
REPRESENTATION THEOREMS

FOR SOME CLASSES OF

OPERATORS ON C

�

-ALGEBRAS

Martin Mathieu

Abstrat: This artile ontains a survey on representation theorems

for various lasses of linear operators on C

�

-algebras emphasizing the

role of loal multipliers to derive them.

1. Introdution.

In studying a lass of, perhaps bounded linear, operators on

C

�

-algebras one an, at least, distinguish three di�erent levels of

understanding this lass. Firstly, there are (anonial) examples

and neessary properties to be found whih guarantee the rihness

of, and stimulate interest in, this lass of operators and help to

single out those not ontained. Seondly, one seeks to establish

suÆient properties that allow to haraterize the members of

this lass of operators in a non-trivial way. Thirdly, and this

we should onsider the top level of understanding, one aims to

determine prototypial examples and a mehanism to build all

other members in this lass from these. This then enables us in

priniple to read o� all the properties that one is investigating

from the prototypial, simple examples.

An instane of suh a study arises in the theory of

*-derivations of C

�

-algebras. In the �rst plae, these are de�ned
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purely algebraially but turn out to be automatially ontinuous, a

well-known result by Sakai, whih has been extended by di�erent

methods by several others in eah ase exploiting interesting prop-

erties of C

�

-algebras. Prominent examples are the inner deriva-

tions originating from ommutators (with self-adjoint elements),

thus revealing the intimate interplay with quantum physis. The

seond step onsists in showing that *-derivations preisely are

the generators of (norm-ontinuous) groups of *-automorphisms

of C

�

-algebras. The latter are the models of reversible evolutions

of quantum systems. But the breakthrough is done via a repres-

entation theorem whih tells us that every *-derivation is inner, at

least for all von Neumann algebras or in some generalized sense.

Our aim here is to disuss a few of suh representation theor-

ems for some lasses of (not neessarily bounded linear) operators

on C

�

-algebras, in partiular those reently proven by means of

a new tool in operator theory on C

�

-algebras, the loal multiplier

algebra. We hope to give some avour of the new ideas involved

and to water the mouth for fuller meals, suh as o�ered in [4℄. This

artile omprises two talks delivered to the DIAS Christmas Sym-

posium 1997 in Dublin in Deember 1997 and the Mathematial

Colloquium of the University of Aberdeen in May 1998, respet-

ively.

2. A few prerequisites.

In this setion we shall reall a few basi notions in the theory of

C

�

-algebras that will be relevant for our disussion. Throughout

one may think of a C

�

-algebra A as a subalgebra of the bounded

linear operators on a Hilbert spae, B(H), whih is losed in the

operator norm and with respet of taking adjoints: if x 2 A then so

is its adjoint x

�

. The fundamental law that ties together the three

basi strutures in a C

�

-algebra, the algebrai, the metri, and the

order struture, is the C*-identity kx

�

xk = kxk

2

for all x 2 A.

In �nite dimensions, the n�n matries form a typial example of

a C

�

-algebra whereas the �rst in�nite dimensional C

�

-algebra is

provided by the ompat operators K(H) on a separable Hilbert

spae H . In fat, K(H) is losely related to the matrix algebras as

it results from them by taking the diret limit lim

�!

n

M

n

where the



46 IMS Bulletin 41, 1998 �

n�n matriesM

n

are embedded into the (n+1)�(n+1) matries

by putting a 2 M

n

into the upper left hand orner and �lling up

with zeros. Sine K(H) is a losed *-ideal of B(H), the quotient

B(H)=K(H) is another prominent example of a C

�

-algebra, the

so-alled Calkin algebra.

A typial ommutative C

�

-algebra is provided by the spae

C

0

(X) of all ontinuous omplex-valued funtions on a loally

ompat Hausdor� spae X whih vanish at in�nity. This may be

regarded as an algebra of operators by identifying a funtion with

the multipliation by this funtion on the Hilbert spae L

2

(X;�),

where � gives non-zero measure to every non-empty open subset of

X , for example. Endowed with these basi examples one an then

start to build more ompliated ones by a number of proedures,

e.g. C

0

(X ;K(H)) where the funtions now take on their values

in the ompat operators rather than the omplex numbers but we

still use the supremum norm.

One of the onstrutions with C

�

-algebras that we shall refer

to in the sequel is themultiplier algebra of a C

�

-algebra. Supposing

that A ats on H non-degenerately, that is, for eah � 2 H whih

is non-zero there exists an element x 2 A suh that x� 6= 0,

M(A) = fy 2 B(H) j yA+Ay � Ag:

In the examples given above we have M(K(H)) = B(H) and

M(C

0

(X)) = C

b

(X), the algebra of all bounded ontinuous fun-

tions on X . The multiplier algebra M(A) is distinguished by the

fat that it is the largest essential extension of A, that is, A is

ontained in M(A) as a losed essential ideal (wherefore it has

non-zero intersetion with every other non-zero ideal in M(A))

and every unital C

�

-algebra B that also ontains A in the same

manner anonially embeds into M(A).

3. How to apply a representation theorem.

Before we shall delve into our disussion of some reent represent-

ation theorems, let us reall a very familiar one and see how this

an be used to obtain some neat onsequenes. Let A � B(H),
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B � B(K) be two C

�

-algebras. A linear mapping T :A ! B is

alled bounded if its operator norm

kTk = supfkTxk j x 2 A; kxk � 1g <1:

A requirement whih in general is (somewhat) stronger is the fol-

lowing. We say that T is ompletely bounded if the anonial

extension

T 
 id:A


min

K(`

2

) �! B 


min

K(`

2

)

is bounded, where the minimal tensor produt is obtained from

the algebrai tensor produt by letting A
K(`

2

) at anonially

on H

�


 `

2

and ompleting in the operator norm. In this ase,

kTk

b

= kT 
 idk is alled the b-norm of T .

One of the very nie features of ompletely bounded operat-

ors is that there exists a representation theorem, proved by Paulsen

in 1984.

Theorem. Let T :A! B be a ompletely bounded linear oper-

ator between the C

�

-algebras A and B. Then there exist a repres-

entation � of A on a Hilbert spae

^

H and bounded linear operators

V :

^

H ! K, W :K !

^

H suh that kV k kWk = kTk

b

and

Tx = V �(x)W (x 2 A):

This result emerged to be fundamental for the theory of ompletely

bounded operators, for instane, it immediately yields Wittstok's

extension and deomposition theorems. For a survey on various

aspets of ompletely bounded operators we refer to [11℄, and for

an up-to-date presentation of their theory in detail to [14℄.

Completely bounded operators were introdued by Arveson

in the late 1960's, and it soon beame apparent that it doesn't

suÆe to study them on C

�

-algebras only. For that reason the

notion of an operator spae as a subspae E of some B(H) was

introdued. Now there arose the question of how to desribe these

operator spaes abstratly by a neat set of simple axioms, as was

done by Gelfand and Naimark for C

�

-algebras. This problem was

solved by Ruan in 1988 by providing the following axioms.



48 IMS Bulletin 41, 1998 �

Let E be a omplex vetor spae and let M

n

(E) denote the

vetor spae of n � n matries with entries in E. Suppose there

exists a sequene (k � k

n

)

n2N

of norms on M

n

(E) satisfying the

following two requirements

(R1) 8n 2 N 8�; � 2M

n

8x 2M

n

(E)

k�x�k

n

� k�k kxk

n

k�k

(R2) 8n;m 2 N 8x 2M

n

(E) 8 y 2M

m

(E)

kx� yk

n+m

= maxfkxk

n

; kyk

m

g:

Then

�

E; (k � k

n

)

n2N

�

is alled an abstrat operator spae. It an

be seen easily that, if E � B(H) and M

n

(E) is onsidered as a

subspae of B(H

n

) anonially, then the above axioms are ful�lled

so that, a priori, every operator spae is an abstrat operator

spae. Whene the question remains whether the two onepts

oinide.

To state Ruan's theorem, whih answers this question aÆrm-

atively, we have to extend the onept of omplete boundedness

to the abstrat situation. Let E and F be abstrat operator

spaes. Every linear mapping T :E ! F yields a linear mapping

T

n

:M

n

(E) ! M

n

(F ) by (x

ij

) 7! (Tx

ij

). We say that T is om-

pletely bounded if eah T

n

, n 2 N is bounded and sup

n

kT

n

k <1;

in that ase, this supremum is again alled the ompletely bounded

norm kTk

b

of T . (It is not diÆult to realize that this gives the

same notion as above in the onrete setting.) The operator T is

said to be ompletely isometri if all T

n

, n 2 N are isometries.

Ruan's Theorem. Every abstrat operator spae is ompletely

isometrially isomorphi to a subspae of some B(H).

We will now sketh a proof of this fundamental result that

relies on another representation theorem related to Paulsen's the-

orem, taken from [8℄.

Theorem (E�ros-Ruan 1993). Let E be an abstrat oper-

ator spae, and let f 2M

n

(E)

0

be a bounded linear funtional on
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M

n

(E) (equipped with the norm k � k

n

). Then there exist a om-

pletely bounded linear mapping ':E ! M

n

with k'k

b

� 1 and

bounded linear mappings v:C

n

2

! C, w:C ! C

n

2

, both with

norm at most 1, suh that

f(x) = v '

n

(x)w (x 2M

n

(E)):

Suppose that E is an abstrat operator spae, and take

x 2M

n

(E). By the Hahn-Banah theorem, there is some f 2

M

n

(E)

0

with the properties kfk = 1 and jf(x)j = kxk

n

. By the

E�ros-Ruan theorem above, there is a omplete ontration ' from

E into M

n

suh that k'

n

(x)k = kxk

n

. Let �

n

denote the set of

all omplete ontrations from E into M

n

. Letting

�:E �!

Y

n2N

Y

'2�

n

M

n

with �(x) = ('(x)) be the linear mapping that assigns to x the

family of all possible evaluations of some ' 2 �

n

, n 2 N at x,

we obtain a omplete ontration � whih, in fat, is ompletely

isometri sine there is at least one suh ' with k'

n

(x)k = kxk

n

.

The huge produt on the right hand side is a C

�

-algebra, thus

sits (ompletely isometrially) inside some B(H) by the Gelfand-

Naimark theorem, and the proof of Ruan's theorem is omplete.

4. Some lasses of operators.

The following lasses of operators have been studied over the past

few years by means of multipliers whih are de�ned on ideals of a

C

�

-algebra rather than on the entire C

�

-algebra itself.

� elementary operators

� derivations

� Jordan homomorphisms

� Lie derivations, Lie isomorphisms

� entralizing and ommuting mappings, both linear and

quadrati ones;

bi-derivations
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� ommutativity preserving mappings

� orthogonality preserving mappings

� spetrum preserving mappings?

The \?" inluded into the last item is to indiate that this may

be a future projet rather than a solved problem. An outstanding

question raised by Kaplansky asks whether every unital surjetive

linear mapping between unital C

�

-algebras preserving the spe-

trum of every element has to be a Jordan isomorphism. At the

time of this writing, this question has been reently resolved in

the aÆrmative for �nite von Neumann algebras by Aupetit [5℄ but

was still open in the general ase and, following our experiene

in similar situations, it may be possible that the theory of loal

multipliers may help to extend the result to general C

�

-algebras.

Rather than attempting an exhaustive disussion of all of

the lasses of operators listed above, two sample representation

theorems will be desribe whih have been obtained by two of my

PhD students lately.

A linear mapping �:A ! A on a C

�

-algebra A is said to

be ommutativity preserving if it maps ommutative subsets of A

into ommutative subsets, i.e.,

�(x) �(y) = �(y) �(x) whenever xy = yx:

The interest in suh mappings stems partially from the fat

that these are the mappings that preserve joint measurability

of quantum mehanial observables. Of ourse, suh mappings

need not be bounded. Some natural examples are provided by

multipliations with entral elements, mappings into the entre,

and, less trivial, surjetive Jordan homomorphisms, that is, linear

mappings preserving the Jordan produt xy+yx. Among the �rst

results on this lass of operators is a omplete desription in the

ase of omplex n�n matries, M

n

, due to Watkins, Beasley, and

Piere obtained in the late 1970's for n � 3. Examples show that

no suh desription is possible in the ase of M

2

, while n = 1 of

ourse is trivial.

The following neat theorem obtained by Ralf Banning in

1998 uni�es and extends the previously known results, in partiu-
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lar the ase of von Neumann algebras whih was treated by Bre�sar

and Miers in 1993 [7℄.

Theorem [6℄. Let A be a unital boundedly entrally losed

C

�

-algebra suh that the ideal K

2

is essential. Let � be a bijetive

linear mapping on A suh that both � and �

�1

are ommutativity

preserving. Then there exist a unique invertible element  in the

entre Z(A) of A, a unique Jordan automorphism ' on A, and

a unique linear mapping �:A! Z(A) suh that

�(x) =  '(x) + �(x) (x 2 A):

The hypothesis `boundedly entrally losed' will be explained in

the subsequent Setion 5. The assumption `K

2

essential' results

from ertain polynomial identities that M

2

satis�es but no matrix

algebra M

n

for higher n. These polynomial identities prevent a

omplete desription in the 2 � 2 ase and thus have to be ruled

out. One equivalent formulation is that the set of those irredu-

ible representations of A with dimension at most two has empty

interior. The proof of the above theorem heavily relies on a rep-

resentation theorem for quadrati ommuting mappings related to

a orresponding result for linear ommuting mappings obtained in

[2℄.

The next representation theorem deals with operators that

preserve a more geometri property. Let A � B(H) be a

C

�

-algebra. Two elements x; y 2 A are said to be orthogonal

if x

�

y = 0. In geometri terms this means that the ranges xH and

yH are orthogonal subspaes of H . A linear mapping T :A ! B

between C

�

-algebras A and B is alled orthogonality preserving

if Tx and Ty are orthogonal whenever x and y are orthogonal.

Immediate examples are *-homomorphisms and right multiplia-

tions.

The following beautiful representation theorem was proven

by J�urgen Shweizer in his thesis in 1996.

Theorem [15℄. Let T :A! B(K) be a bounded orthogonality

preserving operator from the C

�

-algebra A into some B(K). Then

there is a representation � of A on K and an operator h 2 B(K)
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suh that

Tx = �(x)h (x 2 A):

There is an immediate and surprising onsequene.

Corollary. Every bounded orthogonality preserving operator is

ompletely bounded.

In none of the above representation theorems is the use of

loal multipliers apparent; but this is due to the smooth formu-

lation that we hose. In Banning's theorem, the entral element

 atually arises as a entral multiplier of the ideal K

2

, and only

the assumption of bounded entral losedness brings it bak into

A. All the work in onstruting the mappings ' and � would not

be possible without the use of loal multipliers. In Shweizer's

theorem, the *-homomorphism in fat maps into the multiplier

algebra of the hereditary C*-subalgebra generated by TA and the

element h is a multiplier of it, at least if T is self-adjoint. Sh-

weizer's methods involve a lot of non-ommutative topology, and

the representation theorem itself reverts bak to an understand-

ing of non-ommutative analogues of partially de�ned ontinuous

mappings. The above theorem indeed is only a speial ase of a

muh farther ranging result for Hilbert C*-modules, as the produt

x

�

y may already indiate.

5. Loal multipliers and how to use them.

The loal multiplier algebra M

lo

(A) of a C

�

-algebra A is the

diret limit (in the ategory of C

�

-algebras) of the multiplier

algebras M(I) of losed essential ideals I in A. The onnet-

ing *-homomorphisms are given by the restrition of multipliers

on an essential ideal I to the essential ideal J if J � I . This

onstrution, whih was �rst pursued by Elliott and Pedersen in

the mid 1970's [9℄, [13℄, resembles losely the onstrution of the

symmetri ring of quotients of a semiprime ring �a la Kharhenko

[10℄, and in fat, it is the exat C*-analogue of it. There are also

lose interonnetions between the algebrai onstrution, denoted

by Q

s

(A), and M

lo

(A): the bounded part of Q

s

(A) (in the order

theoreti sense of Handelman-Vidav), Q

b

(A), is dense in M

lo

(A)
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and onversely, Q

s

(A) is the entral loalization of Q

b

(A). This

interplay has been thoroughly studied by Pere Ara and myself

sine the early 1990's and will be laid out in [4℄. One of the fun-

damental results is the loal Dauns-Hofmann theorem desribing

the entre of M

lo

(A) in a similar fashion as the Dauns-Hofmann

theorem does for the entre of the multiplier algebra M(A).

Theorem [1℄. Let A be a C

�

-algebra. Then the entre

Z(M

lo

(A)) of M

lo

(A) is an AW*-algebra, and its struture

spae is the inverse limit (in the ategory of ompat spaes) over

the Stone-

�

Ceh ompati�ations of all open dense subsets of the

primitive spetrum of A.

Being an AW*-algebra, Z(M

lo

(A)) is rih in projetions,

and this allows to some extent to replae the use of the spetral

theorem in von Neumann algebras. The loal Dauns-Hofmann

theorem also gives rise to the onept of boundedly entrally

losed C

�

-algebras as follows. Among its onsequenes is the

fat that the entre of the loal multiplier algebra of M

lo

(A)

oinides with Z(M

lo

(A)), whih parallels perfetly the algebrai

situation. (It is not known whether or not M

lo

(M

lo

(A)) oin-

ides with M

lo

(A), however.) Denoting by



A the C

�

-algebra

AZ(M

lo

(A)), the bounded entral losure of A, this entails that



(



A) =



A wherefore A 7!



A is a proper losure operation.

A C

�

-algebra A thus is said to be boundedly entrally losed if

A =



A. There are several equivalent formulations of this property

eah of whih is quite useful: Z(M(A)) = Z(M

lo

(A)); the prim-

itive spetrum of A is extremally disonneted; A is self-injetive

as a Banah A-bimodule. Examples of boundedly entrally losed

C

�

-algebras are many, suh as von Neumann algebras, more gener-

ally AW*-algebras, prime C

�

-algebras, hereditary C*-subalgebras

of boundedly entrally losed ones, : : :

The way one should think of the transition from A to its

bounded entral losure



A, or to M

lo

(A) possibly, is in analogy

to the transition from A to its enveloping von Neumann algebra

A

00

. The advantage is, however, that we do not need to refer to

weak topologies (and hene stay inside the ategory of C

�

-algebras

throughout) as the losure operation is performed by an algebrai
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plus norm losure proedure. The traditional approah in oper-

ator theory on C

�

-algebras to appeal to A

00

, and hene to von

Neumann algebras, is as follows. In studying a lass of operators

one �rst restrits attention to the muh nier lass of von Neumann

algebras and derives the properties under this additional assump-

tion. Then ones uses that, for every bounded linear operator T

on a C

�

-algebra A, the seond adjoint T

00

provides a anonial

bounded extension to A

00

so that one may apply the previously

obtained results in the more general setting. This route is taken,

for instane, in [15℄. It has the disadvantages that the operat-

ors neessarily have to be bounded and that the extension T

00

, in

general, may not inherit the properties that T had.

A

T

���! B

?

?

y

?

?

y

A

00

���!

T

00

B

00

A

T

���! B

?

?

y

?

?

y



A ���!



T



B

The new approah, via loal multipliers, suggests to study oper-

ators �rst on the lass of boundedly entrally losed C

�

-algebras

and then extend them to the bounded entral losure. This has the

advantage of being muh more algebrai and often simpler than the

traditional path; [6℄ is an example of a rather fruitful appliation

of this approah.

Another one is the following nie result desribing the norm

of an inner derivation on a C

�

-algebra. Suppose that a is an

element in the multiplier algebra M(A) of a C

�

-algebra A. By Æ

a

we shall denote the linear mapping on A de�ned by x 7! xa� ax,

x 2 A. This is alled an inner derivation, for it satis�es the

Leibniz produt rule

Æ

a

(xy) = x(Æ

a

y) + (Æ

a

x)y (x; y 2 A):

It is immediate that the norm kÆ

a

k is estimated above by

2 d(a; Z(M(A)), the distane of a from the entre Z(M(A)).

Sine the late 1960's, starting with work by Kadison, Lane and
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Ringrose, many authors studied situations in whih atual equal-

ity holds (whih in general fails). For example, equality holds

for von Neumann algebras, and this was extended to boundedly

entrally losed C

�

-algebras in [12℄. Following the `new approah'

as in [12℄, and ombining it with the result in [16℄ stating that

the distane to the entre of a C

�

-algebra is always attained, we

derive the following result.

Theorem. Let Æ

a

, a 2 M(A) be an inner derivation on the

C

�

-algebra A. Then there exists a loal multiplier b of A suh

that Æ

a

= Æ

b

and kÆ

b

k = 2 kbk.

By means of this, the norm of an inner derivation is om-

puted preisely for an arbitrary C

�

-algebra. An extension of this

result to generalized inner derivations an be found in [4℄.

The suess in applying loal multipliers to study operators

on C

�

-algebras of ourse motivated further investigation of the

loal multiplier algebra itself. In partiular the ideal struture

of M

lo

(A) needs to be understood better. One of the surprises

in these reent studies was the result that there exist non-simple

C

�

-algebras for whih the loal multiplier algebra an be simple,

in striking ontrast to the situation of the global multiplier algebra

M(A) [3℄.
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