! p

13

:

If U and V are unitary, the o-representations U � V and U 
 V

are unitary as well.

Notie that the identity element 1 2 A is a 1-dimensional

unitary o-representation of (A;�) on C under the identi�ation

A = A
 C = A
B( C ). It is alled the trivial o-representation

of (A;�). Obviously, U
1

�

=

1
U

�

=

U for any �nite-dimensional

o-representation U .

We have manufatured an example of a onrete tensor C

�

-

ategory (see [19℄). Namely, it is the ategory Rep(A;�) whose

objets are the �nite-dimensional unitary o-representations of

(A;�). Its morphisms are the intertwiners with omposition Æ

and

�

-operation as presribed. The set of morphisms between two

�nite-dimensional o-representations is a Banah spae under the

operator norm, whih obviously ful�ls the C

�

-norm property. The

tensor produt 
 is an assoiative bilinear funtor from Rep(A;�)

to its produt ategory with the trivial o-representation as the

unit. It ommutes with the involutive ontravariant

�

-funtor at-

ing as the identity on objets and as the

�

-operation on morph-

isms.

This ategory is onrete in the sense that the objets

are essentially embedded in a ategory of �nite-dimensional Hil-

bert spaes. Strit assoiativity of the tensor produt 
 an be

ahieved, for example, by taking these Hilbert spaes to be Hilbert

subspaes of a given (properly in�nite) von Neumann algebra, so
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that the tensor produts are de�ned using the (strit assoiative)

produt in the ambient von Neumann algebra.

Let U be a �nite-dimensional unitary o-representation of

(A;�) on a Hilbert spaeH and suppose thatK is a subspae ofH

whih is invariant under U . Then the orthogonal omplement K

?

of K is also invariant under U . Unlike the lassial ase, the argu-

ment for this is non-trivial in the quantum ase. Denote by U

K

the element in A
B(K) obtained by restriting U to K and sim-

ilarly, denote by U

K

?
the restrition of U to K

?

. They are both

�nite-dimensional unitary o-representations, and the diret sum

o-representation U

K

� U

K

? is equivalent to U . It is lear from

this result that any �nite-dimensional unitary o-representation

an be deomposed into a �nite diret sum of irreduible ones.

Also, the ategory Rep(A;�) has suÆient sub-objets and diret

sums in the sense of [19℄.

Another way of seeing �nite-dimensional o-representations

is as matries over A. Let H be a �nite-dimensional Hilbert

spae and �x an orthonormal basis e

1

; : : : ; e

n

for H . Now

de�ne �

ij

2 B(H) by �

ij

(v) = hv; e

j

i e

i

for all v 2 H and

i; j 2 f1; : : : ; ng, where h�; �i denotes the inner produt on H .

Then for all i; j; k 2 f1; : : : ; ng, we have

�

ij

�

kl

= Æ

jk

�

il

�

�

ij

= �

ji

n

X

j=1

�

ii

= 1 :

Using this system of matrix units (�

ij

)

n

i;j=1

, we identify

A 
 B(H) and M

n

(A). Thus if U is an element of A 
 B(H),

there exist unique elements U

ij

2 A (i; j = 1; : : : ; n) suh that

U =

P

n

i;j=1

U

ij


 �

ij

. Moreover, U is a �nite-dimensional o-

representation if and only if (U

ij

)

n

i;j=1

is invertible in M

n

(A) and

�(U

ij

) =

P

n

k=1

U

ik


 U

kj

for all i; j 2 f1; : : : ; ng. We all the

elements U

ij

(i; j = 1; : : : ; n) the matrix oeÆients of U with

respet to the basis e

1

; : : : ; e

n

.

An invertible element U 2 M

n

(A) satisfying �(U

ij

) =

P

n

k=1

U

ik


 U

kj

for all i; j = 1; : : : ; n will therefore be alled

a matrix o-representation of (A;�) of dimension n. By the
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disussion above, the elements U

ij

, i; j 2 f1; :::; ng, are matrix

oeÆients of a o-representation.

A ompat quantum group (A;�) is alled a ompat matrix

pseudo-group, denoted (A;U), if it has a �nite-dimensional matrix

o-representation U suh that the unital

�

-algebra A generated by

its matrix oeÆients U

ij

is dense in the C

�

-algebraA. The matrix

o-representation U is alled the fundamental o-representation of

(A;U).

Reall the de�nition of the ompat quantum group SU

q

(2).

It is a ompat matrix pseudo-group with the fundamental o-

representation U 2M

2

(A

u

) given by

U =

�

� �q 

�

 �

�

�

:

Let us go bak to the general ompat quantum group set-

ting. De�ne the subspae A of A as the linear span of the set

fU

ij

j U a matrix orepresentation of (A;�); 1 � i; j � dimensionUg

Let (u

�

)

�2I

be a omplete set of pairwise inequivalent �nite-

dimensional irreduible unitary o-representations of (A;�) with

dimensions n

�

(ompleteness means that every �nite-dimensional

irreduible unitary o-representation is equivalent to one of these).

By onvention, we have a distinguished element in I (whih we

denote by 0) suh that u

0

is the trivial o-representation and thus

u

0

11

= 1, the unit in A.

Theorem 3.2.2 The following properties hold for a ompat

quantum group (A;�):

1. A is a dense unital

�

-subalgebra of A with Hamel basis

(u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

) :

2. De�ne the map � : A ! A
A by restriting � to A. Then

(A;�) is a Hopf

�

-algebra with o-multipliation �, o-unit

" and antipode S uniquely determined by:

�(u

�

ij

) =

n

�

X

k=1

u

�

ik


 u

�

kj

"(u

�

ij

) = Æ

ij

S(u

�

ij

) = u

�

ji

�

for all � 2 I and i; j = 1; : : : ; n

�

.
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With the knowledge we have aquired so far, there are only

three statements in this theorem that require proofs:

1. linear independene of (u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

),

2. density of A in A,

3.

�

-invariane of A.

Assertion 1 an be proved using purely algebrai tehniques

(see [31℄), but follows more easily from Theorem 3.2.3 stated

below.

Assertion 2 requires the onstrution of the left (or right)

regular o-representation. It is in general an in�nite-dimensional

unitary o-representation, and will therefore be dealt with in the

next subsetion where in�nite-dimensional o-representations are

disussed. The deomposition of the left regular o-representation

into irreduible �nite-dimensional unitary o-representations is

what it takes to get density of A in A. As a onsequene, the

left regular representation ontains opies of all �nite-dimensional

irreduible unitary o-representations (ourring with multipliity

equal to their dimensions).

In the lassial ase, the deomposition of an in�nite-

dimensional strongly ontinuous unitary representation of a om-

pat group G into �nite-dimensional unitary representations goes

as follows, [26℄: First redue to a yli strongly ontinuous unit-

ary representation U : G ! B(H) : s 7! U

s

by Zorn's lemma.

Denote by z 2 H the yli vetor for U . Then use the Haar

integral

R

: C(G) ! C to de�ne a new inner produt (�; �) on H

by

(x; y) =

Z

hU

s

x; zi hz; U

s

yi ds

for x; y 2 H , where h�; �i is the original inner produt on H .

This yields a stritly positive operator Q 2 B(H) determined by

hQx; yi = (x; y) for all x; y 2 H . Now use the Banah-Steinhaus

Theorem and the Lebesgue Dominated Convergene Theorem to

onlude that Q is ompat. So by the Hilbert-Shmidt Theorem,

Q has a deomposition into eigenspaes. These �nite-dimensional

spaes are invariant subspaes of H for U , beause Q is easily seen
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to be an intertwiner of U . Thus we have obtained the desired

deomposition of U .

The proof for the general ompat quantum group ase is

done likewise (see Setion 4). We should point out that for om-

pat matrix pseudogroups there is no need for the left regular

o-representation in order to manufature suÆiently many �nite-

dimensional unitary o-representations to get density of A in A.

It is impliit in the axioms (laid down by Woronowiz, where he

more or less imposed a Hopf

�

-algebra struture on A ), that

every �nite-dimensional o-representation is ontained in (higher)

tensor produts of the fundamental o-representation U and its

onjugate U (see the de�nition of U below).

Let us enter the disussion about Assertion 3 now. Sup-

pose that U is a �nite-dimensional unitary o-representation of

(A;�) on a Hilbert spae H for whih we �x an orthonormal basis

e

1

; : : : ; e

n

. Write U =

P

n

i;j=1

U

ij


�

ij

, where U

ij

, (i; j = 1; : : : ; n)

all belong to A. Now de�ne V =

P

n

i;j

U

�

ij


 �

ij

2 A 
 B(H).

Then learly (� 
 �)(V ) = V

13

V

23

, but it is non-trivial (and to

our knowledge requires the onstrution of the left regular o-

representation) to show that V is invertible. By Proposition 3.2.1,

the �nite-dimensional o-representation V is equivalent to a �nite-

dimensional unitary o-representation U of (A;�) on H = H (it

depends on the hoie of the basis, but is uniquely determined up

to equivalene).

It an be shown (see [36℄) that U and U are onjugates in

the tensor C

�

-ategory Rep(A;�) in the following sense (see [19℄):

There exist R 2 Mor(1; U 
U) and R 2 Mor(1; U 
U) suh that

(R

�


 1

H

)(1

H


R) = 1

H

and (R

�


 1

H

)(1

H


R) = 1

H

:

Hene Rep(A;�) is a onrete strit tensor C

�

-ategory with on-

jugation.

As in the lassial ase, every ompat quantum group

is ompletely determined by its �nite-dimensional unitary o-

representations. In [36℄, Woronowiz proved a theorem generaliz-

ing the Tannaka-Krein Theorem for ompat groups to ompat

quantum groups. His theorem states that every onrete (embed-

ded) strit tensor C

�

-ategory with onjugation is equivalent to
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Rep(A;�) for some ompat quantum group (A;�), whih is

uniquely determined up to isomorphism on the Hopf

�

-algebra

level (A;�). The ategory Rep(A;�) is symmetri if for any

�nite-dimensional unitary o-representations U 2 B(H) 
 A and

V 2 B(K)
A, the ip H 
K ! K 
H indues an equivalene

between U 
 V and V 
 U . In this ase A has to be ommutat-

ive (see [37℄), so Rep(A;�) is the ategory of �nite-dimensional

unitary representations of a ompat group.

Suppose we are given an abstratly-de�ned strit tensor C

�

-

ategory T with onjugation (see [19℄). It is not automati that

T an be embedded into a tensor C

�

-ategory of Hilbert spaes,

i.e. that there exists a faithful tensor

�

-funtor from the ategory

T to a tensor C

�

-ategory of Hilbert spaes. Suh an embedding

exists whenever T has a symmetry (i.e. involutive braiding). This

theorem, whih is due to S. Dopliher and J. E. Roberts (see

[6℄), requires a highly non-trivial proof. They onstruted suh a

symmetri ategory in the framework of algebrai quantum �eld

theory (where no Hilbert spaes ould a priori be attahed to the

objets) to produe a ompat group whih ould be interpreted as

the gauge group assoiated to the net of observable algebras for the

quantum �eld theory under onsideration (see [5℄). The ategory

of �nite-dimensional unitary representations of this gauge group

is then equivalent to the symmetri ategory thus onstruted.

In onformal �eld theory, tensor C

�

-ategories appear whih

are braided but not symmetri, [32℄. The ategories orrespond

to o-representations of quantum groups at root of unity, [15℄,[11℄.

It should be pointed out that the root of unity quantum groups

do not �t into the C

�

-algebrai sheme of quantum groups. In

view of Woronowiz's Tannaka-Krein Theorem, an abstratly-

de�ned strit tensor C

�

-ategory with onjugation thus annot

be embedded into a tensor C

�

-ategory of Hilbert spaes without

further restritions. And as the root-of-unity ase shows, exist-

ene of a braiding is not suÆient. In [34℄ it is shown that the

o-representation theory of a quantum group at root of unity

gives rise to an (abstrat) tensor C

�

-ategory.

Tensor C

�

-ategories | inluding ribbon ategories [14℄ |

have proved to be a vital link between quantum �eld theory and
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quantum groups. They also seem to be a meeting point with areas

suh as knot theory and subfator theory of von Neumann algebras

[13℄. (See [33℄ for onstrution of subfators from quantum groups,

and [23℄, [18℄ for equality of q-dimension, intrinsi dimension and

Jones index.)

Let us go bak to the Haar state h on the ompat quantum

group (A;�) with dense Hopf

�

-algebra (A;�). Clearly, the

restrition of h to A is a Haar funtional on (A;�) and by

Hopf

�

-algebra theory (see [1℄), it follows that h is faithful on

A. Obviously, h is uniquely determined by its values on the

linear basis appearing in Theorem 3.1.7. A ombination of the

identity �(u

�

ij

) =

P

n

�

k=1

u

�

ik


 u

�

kj

, the linear independene of

the basis under onsideration and the left invariane of h, yield

h(u

0

11

) = h(1) = 1 and h(u

�

ij

) = 0 for all � 2 I n f0g and

i; j 2 f1; : : : ; ng.

We are looking at a speial ase of the orthogonality rela-

tions for the Haar state. The Peter-Weyl Theorem states that

for the ommutative ompat quantum group (C(G);�), the lin-

ear basis (

p

n

�

u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

) forms an orthonormal

basis for L

2

(G). Sine h need not be traial in the quantum group

ase, the situation is a bit more ompliated. The quantum Peter-

Weyl Theorem, formulated and proved by Woronowiz (see [31℄),

takes the form:

Theorem 3.2.3 For every � 2 I , there exists a unique positive

invertible n

�

�n

�

-matrix F

�

over C with TrF

�

= Tr (F

�

)

�1

suh

that

h((u

�

ip

)

�

u

�

jq

) =

Æ

��

Æ

pq

F

�

ij

M

�

and h(u

�

ip

(u

�

jq

)

�

) =

Æ

��

Æ

ij

((F

�

)

�1

)

pq

M

�

;

where M

�

= TrF

�

= Tr (F

�

)

�1

.

We shall not give a omplete proof but will indiate how

Shur's lemma enters the argument.

Take �; � 2 I . Fix i 2 f1; : : : ; n

�

g and k 2 f1; : : : ; n

�

g

and de�ne the n

�

� n

�

matrix �

ik

over C with matrix elements

�

ik

jl

= h((u

�

ij

)

�

u

�

kl

) for all j 2 f1; : : : ; n

�

g and l 2 f1; : : : ; n

�

g.
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The orresponding operator from H to K, also denoted by

�

ik

, is an intertwiner from u

�

to u

�

:

�

ik

jl

1 = (h
 �)�((u

�

ij

)

�

u

�

kl

) =

n

�

X

r=1

n

�

X

s=1

h((u

�

ir

)

�

u

�

ks

) (u

�

rj

)

�

u

�

sl

=

n

�

X

r=1

n

�

X

s=1

(u

�

rj

)

�

�

ik

rs

u

�

sl

;

so 1 
 �

ik

= (u

�

)

�

(1 
 �

ik

)u

�

. By unitarity of u

�

, we onlude

that �

ik

2 Mor(u

�

; u

�

) for all i = 1; : : : ; n

�

and k = 1; : : : ; n

�

.

Shur's lemma now tells us that

�

ik

=

�

0 if � 6= �

�

ik

1 for some�

ik

2 C if � = � .

When � = �, the matrix F

�

is a resaling of (�

ik

) suh that

TrF

�

= Tr (F

�

)

�1

. It should be pointed out however, that it still

takes some work to prove the �nal result from this disussion.

We denote by L

2

(h) the Hilbert spae ompletion of A with

respet to the inner produt h�; �i on A given by ha; bi = h(b

�

a)

for all a; b 2 A.

Notie that when h is traial (whih is true in the ommut-

ative, the o-ommutative and the �nite-dimensional ase), then

Æ

pq

F

�

ij

= Æ

ij

((F

�

)

�1

)

qp

for i; j; p; q = 1; : : : ; n

�

. Thus F

�

has to

be the identity matrix on M

�

( C ), or equivalently, the olletion

(

p

M

�

u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

) is an orthonormal basis for

L

2

(h).

Although the linear basis (u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

)

is not orthogonal in general, it an be orthonormalized in a

very onrete way (as opposed to the Gram-Shmidt proed-

ure). De�ne for every � 2 I the n

�

� n

�

-matrix (v

�

ij

) over A

suh that v

�

ij

=

p

M

�

((F

�

)

�

1

2

)

t

u

�

ij

. A diret omputation shows

that ( v

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

) forms an orthonormal basis for

L

2

(h).

The fat that h is not traial an be desribed by a

one-parameter family of multipliative linear funtionals on A.
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Namely, de�ne for every z 2 C a linear funtional f

z

on A by

f

z

(u

�

ij

) =

�

(F

�

)

�z

�

ji

, where � 2 I and i; j 2 f1; : : : ; n

�

g. This

de�nition makes sense as F

�

is invertible and positive.

For !; � 2 A

0

and a 2 A, put !�a�� = (����!)�

(2)

(a) 2 A,

where �

(2)

= (�
 �)� = (�
 �)�.

If follows from the quantum Peter-Weyl Theorem that

h(ab) = h(b(f

1

� a � f

1

)) for all a; b 2 A. In fat, one may prove

the following additional properties:

1. f

z

is a unital multipliative linear funtional on A.

2. f

z

(a) = f

�z

(a

�

) and f

z

(S(a)) = f

�z

(a) for all a 2 A.

3. f

0

= " and (f

y

� f

z

)� = f

y+z

for all y; z 2 C .

Another property whih is quite surprising is that this

family implements the square of the antipode in the sense that

S

2

(a) = f

�1

�a�f

1

for all a 2 A. This statement follows from the

fat that ((F

�

)

�1

)

t

2 Mor(u

�

; (S

2

� �)(u

�

)) for all � 2 I , whih

needs some more o-representation theory to prove.

We point out that the family (f

z

)

z2 C

of funtionals is

uniquely determined by the onditions mentioned above and by

an analytiity ondition (whih is immediate from the de�nitions).

The following equivalenes are easily heked: The Haar

state h is traial if and only if f

z

= " for all z 2 C , whih is

equivalent to S

2

= �. This last ondition holds if and only if S is

�

-preserving. The fat that h is traial is also equivalent to the

statement that the dual disrete quantum group is unimodular.

We shall ome bak to disrete quantum groups in a later setion.

What is lurking beneath all this is the presene of er-

tain one-parameter groups of algebra automorphisms on A. For

instane, de�ne a one-parameter group (�

z

)

z2 C

of algebra auto-

morphisms on A by �

z

(a) = f

iz

� a � f

iz

for all a 2 A and

z 2 C . One may prove that h is a KMS-state whenever it is

faithful. Furthermore, the one-parameter group (�

z

)

z2 C

is then

the restrition to A of the modular group on the C

�

-algebra A (in

the sense of Tomita-Takasaki theory) for the KMS-state h. These

one-parameter groups play a entral role in the theory of loally

ompat quantum groups (see Setion 7 (part II)).

The following disussion indiates how losely onneted
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areas like quantum groups, tensor ategories, quantum �eld the-

ories, knot theory and subfators really are. De�ne a funtion

d : Rep(A;�) ! h0;1i by the formula Tr(f

1


 �)u for all u 2

Rep(A;�). It is easy to see that the following properties hold:

� d(1) = 1;

� d(u� v) = d(u) + d(v);

� d(u
 v) = d(u)d(v);

� d(u) = d(u);

for all u; v 2 Rep(A;�). These are properties harateristi for a

dimension funtion. It is indeed equal to the intrinsi dimension

de�ned on the tensor C

�

-ategory Rep(A;�), (see [23℄), where

its relation to the q-dimension for quantized universal envelop-

ing algebras of Lie algebras and to the quantum dimension for

ribbon ategories is also established. The intrinsi dimension is

de�ned anonially in any tensor C

�

-ategory with onjugation,

[19℄. Longo's work (see [18℄) has shown how its square root an

be interpreted as the Jones index of subfators of von Neumann

algebras. One may prove that d(u) is larger than the ordinary

dimension of the �nite-dimensional unitary o-representation u.

Another important onsequene of the `semi-traial' prop-

erty of the Haar state h is that its left kernel fa 2 A jh(a

�

a) = 0 g

is a losed two-sided

�

-ideal of A. Hene we may form the quo-

tient C

�

-algebra A

r

= A=N

h

, where N

h

denotes the left kernel

of h. Let � : A ! A

r

be the quotient map. It is easy to see

that the map (� 
 �)� fators through the quotient A

r

and that

(� 
 �)�(A

r

) � A

r


 A

r

. We denote the resulting map from

A

r

! A

r


 A

r

by �

r

. Clearly (A

r

;�

r

) is a ompat quantum

group with faithful Haar measure h

r

determined by h

r

� = h. Its

dense unital

�

-algebra A

r

is of ourse �(A). Sine h is faithful

on A, it is lear that � is injetive on A, so the Hopf

�

-algebra

(A

r

;�

r

) is isomorphi to (A;�). Hene, one may always redue

to ompat quantum groups with faithful Haar state.

Reall now the de�nition of the o-ommutative ompat

quantum groups (C

�

(G);

^

�

u

) and (C

�

r

(G);

^

�

r

), where G is a dis-

rete group. The Haar state

^

h

r

on (C

�

r

(G);

^

�

r

) is always faith-

ful, whereas the Haar state

^

h

u

on (C

�

(G);

^

�

u

) is faithful if and
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only if G is amenable. We de�ned a unital

�

-isomorphism �

u

from C

�

(G) to C

�

r

(G) with the property that

^

h

u

=

^

h

r

�

u

. Thus

N

^

h

u

= ker�

u

and � = �

u

. Therefore, with (A;�) = (C

�

(G);

^

�

u

),

we get (A

r

;�

r

) = (C

�

r

(G);

^

�

r

). Here A

r

= A = C [G℄.

The dual spae A

0

of the Hopf �-algebra (A;�) onsisting of

all linear funtionals on A, is a unital

�

-algebra with produt and

�

-operation de�ned by !�(a) = (!
�)�(a) and !

�

(a) = !(S(a)

�

)

for all !; � 2 A

0

and a 2 A. The unit of A is the o-unit "

of (A;�). Sine the inlusion A

0

� A

0

� (A � A)

0

is surjetive

if, and only if, A is �nite-dimensional, there is no hope that the

formula

^

�(!)(x 
 y) = !(xy) for all ! 2 A

0

and x; y 2 A, whih

de�nes an element

^

�(!) 2 (A � A)

0

, gives a o-multipliation

^

�(!). Indeed, it follows from the quantum Peter{Weyl Theorem

that �(h) 2 A

0

�A

0

if and only if A is �nite-dimensional, where

h is the Haar state on (A;�).

Let U be a �nite-dimensional unitary o-representation of

(A;�) on a Hilbert spae H . The formula (!� �)(U) makes sense

for any funtional ! 2 A

0

, and it an be shown that the map-

ping �

U

: A

0

! B(H) : ! 7! (! 
 �)(U) is a �nite-dimensional

weak

�

-ontinuous unital

�

-representation of A

0

on H . The or-

respondene U 7! �

U

is a bijetion between �nite-dimensional

unitary o-representations of (A;�) and �nite-dimensional weak

�

-ontinuous unital

�

-representations of A

0

. All the notions on-

erning the o-representation theory of (A;�) and the represent-

ation theory of A

0

(intertwiners, irreduibility, ...) transform nat-

urally under this bijetion.

Suppose that the ompat quantum group (A;�) is o-

ommutative and let U be a �nite-dimensional irreduible unitary

o-representation of (A;�). Then A

0

is ommutative and there-

fore the irreduible representation �

U

has to be 1-dimensional.

This implies that the matrix o-representation assoiated to U is

nothing but a unitary element u in A suh that �(u) = u 
 u.

De�ne G to be the subgroup of the unitary group of A onsisting

of all group{like elements. It is now easy to see that the Hopf

�

-algebras (A;�) and (C [G℄;

^

�) are isomorphi. If h is faith-

ful, then (A;�) is thus isomorphi to (C

�

r

(G);

^

�

r

). Of ourse,
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the quantum Peter-Weyl Theorem is a triviality here beause

h(Æ

�

s

Æ

t

) = h(Æ

s

�1

t

), whih by de�nition is 1 if s = t and 0 oth-

erwise.

4. Left Regular Co-representations and Multi-

pliative Unitaries

We shall need multiplier algebras in order to formulate the notion

of in�nite-dimensional o-representations of ompat quantum

groups. They are also an indispensable tool for the study of non-

ompat quantum groups and multiplier Hopf

�

-algebras. For this

reason, we give a slightly more general de�nition of a multiplier

algebra than is ustomary.

De�nition 4.1 Consider a

�

-algebra A satisfying the Frobenius

property. Denote by End(A) the unital algebra of linear maps

from A to A. De�ne the set M(A) to be

fT 2 End(A) j 9S 2 End(A) suh that T(a)

�

b = a

�

S(b) 8a; b 2 A g :

Then M(A) is a unital subalgebra of End(A). The linear map

S assoiated to a given T 2 M(A) is uniquely determined by the

Frobenius property and we denote it by T

�

. M(A) is a unital

�

-algebra with T 7! T

�

as

�

-operation, .

For a 2 A, de�ne L

a

2 M(A) by L

a

(b) = ab for all b 2 A.

By the Frobenius property, the map A ! M(A), a 7! L

a

, is an

injetive

�

-homomorphism, and its image, whih we shall identify

with A, is a two-sided

�

-ideal in M(A). Moreover, the ideal A is

essential in the following sense: An element x 2 M(A) satisfying

xa = 0 for all a 2 A, has to be equal to zero. It is lear that

M(A) = A if, and only if, A is unital.

Let A, B be two

�

-algebras having the Frobenius property.

The formula (S 
 T )

�

a 
 b

�

= S(a) 
 T (b) for all a 2 A, b 2 B,

S 2M(A) and T 2M(B) de�nes an embedding ofM(A)
M(B)

into M(A
B). In general it is not surjetive.

When A is a C

�

-algebra, the Closed Graph Theorem implies

that M(A) onsists of bounded operators. Also, M(A) is a unital

C

�

-algebra with the operator norm. We give two basi examples

of multiplier algebras:



� Quantum Groups I 55

� Let X be a loally ompat, Hausdor� spae. Denote by C

0

(X)

the C

�

-algebra of ontinuous funtions on X that vanish at in�n-

ity. Then M(C

0

(G)) is the C

�

-algebra of all bounded ontinuous

funtions on X . HeneM(C

0

(G)) is

�

-isomorphi to C(

~

X), where

~

X is the Stone-Ceh ompati�ation of X .

� Let B

0

(H) be the C

�

-algebra of ompat operators on a Hilbert

spae H . Then M(B

0

(H)) is

�

-isomorphi to B(H).

Suppose we are given two C

�

-algebras A and B and a

�

-homomorphism � : A ! M(B). We all � non-degenerate

if the linear span of the set f�(a)b j a 2 A; b 2 B g is

dense in B. It is possible to show that every non-degenerate

�

-homomorphism � : A!M(B) has a unique extension to a

unital

�

-homomorphism � : M(A)!M(B). We denote � by the

same symbol � in the sequel.

Again we need the leg numbering notation. In de�ning it,

we have to be more autious in the present setting. Take three

C

�

-algebras A, B, C. It an be shown that there exists a non-

degenerate

�

-homomorphism �

13

: A
 C ! M(A 
 B 
 C) suh

that �

13

(a 
 ) = a 
 1 
  for all a 2 A,  2 C. Thus, it

has a unique extension to M(A 
 C). Set x

13

= �

13

(x) for all

x 2M(A
C). The other variants of the leg numbering notation

are de�ned similarly.

Take two C

�

-algebras A, B and x 2M(A
B). For ! 2 A

�

,

the element (! 
 �)(x) of M(B) is de�ned in the following way:

It an be shown (see [27℄) that ! � � : A � B ! B has a

unique extension to a ontinuous linear map ! 
 � : A
 B ! B.

The next step is to extend the map !
 � to M(A
B). It an be

shown (see [20℄) that !
 � has a unique bounded linear extension

!
� :M(A
B)!M(B) suh that b (!
�)(X) = (!
�)((1
b)X)

and (!
�)(X) b = (!
�)(X(1 
 b)) for all b in M(A) and X in

M(A 
 B). Now put (! 
 �)(x) := (!
�)(x) for x 2 M(A 
 B).

Of ourse, a similar onstrution produes the element (�
 �)(x)

of M(A) for any � 2 B

�

and x 2M(A
B).

Suppose G is a ompat group and onsider a map U fromG

to B(H), where H is a (not neessarily �nite-dimensional) Hilbert

spae. Identify C(G;B

0

(H)) with C(G)
B

0

(H). De�ne a linear
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map

~

U from C(G) 
 B

0

(H) to the set of all funtions from G

to B

0

(H) by

~

U(F )(s) = U

s

F (s) for all F 2 C(G;B

0

(H)) and

s 2 G. Then U is bounded and strongly

�

-ontinuous if and

only if

~

U 2 M(C(G) 
 B

0

(H)). Thus arguing as in the �nite-

dimensional ase, we see that U is a strongly-ontinuous unitary

representation of G on H if, and only if,

~

U is a unitary element

of the multiplier C

�

-algebra M(C(G)
B

0

(H)) and

(�
 �)

~

U =

~

U

13

~

U

23

:

Here we have extended the non-degenerate

�

-homomorphism �
�

to the multiplier algebra M(C(G) 
B

0

(H)) as explained above.

Notie that requiring

~

U to belong toM(C(G))
M(B

0

(H))

amounts to requiring that U be norm-ontinuous, whih in general

is a too strong ondition. For instane, the left regular represent-

ation is norm-ontinuous if, and only if, it is represented on a

�nite-dimensional Hilbert spae.

De�nition 4.2 Let (A;�) be a ompat quantum group and H

a Hilbert spae. A unitary element U 2 M(A 
B

0

(H)) is alled

a unitary o-representation of (A;�) if (�
 �)(U) = U

13

U

23

.

We will not look at the tensor ategory of all (in�nite-

dimensional) unitary o-representations of a ompat quantum

group, but will just mention some results relating to �nite-

dimensional unitary o-representations and the Hopf

�

-algebra

(A;�).

However, let us see how intertwiners and invariant subspaes

are de�ned in the in�nite-dimensional setting:

� Let U and V be unitary o-representations of (A;�) on Hilbert

spaes H and K, respetively, and suppose T 2 B(H;K). We say

that T is an intertwiner from U to V if (!
�)(V )T = T (!
�)(U)

for all ! 2 A

�

� A losed subspae K of H is said to be invariant under U if

(! 
 �)(U)K � K for all ! 2 A

�

.

The theorem below implies that the orthogonal omplementK

?

of

K is invariant under U if K is. As a onsequene, the restritions

of U to K and K

?

are unitary o-representations with diret sum
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equivalent to U (i.e. there exists a unitary intertwiner between

them).

The terminology (irreduibility, tensor produts,...) used

for �nite-dimensional unitary o-representations is now easily gen-

eralized to in�nite-dimensional unitary o-representations.

Let U be a unitary o-representation of (A;�) on Hilbert

spaes H . De�ne the subspae B of B(H) to be the losure of the

set f (ha
 �)U

�

j a 2 A g . The importane of B is revealed in the

following theorem:

Theorem 4.3 Let the notation be as above. The following prop-

erties hold:

� B is a non-degenerate C

�

-subalgebra of B(H),

� U 2M(A
B),

� (1
 T )U = U(1
 T ) , T 2 B

0

for all T 2 B(H) .

Here B

0

is the ommutant of B in B(H), and so it is a von

Neumann algebra. Clearly, we have regarded 1
T for T 2 B(H)

as an element in M(A 
 B

0

(H)). It an be shown that T inter-

twines U with itself if, and only if, U satis�es the last ondition

in the theorem. From this and the

�

-invariant property of B, it

follows that orthogonal omplements of U -invariant subspaes are

U -invariant.

Theorem 4.4 Every irreduible unitary o-representation of a

ompat quantum group (A;�) is �nite-dimensional. Any unit-

ary o-representation U of (A;�) on a Hilbert spae H an be

deomposed into a diret sum of �nite-dimensional unitary o-

representations. More preisely, there exists a family of mutually

orthogonal �nite-dimensional subspaes (H

i

)

i2I

of H suh that

H = �

i2I

H

i

and eah H

i

is invariant under U and the restrition

U

i

of U to H

i

is a �nite-dimensional unitary o-representation of

(A;�). In this ase we write U = �

i2I

U

i

.

We sketh the proof (see [31℄ for more details). The �rst

statement is immediate from the seond one. De�ne for v 2 H ,

the rank-one operator �

v;v

on H by �

v;v

(w) = hw; viv for w 2 H .

Next, putQ

v

= (h
�)(U

�

(1
�

v;v

)U), where h is the Haar state on

(A;�). The element U

�

(1
�

v;v

)U obviously belongs to A
B

0

(H)
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(remember that A is unital), so Q

v

is a positive ompat operator

on H . A straightforward alulation shows that U and 1 
 Q

v

ommute in M(A
B

0

(H)).

By taking an orthonormal basis (e

i

)

i2I

, we get a family

of rank-one projetions (�

e

i

;e

i

)

i2I

whih sum up to the identity

operator on H in the strong topology. Using strit ontinuity

arguments, one sees that the family (Q

e

i

)

i2I

is strongly summable

and that the sum equals the identity operator on H . In partiular

Q

e

j

6= 0 for some j 2 I . Sine Q

e

j

is ompat and non-zero, it

has a �nite-dimensional eigenspae (orresponding to any stritly

positive eigenvalue). Clearly, this eigenspae is invariant under

U . The restrition of U to the orthogonal omplement is again a

unitary o-representation (here this is obvious). Applying Zorn's

lemma it is not diÆult to see that we get the desired orthogonal

deomposition of H into �nite-dimensional U -invariant subspaes.

Using �nite-dimensional o-representation theory, any unitary o-

representation an therefore be deomposed into a diret sum of

�nite-dimensional irreduible unitary o-representations.

We now proeed to de�ne the most important unitary

o-representation, the left regular one, whih inorporates the

o-produt of the quantum group. Let (H; �;
) be a GNS-

representation for the Haar state h, i.e. H is a Hilbert spae,

� : A ! B(H) is a unital

�

-homomorphism and 
 is an element

in H suh that �(A)
 = H and h(a) = h�(a)
;
i for all a 2 A.

Pik a faithful unital

�

-representation � of A on a Hilbert

spae K. Let a

1

; : : : ; a

n

2 A and v

1

; : : : ; v

n

2 K. Then the left

invariane of h implies that

k

P

n

i=1

(� 
 �)(�(a

i

))(v

i


 
) k

2

=

P

n

i;j=1

(!

v

i

;v

j


 ')(�(a

�

j

a

i

))

=

P

n

i=1

hv

i

; v

j

i h�(a

i

)
; �(a

j

)
i = k

P

n

i=1

v

i


 �(a

i

)
k

2

:

From this we onlude that we have a well-de�ned isometry U 2

B(K 
 H) suh that U(v 
 �(a)
) = (� 
 �)(�(a))(v 
 
) for

all a 2 A and v 2 K. The density of �(A)(A 
 1) in A 
 A

implies that U has dense range and is therefore unitary. In fat,

the following proposition holds.

Proposition 4.5 There exists a unique unitary element V of

M(A
B

0

(H)) suh that V

�

(v 
 �(a)
) = (� 
 �)(�(a))(v 

)
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for all a 2 A and v 2 K. Moreover, the element V is a unitary

o-representation of (A;�).

Proof: The formula

V

�

(1
 �

�(a)
;v

) = (� 
 �)(�(a))(�(a))(1 
 �


;v

)

for all a 2 A and v 2 K, implies that V

�

(A
B

0

(H)) = A
B

0

(H).

Invoking the unitarity of V , we get V (A
B

0

(H)) = A
B

0

(H).

So we an regard V as an element in End(A 
 B

0

(H)) and it is

easy to see that its adjoint in the sense of De�nition 4.1 is V

�

,

regarded as an element in End(A
B

0

(H)). Consequently, V an

be onsidered as an element in M(A
B

0

(H)).

The o-representation property follows from the identity

(! 
 �)(V

�

)�(a)
 = �((! 
 �)�(a))


for all ! 2 A

�

, ombined with the oassoiativity of �. �

The o-representation V is that whih is alled the left reg-

ular o-representation of the ompat quantum group (A;�). We

have, for all a; b 2 A, that

(�
 !

�(a)
;�(b)


)(V ) = (�
 h)(�(b

�

)(1
 a)) :

Now deompose V aording to Theorem 4.4 into a diret sum

�

i2I

V

i

of �nite-dimensional o-representations of (A;�). Clearly,

(� 
 !

v

i

;w

i

)(V

i

) 2 A for all i 2 I and v

i

; w

i

2 H

i

. Therefore

(�
!

�(a)
;�(b)


)(V ) and thus (�
h)(�(b

�

)(1
a)) belongs to the

losure ofA for all a; b 2 A. Sine f (�
h)(�(b

�

)(1
a)) j a; b 2 A g

is a dense subset of A, we onlude that A is dense in A, whih

proves Theorem 3.1.7.

De�nition 4.6 De�ne the unitary element W 2 B(H 
H) by

W = (� 
 �)(V ). Then W

�

(v 
 �(a)
) = (� 
 �)(�(a))(v 
 
)

for all a 2 A and v 2 H . The operator W is alled the multipli-

ative unitary of the ompat quantum group (A;�). It satis�es

the pentagonal equation: W

12

W

13

W

23

= W

23

W

12

(this is a on-

sequene of the o-assoiativity of �).

The following properties hold:
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� �(A) is the losure of the set f (� 
 !)(W ) j ! 2 B

0

(H) g in

B(H).

� (� 
 �)�(a) =W

�

(1
 �(a))W for all a 2 A.

Hene the o-multipliation is essentially enoded in W .

These onsiderations lead to the work of Baaj & Skandalis

[3℄, who study multipliative unitaries in their own right (in that

they are not neessarily onstruted from a presribed quantum

group). These authors onstrut quantum-group-like objets with

o-multipliation from multipliative unitaries.

De�nition 4.7 Consider a Hilbert spae H and a unitary ele-

ment W 2 B(H 
 H) satisfying the pentagonal equation (so

W

12

W

13

W

23

= W

23

W

12

). We all W a multipliative unitary

on H .

As in the ase of a ompat quantum group, one introdues:

1. The losed subspaes A=[(�
 !)(W ) j ! 2 B

0

(H)

�

℄ and

^

A = [ (! 
 �)(W ) j ! 2 B

0

(H)

�

℄ of B(H).

2. Linear maps � : A ! B(H 
H) and

^

� :

^

A ! B(H 
H)

given by �(x) = W

�

(1 
 x)W for all x 2 A and

^

�(x) =

W (x
 1)W

�

for all x 2

^

A.

Here [ ℄ denotes the losed linear span of the elements under on-

sideration.

Baaj and Skandalis formulated a ertain regularity ondi-

tion for multipliative unitaries and proved that ifW satis�es this

regularity ondition, then:

� A and

^

A are non-degenerate C

�

-subalgebras of B(H),

� (�
 �)� = (�
�)� and (

^

�
 �)

^

� = (� 


^

�)

^

�,

� �(A)(A 
 1) and �(A)(1 
A) are dense subspaes of A
A,

�

^

�(

^

A)(

^

A 
 1) and

^

�(

^

A)(1


^

A) are dense subspaes of

^

A


^

A.

However, the regularity ondition turned out to be not very

suitable for the general framework of quantum groups. Baaj him-

self pointed out (see [2℄) that the multipliative unitary assoiated

to the quantum group E(2) does not satisfy the regularity ondi-

tion.
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Later Woronowiz (see [35℄) introdued the notion of man-

ageability for multipliative unitaries. This probably overs the

general ase. Assuming this ondition, he was able to prove

the same properties for (A;�) and (

^

A;

^

�) as Baaj and Skan-

dalis proved using their regularity ondition. Woronowiz also

onstruted an antipode-like objet that admitted a polar deom-

position (under the assumption of his manageability ondition).

The objets (A;�) and (

^

A;

^

�) are to be thought of as dual

to eah other. For instane, one of them is a ompat quantum

group if and only if the other one is a disrete quantum group.
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