ON THE EQUATION $\phi(x^m - y^m) = x^n + y^n$

Florian Luca

Abstract For any positive integer k let $\phi(k)$ be the Euler totient function of k. In this paper we find all positive integer solutions of the diophantine equation $\phi(x^m - y^m) = x^n + y^n$.

For any positive integer k, let $\phi(k)$ be the Euler totient function of k. In [1], we found all solutions of the equation

$$\phi(|x^m + y^m|) = |x^n + y^n|,$$

where x, y are integers, and m, n are positive integers. A problem of a similar nature was suggested by the author in [2]. In this note we study the equation

(1)
$$\phi(x^m - y^m) = x^n + y^n,$$

where x, y, m, n are positive integers.

We have the following result.

Theorem The only positive solutions (x, y, m, n) of equation (1) are

 $(x, y, m, n) = (2^{l} + 1, 2^{l} - 1, 2, 1)$

for some positive integer l.

For any positive integer k, let $\operatorname{ord}_2(k)$ be the exponent at which 2 appears in the prime factor decomposition of k.

We begin with the following lemmas.

1991 AMS Mathematics Subject Classification. 11A25, 11D61, 11D72.

46

$$\phi(x^m - y^m) = x^n + y^n \tag{47}$$

Lemma 1 Let n > 0 be a positive integer, and let $s \ge 0$ be a real number such that $\operatorname{ord}_2(\phi(n)) \le s$. Then

$$\frac{\phi(n)}{n} \ge \frac{1}{s+2}.$$

Proof: If n is a power of 2, then

$$\frac{\phi(n)}{n} = \frac{1}{2} \ge \frac{1}{s+2}$$

Suppose now that

$$n = 2^{\delta} p_1^{\beta_1} \dots p_k^{\beta_k},$$

where $\delta \ge 0, k \ge 1, \beta_1, ..., \beta_k$ are positive, and $p_1 < ... < p_k$ are odd primes. Then

(2)
$$\phi(n) = 2^{\lambda} p_1^{\beta_1 - 1} (p_1 - 1) \dots p_k^{\beta_k - 1} (p_k - 1),$$

where $\lambda = \max(\delta - 1, 0)$. Since $\operatorname{ord}_2(\phi(n)) \leq s$, and since p_1, \ldots, p_k are odd primes, it follows that $k \leq s$, and $p_i \geq i + 2$ for $i = 1, \ldots, k$. Hence,

$$\frac{\phi(n)}{n} \ge \frac{1}{2} \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right) \ge \frac{1}{2} \prod_{i=1}^{k} \left(1 - \frac{1}{i+2}\right) = \frac{1}{s+2} \quad \blacksquare.$$

Lemma 2 Let x, y be integers such that $x - y \ge 2$, and let m, n be positive integers. If $n - m \ge 2$, then

$$\frac{x^n-y^n}{x^m+y^m}>2x.$$

Proof: Since $n \ge m+2$, it follows that $n \ge 3$. Clearly

$$\frac{x^n - y^n}{x^m + y^m} > \frac{(x - y) \cdot (x^{n-1} + x^{n-2}y)}{x^m + y^m} \ge 2 \cdot \frac{x^{n-1} + x^{n-2}y}{x^m + y^m}$$

It suffices to show that

$$\frac{x^{n-1} + x^{n-2}y}{x^m + y^m} \ge x$$

or

48

 $x^{n-2} + x^{n-3}y \ge x^m + y^m.$

This follows since $x^{n-2} > x^m$, and $x^{n-3}y \ge y^{n-2} \ge y^m$. **Lemma 3** Let x, y be two nonzero integers such that $x + y \ne 0$, and gcd(x, y) is odd. Let n be a positive integer. Then,

$$\operatorname{ord}_2(x^n + y^n) \le \operatorname{ord}_2(x + y).$$

Proof: If $x \neq y \mod 2$, then both $x^n + y^n$, and x + y are odd, so the asserted inequality certainly holds. Suppose then that $x \equiv y \mod 2$). Since gcd(x, y) is odd, it follows that both x, and y are odd. If n is even, then $x^n + y^n \equiv 2 \mod 4$. Hence,

$$\operatorname{ord}_2(x^n + y^n) = 1 \le \operatorname{ord}_2(x + y),$$

in this case. If n is odd, then

$$\operatorname{ord}_{2}(x^{n} + y^{n}) = \operatorname{ord}_{2}(x + y) + \underbrace{\operatorname{ord}_{2}(x^{n-1} - x^{n-2}y + \dots + y^{n-1})}_{=0} = \operatorname{ord}_{2}(x + y).$$

Lemma 4 Let x, y be odd integers such that x > y. Assume that gcd(x, y) = 1. Let n > 0 be a positive even integer. Then,

$$gcd(x^{n+1} - y^{n+1}, x^n + y^n) = 2.$$

Proof: Let $D = \gcd(x^{n+1} + y^{n+1}, x^n + y^n)$, and let $p \mid D$ be a prime. Since $p \mid x^{n+1} + y^{n+1}$, and $p \mid x^n + y^n$, it follows that

$$p \mid (x^{n+1} + y^{n+1}) - y(x^n + y^n) = x^n(x - y).$$

Hence, $p \mid x(x-y)$. If $p \mid x$, then, since $p \mid x^n + y^n$, it follows that $p \mid y^n$. Hence, $p \mid y$. This contradicts the fact that gcd(x, y) = 1. Assume that $p \mid x - y$. Since

$$p \mid x^{n} + y^{n} = ((x - y) + y)^{n} + y^{n},$$

it follows that $p \mid 2y^n$. Since $p \mid x - y$, and since gcd(x, y) = 1, it follows that $p \not\mid y$, therefore $p \mid 2$. Since both x and y are odd, it follows that both $x^{n+1} + y^{n+1}$, and $x^n + y^n$ are even. From the previous argument we conclude that $D = 2^{\lambda}$. Since one of the two numbers n, n + 1 is even, it follows that one of the two numbers $x^{n+1} + y^{n+1}$, or $x^n + y^n$ is a sum of two odd squares which is 2 (mod 4). Hence, D = 2. **Proof of the Theorem**

Notice first of all that x > y. Moreover, since

$$x^m - y^m \ge \phi(x^m - y^m) = x^n + y^n,$$

it follows that m > n. Let $\alpha = \operatorname{ord}_2(\operatorname{gcd}(x, y))$. Write $x = 2^{\alpha}x_1$, and $y = 2^{\alpha}y_1$. Clearly, at most one of the integers x_1, y_1 is even. We first show that both x_1 , and y_1 are odd. Indeed, for if not, assume that $x_1 \not\equiv y_1 \mod 2$).

Suppose first that $\alpha = 0$. In this case $x = x_1$, and $y = y_1$. It follows that $x^m - y^m$ is an odd number whose Euler indicator is again odd. Hence, $x^m - y^m = 1$, which has no solution (x, y, m) with y > 0, and m > 1.

Suppose now that $\alpha \geq 1$. Then

(2)
$$\begin{aligned} x^m - y^m &= 2^{m\alpha} (x_1^m - y_1^m), \\ x^n + y^n &= 2^{n\alpha} (x_1^n + y_1^n). \end{aligned}$$

Then

(3)
$$\phi(x^m - y^m) = \phi(2^{m\alpha}(x_1^m - y_1^m)) = 2^{m\alpha - 1}\phi(x_1^m - y_1^m).$$

Equation (1) becomes

$$2^{(m-n)\alpha-1}\phi(x_1^m - y_1^m) = x_1^n + y_1^n.$$

Since $(m-n)\alpha - 1 \ge 0$, it follows that $x_1^m - y_1^m$ is an odd number whose Euler indicator is again odd. Hence, $x_1^m - y_1^m = 1$, which has no solutions (x_1, y_1, m) such that $y_1 > 0$, and m > 1. From the previous analysis we conclude that x_1 and y_1 are both odd.

Since both x_1 , and y_1 are odd, it follows easily that $x - y \ge 2$. In particular, $x \ge 3$. Since both $x_1^m - y_1^m$, and $x_1^n + y_1^n$ are even, it follows, by formulae (2) and (3), that

(4)
$$\frac{\phi(x^m - y^m)}{x^m - y^m} = \frac{\phi\left(2^{m\alpha}(x_1^m - y_1^m)\right)}{2^{m\alpha}(x_1^m - y_1^m)} = \frac{\phi(x_1^m - y_1^m)}{x_1^m - y_1^m}$$

By Lemma 3, it follows that

(5)
$$\operatorname{ord}_{2}(x_{1}^{n} + y_{1}^{n}) \leq \operatorname{ord}_{2}(x_{1} + y_{1}) \leq \log_{2}(x_{1} + y_{1}) \\ < \log_{2} 2x = 1 + \log_{2} x.$$

From relations (4), (5), and Lemma 1, it follows that

(6)
$$\frac{x^n + y^n}{x^m - y^m} = \frac{\phi(x^m - y^m)}{x^m - y^m} = \frac{\phi(x_1^m - y_1^m)}{x_1^m - y_1^m} > \frac{1}{3 + \log_2 x}$$

Inequality (6) is equivalent to

(7)
$$3 + \log_2 x > \frac{x^m - y^m}{x^n + y^n}.$$

We now show that m = n + 1. Indeed, if $m - n \ge 2$, then, by Lemma 2 and inequality (7) it follows that

$$3 + \log_2 x > \frac{x^m - y^m}{x^n + y^n} > 2x.$$

The above inequality implies that $x \leq 2$, which contradicts the fact that $x \geq 3$. Hence, m = n + 1.

We now show that n is odd. Indeed, assume that n is even. We distinguish two cases. <u>Case 1</u>. $\alpha = 0$.

Since n is even, it follows that $x^n + y^n \equiv 2 \pmod{4}$. Hence, $\operatorname{ord}_2(x^n + y^n) = 1$. Write

(8)
$$x^{n+1} - y^{n+1} = 2^{\delta} p_1^{\beta_1} \dots p_k^{\beta_k}$$

where $\delta \ge 1$, $k \ge 0$, $\beta_i \ge 1$ for i = 1, ..., k, and $p_1 < ... < p_k$ are odd primes.

Suppose first that k = 0. Then $x^{n+1} - y^{n+1} = 2^{\delta}$. It follows that

$$\operatorname{ord}_2(\phi(x^{n+1} - y^{n+1})) = \delta - 1 = 1,$$

or $\delta = 2$. We conclude that

$$4 = x^{n+1} - y^{n+1} > (x - y) \cdot (x^n + y^n) \ge 2 \cdot (3^2 + 1^2) = 20,$$

which is a contradiction.

Hence, $k \geq 1$. Since

$$\phi(x^{n+1} - y^{n+1}) = 2^{\delta - 1} p_1^{\beta_1 - 1} (p_1 - 1) \dots p_k^{\beta_k - 1} (p_k - 1)$$

it follows that

$$1 = \operatorname{ord}_2(x^n + y^n) = \operatorname{ord}_2(\phi(x^{n+1} - y^{n+1}))$$

= $(\delta - 1) + \operatorname{ord}_2(p_1 - 1) + \dots + \operatorname{ord}_2(p_k - 1).$

It follows that $\delta = 1$, and k = 1. Let $p = p_1$, and $\beta = \beta_1$. Then,

(9)
$$2p^{\beta} = x^{n+1} - y^{n+1}, (p-1)p^{\beta-1} = \phi(x^{n+1} - y^{n+1}) = x^n + y^n.$$

From relations (9) it follows that (10) $2p^{\beta-1} = \gcd(2p^{\beta}, (p-1)p^{\beta-1}) = \gcd(x^{n+1} - y^{n+1}, x^n + y^n).$

We now compute $\operatorname{gcd}(x^{n+1} - y^{n+1}, x^n + y^n)$. Let $d = \operatorname{gcd}(x, y)$. Write $x = d\overline{x}$, and $y = d\overline{y}$. Then, (11) $\operatorname{gcd}(x^{n+1} - y^{n+1}, x^n + y^n) = d^n \operatorname{gcd}(d(\overline{x}^{n+1} - \overline{y}^{n+1}), \overline{x}^n + \overline{y}^n)$. Since $gcd(\overline{x}, \overline{y}) = 1$, both $\overline{x}, \overline{y}$ are odd, and n is even, it follows, by Lemma 4, that

$$\operatorname{gcd}(\overline{x}^{n+1} - \overline{y}^{n+1}, \ \overline{x}^n + \overline{y}^n) = 2.$$

Equation (11) becomes

(12)
$$\gcd(x^{n+1} - y^{n+1}, x^n + y^n) = 2d^n \gcd(d, \overline{x}^n + \overline{y}^n) = 2d^n d_1,$$

where $d_1 = \gcd(d, \overline{x}^n + \overline{y}^n)$. From formulae (10) and (12) it follows that

(13)
$$2p^{\beta-1} = 2d^n d_1.$$

From formulae (9) and (13) it follows that (14)

$$d^{n+1}(\overline{x}^{n+1} - \overline{y}^{n+1}) = x^{n+1} - y^{n+1} = 2p^{\beta} = p(2p^{\beta-1}) = 2pd^nd_1,$$

or

52

(15)
$$p = \frac{d}{d_1} \cdot \frac{\overline{x}^{n+1} - \overline{y}^{n+1}}{2}.$$

Since $\overline{x}^{n+1} - \overline{y}^{n+1} > 2$, it follows, from formula (15), that d/d_1 is a proper divisor of p. Hence, $d = d_1$. Formula (15) is then

(16)
$$p = \frac{\overline{x}^{n+1} - \overline{y}^{n+1}}{2}.$$

From formulae (9) and (13) it follows that

(17)
$$d^{n}(\overline{x}^{n} + \overline{y}^{n}) = x^{n} + y^{n} = (p-1)p^{\beta-1} = \frac{p-1}{2} \cdot (2p^{\beta-1})$$
$$= \frac{p-1}{2} \cdot 2d^{n}d_{1},$$

or

(18)
$$\overline{x}^n + \overline{y}^n = \frac{p-1}{2} \cdot d_1 = \frac{d_1}{2} \cdot (p-1) = \frac{d_1}{2} \cdot \left(\frac{\overline{x}^{n+1} - \overline{y}^{n+1}}{2} - 1\right).$$

Q

$$\phi(x^m - y^m) = x^n + y^n \tag{53}$$

We now show that $d_1 = 1$. Indeed, assume that this is not the case. Since $d_1 \ge 3$ it follows, by equation (18), that

$$\begin{split} \overline{x}^n + \overline{y}^n &\geq \frac{3}{2} \cdot \left(\frac{\overline{x}^{n+1} - \overline{y}^{n+1}}{2} - 1 \right) > \frac{3}{2} \cdot \left(\frac{(\overline{x} - \overline{y}) \cdot (\overline{x}^n + \overline{y}^n)}{2} - 1 \right) \\ &\geq \frac{3}{2} (\overline{x}^n + \overline{y}^n - 1) > \overline{x}^n + \overline{y}^n, \end{split}$$

which is a contradiction. Hence, $d_1 = 1$. It follows that $x = \overline{x}$, and $y = \overline{y}$.

From equation (16) it follows easily that n + 1 = q is an odd prime, and that y = x - 2. Equation (18) can now be rewritten as

$$x^{q-1} + (x-2)^{q-1} = \frac{1}{2} \cdot \left(\frac{x^q - (x-2)^q}{2} - 1\right),$$

or

(19)
$$4x^{q-1} + 4(x-2)^{q-1} + 2 = x^q - (x-2)^q.$$

We now show that equation (19) has no solution (x, q) with q an odd prime. We distinguish the following three situations:

(a) $q \not| x(x-2)$. In this case, $x^{q-1} \equiv (x-2)^{q-1} \equiv 1 \pmod{q}$. Reducing equation (19) modulo q we obtain

$$4 + 4 + 2 \equiv x - (x - 2) \equiv 2 \pmod{q},$$

or $8 \equiv 0 \pmod{q}$, which is a contradiction.

(b) $q \mid x$. In this case $(x-2)^{q-1} \equiv 1 \pmod{q}$. Reducing equation (19) modulo q we obtain

$$4 + 2 \equiv -(x - 2) \equiv 2 \pmod{q},$$

or $4 \equiv 0 \pmod{q}$, which is a contradiction.

(c) $q \mid x - 2$. In this case $x^{q-1} \equiv 1 \pmod{q}$. Reducing equation (19) modulo q we obtain

$$4 + 2 \equiv x \equiv (x - 2) + 2 \equiv 2 \pmod{q},$$

or $4 \equiv 0 \pmod{q}$, which is again a contradiction. This disposes of Case 1.

<u>Case 2</u>. $\alpha \neq 0$.

From equations (2) it follows that

(20)
$$2^{\alpha}\phi(x_1^{n+1} - y_1^{n+1}) = x_1^n + y_1^n$$

Equation (20) implies

(21)
$$2^{\alpha-1}\phi(x_1^{n+1}-y_1^{n+1}) = \frac{x_1^n+y_1^n}{2}.$$

Since x_1 , y_1 are odd, and since n is even, it follows that

$$\frac{x_1^n + y_1^n}{2} \equiv 1 \pmod{2}.$$

From equation (21) it follows that $\alpha = 1$, and that $x_1^{n+1} - y_1^{n+1}$ is an even number whose Euler function is 1. The only such number 2. The equation $x_1^{n+1} - y_1^{n+1} = 2$ has no solution (x_1, y_1, n) with $y_1 > 0$, and n > 1.

From the previous analysis we conclude that \boldsymbol{n} is odd. In this case

$$(x+y) \mid \gcd(x^n+y^n, x^{n+1}-y^{n+1}).$$

Moreover, since n is odd, it follows that

$$\frac{x^{n+1} - y^{n+1}}{x+y} \equiv 0 \; (\bmod(x-y)).$$

In particular, $\frac{x^{n+1}-y^{n+1}}{x+y}$ is even. Now let

 $x + y = 2^{\lambda} p_1^{\gamma_1} \dots p_k^{\gamma_k},$

where $\lambda > 0, \ k \ge 0, \ \gamma_i > 0$ for $i = 1, \ ..., \ k$, and $p_1 < ... < p_k$ are odd primes. Since $\frac{x^{n+1}-y^{n+1}}{x+y}$ is even, it follows that

$$2^{\lambda}\phi\left(\frac{x^{n+1} - y^{n+1}}{x + y}\right) \mid \phi(x^{n+1} - y^{n+1}) = x^n + y^n$$
$$= (x + y) \cdot \frac{x^n + y^n}{x + y}$$

or

Q

$$\phi\left(\frac{x^{n+1}-y^{n+1}}{x+y}\right) \ \left| \ \frac{x+y}{2^{\lambda}} \cdot \frac{x^n+y^n}{x+y} \right|.$$

Hence, $\phi\left(\frac{x^{n+1}-y^{n+1}}{x+y}\right)$ is odd. Since the only even number whose Euler function is odd is 2, it follows that

$$\frac{x^{n+1} - y^{n+1}}{x + y} = 2.$$

This implies that n = 1, and y = x - 2. Equation 1 becomes

(22)
$$\phi(4(x-1)) = 2(x-1).$$

Assume that

$$x - 1 = 2^l q_1^{\mu_1} \dots q_t^{\mu_t}$$

where $l \geq 1$, $t \geq 0$, $\mu_i > 0$ for i = 1, ..., t, and $q_1 < ... < q_t$ are odd primes. We show that t = 0. Indeed, assume that this is not the case. Since $t \geq 1$, it follows that the power at which q_t appears in the right hand side of equation (22) is μ_t , but the power at which q_t appears in the left hand side of equation (22) is only $\mu_t - 1$. This contradiction shows that t = 0. Hence, $x = 2^l + 1$, and the solution has the asserted form.

The theorem is therefore completely proved. \blacksquare

References

- [1] F. Luca, On the equation $\phi(|x^m + y^m|) = |x^n + y^n|$, submitted.
- [2] F. Luca, Problem 10626, Amer. Math. Monthly 104 (1997), 871.

Florian Luca Department of Mathematics, Syracuse University, 215 Carnegie Hall, Syracuse, New York 13244-1150. e-mail: fgluca@syr.edu