
ON THE EQUATION �(x

m

� y

m

) = x

n

+ y

n

Florian Luca

Abstract For any positive integer k let �(k) be the Euler totient func-

tion of k. In this paper we �nd all positive integer solutions of the

diophantine equation �(x

m

� y

m

) = x

n

+ y

n

.

For any positive integer k, let �(k) be the Euler totient function

of k. In [1], we found all solutions of the equation

�(jx

m

+ y

m

j) = jx

n

+ y

n

j;

where x, y are integers, and m, n are positive integers. A problem

of a similar nature was suggested by the author in [2]. In this note

we study the equation

(1) �(x

m

� y

m

) = x

n

+ y

n

;

where x; y; m; n are positive integers.

We have the following result.

Theorem The only positive solutions (x; y; m; n) of equation

(1) are

(x; y; m; n) = (2

l

+ 1; 2

l

� 1; 2; 1)

for some positive integer l.

For any positive integer k, let ord

2

(k) be the exponent at

which 2 appears in the prime factor decomposition of k.

We begin with the following lemmas.
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Lemma 1 Let n > 0 be a positive integer, and let s � 0 be a real

number such that ord

2

(�(n)) � s. Then

�(n)

n

�

1

s+ 2

:

Proof: If n is a power of 2, then

�(n)

n

=

1

2

�

1

s+ 2

:

Suppose now that

n = 2

�

p

�

1

1

:::p

�

k

k

;

where � � 0, k � 1, �

1

; :::; �

k

are positive, and p

1

< ::: < p

k

are

odd primes. Then

(2) �(n) = 2

�

p

�

1

�1

1

(p

1

� 1):::p

�

k

�1

k

(p

k

� 1);

where � = max(� � 1; 0). Since ord

2

(�(n)) � s, and since

p

1

; :::; p

k

are odd primes, it follows that k � s, and p

i

� i+2 for

i = 1; :::; k. Hence,

�(n)

n

�

1

2

k

Y

i=1

�

1�

1

p

i

�

�

1

2

k

Y

i=1

�

1�

1

i+ 2

�

=

1

s+ 2

:

Lemma 2 Let x; y be integers such that x� y � 2, and let m; n

be positive integers. If n�m � 2, then

x

n

� y

n

x

m

+ y

m

> 2x:

Proof: Since n � m+ 2, it follows that n � 3. Clearly

x

n

� y

n

x

m

+ y

m

>

(x� y) � (x

n�1

+ x

n�2

y)

x

m

+ y

m

� 2 �

x

n�1

+ x

n�2

y

x

m

+ y

m

:
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It su�ces to show that

x

n�1

+ x

n�2

y

x

m

+ y

m

� x

or

x

n�2

+ x

n�3

y � x

m

+ y

m

:

This follows since x

n�2

> x

m

, and x

n�3

y � y

n�2

� y

m

.

Lemma 3 Let x; y be two nonzero integers such that x+ y 6= 0,

and gcd(x; y) is odd. Let n be a positive integer. Then,

ord

2

(x

n

+ y

n

) � ord

2

(x+ y):

Proof: If x 6� y mod 2, then both x

n

+ y

n

, and x + y are odd,

so the asserted inequality certainly holds. Suppose then that x �

y mod 2). Since gcd(x; y) is odd, it follows that both x, and y are

odd. If n is even, then x

n

+ y

n

� 2 mod 4. Hence,

ord

2

(x

n

+ y

n

) = 1 � ord

2

(x+ y);

in this case. If n is odd, then

ord

2

(x

n

+ y

n

) = ord

2

(x+ y) + ord

2

(x

n�1

� x

n�2

y + :::+ y

n�1

)

| {z }

=0

= ord

2

(x+ y):

Lemma 4 Let x, y be odd integers such that x > y. Assume that

gcd(x; y) = 1. Let n > 0 be a positive even integer. Then,

gcd

�

x

n+1

� y

n+1

; x

n

+ y

n

�

= 2:

Proof: Let D = gcd

�

x

n+1

+ y

n+1

; x

n

+ y

n

�

, and let p j D be a

prime. Since p jx

n+1

+ y

n+1

, and p x

n

+ y

n

, it follows that

p j (x

n+1

+ y

n+1

)� y(x

n

+ y

n

) = x

n

(x� y):
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Hence, p j x(x� y). If p j x, then, since p j x

n

+ y

n

, it follows that

p j y

n

. Hence, p j y. This contradicts the fact that gcd(x; y) = 1.

Assume that p j x� y. Since

p j x

n

+ y

n

=

�

(x� y) + y

�

n

+ y

n

;

it follows that p j 2y

n

. Since p j x � y, and since gcd(x; y) = 1,

it follows that p 6 j y, therefore p j 2. Since both x and y are odd,

it follows that both x

n+1

+ y

n+1

, and x

n

+ y

n

are even. From the

previous argument we conclude that D = 2

�

. Since one of the two

numbers n; n + 1 is even, it follows that one of the two numbers

x

n+1

+ y

n+1

, or x

n

+ y

n

is a sum of two odd squares which is

2 (mod4). Hence, D = 2.

Proof of the Theorem

Notice �rst of all that x > y. Moreover, since

x

m

� y

m

� �(x

m

� y

m

) = x

n

+ y

n

;

it follows that m > n. Let � = ord

2

�

gcd(x; y)

�

: Write x = 2

�

x

1

,

and y = 2

�

y

1

: Clearly, at most one of the integers x

1

, y

1

is even.

We �rst show that both x

1

, and y

1

are odd. Indeed, for if not,

assume that x

1

6� y

1

mod 2).

Suppose �rst that � = 0. In this case x = x

1

, and y = y

1

. It

follows that x

m

� y

m

is an odd number whose Euler indicator is

again odd. Hence, x

m

� y

m

= 1, which has no solution (x; y; m)

with y > 0, and m > 1.

Suppose now that � � 1. Then

(2)

x

m

� y

m

= 2

m�

(x

m

1

� y

m

1

);

x

n

+ y

n

= 2

n�

(x

n

1

+ y

n

1

):

Then

(3) �(x

m

� y

m

) = �

�

2

m�

(x

m

1

� y

m

1

�

= 2

m��1

�(x

m

1

� y

m

1

):

Equation (1) becomes

2

(m�n)��1

�(x

m

1

� y

m

1

) = x

n

1

+ y

n

1

:
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Since (m�n)�� 1 � 0, it follows that x

m

1

� y

m

1

is an odd number

whose Euler indicator is again odd. Hence, x

m

1

� y

m

1

= 1, which

has no solutions (x

1

; y

1

; m) such that y

1

> 0, and m > 1. From

the previous analysis we conclude that x

1

and y

1

are both odd.

Since both x

1

, and y

1

are odd, it follows easily that x�y � 2.

In particular, x � 3. Since both x

m

1

� y

m

1

, and x

n

1

+ y

n

1

are even,

it follows, by formulae (2) and (3), that

(4)

�(x

m

� y

m

)

x

m

� y

m

=

�

�

2

m�

(x

m

1

� y

m

1

)

�

2

m�

(x

m

1

� y

m

1

)

=

�(x

m

1

� y

m

1

)

x

m

1

� y

m

1

:

By Lemma 3, it follows that

(5)

ord

2

(x

n

1

+ y

n

1

) � ord

2

(x

1

+ y

1

) � log

2

(x

1

+ y

1

)

< log

2

2x = 1 + log

2

x:

From relations (4), (5), and Lemma 1, it follows that

(6)

x

n

+ y

n

x

m

� y

m

=

�(x

m

� y

m

)

x

m

� y

m

=

�(x

m

1

� y

m

1

)

x

m

1

� y

m

1

>

1

3 + log

2

x

:

Inequality (6) is equivalent to

(7) 3 + log

2

x >

x

m

� y

m

x

n

+ y

n

:

We now show that m = n + 1. Indeed, if m � n � 2, then, by

Lemma 2 and inequality (7) it follows that

3 + log

2

x >

x

m

� y

m

x

n

+ y

n

> 2x:

The above inequality implies that x � 2, which contradicts the

fact that x � 3. Hence, m = n+ 1.

We now show that n is odd. Indeed, assume that n is even.

We distinguish two cases.
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Case 1. � = 0.

Since n is even, it follows that x

n

+ y

n

� 2 (mod4). Hence,

ord

2

(x

n

+ y

n

) = 1. Write

(8) x

n+1

� y

n+1

= 2

�

p

�

1

1

:::p

�

k

k

;

where � � 1, k � 0, �

i

� 1 for i = 1; :::; k, and p

1

< ::: < p

k

are

odd primes.

Suppose �rst that k = 0. Then x

n+1

� y

n+1

= 2

�

. It follows

that

ord

2

�

�(x

n+1

� y

n+1

)

�

= � � 1 = 1;

or � = 2. We conclude that

4 = x

n+1

� y

n+1

> (x� y) � (x

n

+ y

n

) � 2 � (3

2

+ 1

2

) = 20;

which is a contradiction.

Hence, k � 1. Since

�(x

n+1

� y

n+1

) = 2

��1

p

�

1

�1

1

(p

1

� 1):::p

�

k

�1

k

(p

k

� 1)

it follows that

1 = ord

2

(x

n

+ y

n

) = ord

2

�

�(x

n+1

� y

n+1

)

�

= (� � 1) + ord

2

(p

1

� 1) + :::+ ord

2

(p

k

� 1):

It follows that � = 1, and k = 1. Let p = p

1

, and � = �

1

. Then,

(9)

2p

�

= x

n+1

� y

n+1

;

(p� 1)p

��1

= �(x

n+1

� y

n+1

) = x

n

+ y

n

:

From relations (9) it follows that

(10)

2p

��1

= gcd

�

2p

�

; (p� 1)p

��1

�

= gcd

�

x

n+1

� y

n+1

; x

n

+ y

n

):

We now compute gcd

�

x

n+1

� y

n+1

; x

n

+ y

n

). Let d = gcd(x; y).

Write x = dx, and y = dy. Then,

(11)

gcd

�

x

n+1

� y

n+1

; x

n

+ y

n

) = d

n

gcd

�

d(x

n+1

� y

n+1

); x

n

+ y

n

�

:
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Since gcd(x; y) = 1, both x, y are odd, and n is even, it follows,

by Lemma 4, that

gcd

�

x

n+1

� y

n+1

; x

n

+ y

n

�

= 2:

Equation (11) becomes

(12) gcd

�

x

n+1

� y

n+1

; x

n

+ y

n

) = 2d

n

gcd(d; x

n

+ y

n

) = 2d

n

d

1

;

where d

1

= gcd(d; x

n

+ y

n

). From formulae (10) and (12) it

follows that

(13) 2p

��1

= 2d

n

d

1

:

From formulae (9) and (13) it follows that

(14)

d

n+1

(x

n+1

� y

n+1

) = x

n+1

� y

n+1

= 2p

�

= p(2p

��1

) = 2pd

n

d

1

;

or

(15) p =

d

d

1

�

x

n+1

� y

n+1

2

:

Since x

n+1

� y

n+1

> 2, it follows, from formula (15), that d=d

1

is

a proper divisor of p. Hence, d = d

1

. Formula (15) is then

(16) p =

x

n+1

� y

n+1

2

:

From formulae (9) and (13) it follows that

(17)

d

n

(x

n

+ y

n

) = x

n

+ y

n

= (p� 1)p

��1

=

p� 1

2

� (2p

��1

)

=

p� 1

2

� 2d

n

d

1

;

or

(18) x

n

+y

n

=

p� 1

2

�d

1

=

d

1

2

�(p�1) =

d

1

2

�

�

x

n+1

� y

n+1

2

�1

�

:
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We now show that d

1

= 1. Indeed, assume that this is not the

case. Since d

1

� 3 it follows, by equation (18), that

x

n

+ y

n

�

3

2

�

�

x

n+1

� y

n+1

2

� 1

�

>

3

2

�

�

(x� y) � (x

n

+ y

n

)

2

� 1

�

�

3

2

(x

n

+ y

n

� 1) > x

n

+ y

n

;

which is a contradiction. Hence, d

1

= 1. It follows that x = x,

and y = y.

From equation (16) it follows easily that n+ 1 = q is an odd

prime, and that y = x� 2. Equation (18) can now be rewritten as

x

q�1

+ (x� 2)

q�1

=

1

2

�

�

x

q

� (x� 2)

q

2

� 1

�

;

or

(19) 4x

q�1

+ 4(x� 2)

q�1

+ 2 = x

q

� (x� 2)

q

:

We now show that equation (19) has no solution (x; q) with q an

odd prime. We distinguish the following three situations:

(a) q 6 j x(x � 2). In this case, x

q�1

� (x � 2)

q�1

� 1 (mod q).

Reducing equation (19) modulo q we obtain

4 + 4 + 2 � x� (x� 2) � 2 (mod q);

or 8 � 0 (mod q), which is a contradiction.

(b) q j x. In this case (x� 2)

q�1

� 1 (mod q). Reducing equation

(19) modulo q we obtain

4 + 2 � �(x� 2) � 2 (mod q);

or 4 � 0 (mod q), which is a contradiction.

(c) q j x � 2. In this case x

q�1

� 1 (mod q). Reducing equation

(19) modulo q we obtain

4 + 2 � x � (x� 2) + 2 � 2 (mod q);
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or 4 � 0 (mod q), which is again a contradiction.

This disposes of Case 1.

Case 2. � 6= 0.

From equations (2) it follows that

(20) 2

�

�(x

n+1

1

� y

n+1

1

) = x

n

1

+ y

n

1

:

Equation (20) implies

(21) 2

��1

�(x

n+1

1

� y

n+1

1

) =

x

n

1

+ y

n

1

2

:

Since x

1

; y

1

are odd, and since n is even, it follows that

x

n

1

+ y

n

1

2

� 1 (mod 2):

From equation (21) it follows that � = 1, and that x

n+1

1

� y

n+1

1

is

an even number whose Euler function is 1. The only such number

2. The equation x

n+1

1

� y

n+1

1

= 2 has no solution (x

1

; y

1

; n) with

y

1

> 0, and n > 1.

From the previous analysis we conclude that n is odd. In this

case

(x + y) j gcd

�

x

n

+ y

n

; x

n+1

� y

n+1

�

:

Moreover, since n is odd, it follows that

x

n+1

� y

n+1

x+ y

� 0 (mod(x� y)):

In particular,

x

n+1

�y

n+1

x+y

is even. Now let

x+ y = 2

�

p




1

1

:::p




k

k

;

where � > 0, k � 0, 


i

> 0 for i = 1; :::; k, and p

1

< ::: < p

k

are

odd primes. Since

x

n+1

�y

n+1

x+y

is even, it follows that

2

�

�

�

x

n+1

� y

n+1

x+ y

�

�

�

�

�(x

n+1

� y

n+1

) = x

n

+ y

n

= (x + y) �

x

n

+ y

n

x+ y

;
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or

�

�

x

n+1

� y

n+1

x+ y

�

�

�

�

x+ y

2

�

�

x

n

+ y

n

x+ y

:

Hence, �

�

x

n+1

�y

n+1

x+y

�

is odd. Since the only even number whose

Euler function is odd is 2, it follows that

x

n+1

� y

n+1

x+ y

= 2:

This implies that n = 1, and y = x� 2. Equation 1 becomes

(22) �(4(x� 1)) = 2(x� 1):

Assume that

x� 1 = 2

l

q

�

1

1

:::q

�

t

t

;

where l � 1, t � 0, �

i

> 0 for i = 1; :::; t, and q

1

< ::: < q

t

are odd primes. We show that t = 0. Indeed, assume that this is

not the case. Since t � 1, it follows that the power at which q

t

appears in the right hand side of equation (22) is �

t

, but the power

at which q

t

appears in the left hand side of equation (22) is only

�

t

� 1. This contradiction shows that t = 0. Hence, x = 2

l

+ 1,

and the solution has the asserted form.

The theorem is therefore completely proved.
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