ON THE EQUATION ¢(z™ —y™) = z" + y"
Florian Luca

Abstract For any positive integer k let ¢(k) be the Euler totient func-
tion of k. In this paper we find all positive integer solutions of the
diophantine equation ¢(z™ —y™) = 2™ + y™.

For any positive integer k, let ¢(k) be the Euler totient function
of k. In [1], we found all solutions of the equation

o(lz™ +y™|) = [=" + y"|,

where x, y are integers, and m, n are positive integers. A problem
of a similar nature was suggested by the author in [2]. In this note
we study the equation

(1) p(z™ —y™) =" +y",

where z, y, m, n are positive integers.
We have the following result.

Theorem The only positive solutions (x, y, m, n) of equation
(1) are
(z, y, myn)=(2'+1,2' ~ 1, 2, 1)

for some positive integer I.

For any positive integer k, let ords(k) be the exponent at
which 2 appears in the prime factor decomposition of k.

We begin with the following lemmas.
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Lemma 1 Let n > 0 be a positive integer, and let s > 0 be a real
number such that ords(¢(n)) < s. Then

o) 1
n T s+2

Proof: If n is a power of 2, then

oo 1, 1
n 2 7 s+2
Suppose now that
n= 2‘5 pk ,
where § > 0, k > 1, 31, ..., Bj are positive, and p; < ... < pg are
odd primes. Then
(2) ¢(n) = 2*p{* " (p1 — 1).. pgk Y — 1),

where A\ = max(d — 1, 0). Since ordz(¢(n)) < s, and since
P1, ..., P are odd primes, it follows that & < s, and p; > i + 2 for
i =1, ..., k. Hence,

0 5) =30 - -

Lemma 2 Let x, y be integers such that x —y > 2, and let m, n
be positive integers. If n —m > 2, then

l\DI»—l

T 7Y S 9
m +ym
Proof: Since n > m + 2, it follows that n > 3. Clearly

n __ yn N (ZL” _ y) . (mn—l + mn—Qy) 59, xn—l + wn—Qy
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It suffices to show that
x4 a2y
™+ ym
or
"2 4 3y > ™ 4 y™,

This follows since 2”2 > 2™, and 2™ 3y > y" 2 > y™. =
Lemma 3 Let x, y be two nonzero integers such that = + y # 0,
and ged(z, y) is odd. Let n be a positive integer. Then,

orda(z™ + y™) < orda(z + ).

Proof: If x # y mod 2, then both z" + y™, and x + y are odd,
so the asserted inequality certainly holds. Suppose then that = =
y mod 2). Since ged(z, y) is odd, it follows that both z, and y are
odd. If n is even, then z™ + y™ = 2 mod 4. Hence,

orda(z™ +y") =1 < orda(z + y),
in this case. If n is odd, then

orda(z" +y") = ord2(z + y) +£)rd2(:c"_1 — 2"y 4+ y”_ll

=0 ]

= ordz(z + y).

Lemma 4 Let x, y be odd integers such that x > y. Assume that
ged(z, y) = 1. Let n > 0 be a positive even integer. Then,

ged(z"t —y" T 2" 4 y") = 2.
Proof: Let D = ged(z™™ +y™*!, 2" + y™), and let p | D be a
prime. Since p |z"*! +y" L and p 2™ + y™, it follows that

pl @™ +y™ ) —y(a" +y") =" (@ - y).
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Hence, p | x(z —y). If p | z, then, since p | 2" +y", it follows that
p | y™. Hence, p | y. This contradicts the fact that ged(z, y) = 1.
Assume that p | z —y. Since

pla"+y" = ((z—y)+y)" +y",

it follows that p | 2y™. Since p | x — y, and since ged(z, y) = 1,
it follows that p [y, therefore p | 2. Since both z and y are odd,
it follows that both z”+! 4+ y™*1 and 2™ + y” are even. From the
previous argument we conclude that D = 2*. Since one of the two
numbers n, n + 1 is even, it follows that one of the two numbers
2"t 4 "t or 2™ + y” is a sum of two odd squares which is
2 (mod4). Hence, D =2. =

Proof of the Theorem

Notice first of all that z > y. Moreover, since
g™ —y" > p(a™ —y™) = 2" +y",

it follows that m > n. Let a = ords (gcd(ac, y)) Write z = 2%z,
and y = 2%y;. Clearly, at most one of the integers x, y; is even.
We first show that both z;, and y; are odd. Indeed, for if not,
assume that x; #Z y; mod 2).

Suppose first that « = 0. In this case = z1, and y = y;. It
follows that ™ — y™ is an odd number whose Euler indicator is
again odd. Hence, 2™ — y™ = 1, which has no solution (z, y, m)
with y > 0, and m > 1.

Suppose now that a > 1. Then

g™ —y™ =22 — i),

By = 200+ ).

(3)  Pa™ —y™) =o(2" (21" — ") =27 e — ).
Equation (1) becomes

2(m=n)a=lg(zm —ymy = g7 4y
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Since (m —n)a—1 > 0, it follows that zi™ — y{" is an odd number
whose Euler indicator is again odd. Hence, z7* — yi* = 1, which
has no solutions (1, yi, m) such that y; > 0, and m > 1. From
the previous analysis we conclude that 2y and y; are both odd.

Since both x1, and y; are odd, it follows easily that z —y > 2.
In particular, > 3. Since both 7" — y{", and z{ + y}' are even,
it follows, by formulae (2) and (3), that

Pt WOl i 10) N /)
gy T ama(ap — ) ap -y

By Lemma 3, it follows that

orda (z7 + y7') < orda(z1 +y1) < logs(x1 + y1)
< logy 2z =1+ log, «.

(5)

From relations (4), (5), and Lemma 1, it follows that

6 Aoyt _eEm -yt el - ui) !

T — ym Tm —ym i —yn 3+log,z’

Inequality (6) is equivalent to

m — ym
7 3+1o > —.
(7) o T 2"+ yn
We now show that m = n + 1. Indeed, if m —n > 2, then, by
Lemma 2 and inequality (7) it follows that

m m

3+log2x>x Y > 2z,

The above inequality implies that z < 2, which contradicts the
fact that > 3. Hence, m =n + 1.

We now show that n is odd. Indeed, assume that n is even.
We distinguish two cases.
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Case 1. a =0.
Since n is even, it follows that 2™ + y™ = 2 (mod4). Hence,

ords(z" 4+ y™) = 1. Write
(8) 2t yn+1 — 2617?1---172’6,

where § > 1, k> 0,8; >1fori=1, ..., k,and p; < ... < py are
odd primes.
Suppose first that k = 0. Then 2"+ — "+ = 2% Tt follows
that
ords ((15(910”+1 — y"“)) =0—-1=1,

or 6 = 2. We conclude that
4 =g gyt s (z—y) (2™ +y") > 2- (32 +1%) =20,

which is a contradiction.
Hence, k > 1. Since

G(a™t —y" ) = 2070 T (= 1) pF T (o — 1)
it follows that
1 =ords(z™ + y™) = orda (p(z" ! — y"*))
= (0 — 1) + ordz(pr — 1) + ... + ordy(ps — 1).
It follows that § = 1, and £ = 1. Let p = p;, and 8 = ;. Then,

2p6 — xn+1 _ ynJrl,

(p—1p7 = p(a™ =y = 2"y

(9)

From relations (9) it follows that
(10)
2p7 1 = ged(2p7, (p— 17 Y) = ged (2" — g, 2" 4 y").

We now compute ged (z"F! —y™, 2" 4+ y"). Let d = ged(z, y).
Write z = dZ, and y = dy. Then,

(11)

god (2"t =y, @t 4 y") = d" ged(d@ -5, T +7").
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Since ged(T, ) = 1, both T, ¥ are odd, and n is even, it follows,
by Lemma 4, that

ged(z" — gyt T +g") = 2.
Equation (11) becomes
(12) gcd(ac”+1 — T 2" 4y = 2d" ged(d, T +77) = 2d"d;,

where d; = ged(d, % + 3"). From formulae (10) and (12) it
follows that

(13) 2p° 1 = 2d"d;.
From formulae (9) and (13) it follows that
(14)
dn+1(fn+1 _yn+1) — xn+1 _ yn+1 — 2p,6 :p(2p,671) — dendl,
or
d =n+1 _ -n+1
(15) P r -y

Since z"*! — "+ > 2, it follows, from formula (15), that d/d; is

a proper divisor of p. Hence, d = dy. Formula (15) is then

EnJrl _ ynJrl

(16) p= 5

From formulae (9) and (13) it follows that

—1
&'E +7") =" 4y = (p—p* = Eo— - (27
17
1o =1 g
2 1,
or
gagn =Pl _de oy T g
(18) 747" = P edi = 501 = 5 (1)
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We now show that di = 1. Indeed, assume that this is not the
case. Since di > 3 it follows, by equation (18), that

noony 3 (T g 3 (@-7)-@"+7")

T > (g Z. _
Ty 2y ( 2 1)>2 ( 2 1)
3
2

>—-E@F"+y"-1)>z"+y",

which is a contradiction. Hence, d; = 1. It follows that x = T,
and y = 7.

From equation (16) it follows easily that n + 1 = ¢ is an odd
prime, and that y = z — 2. Equation (18) can now be rewritten as

1 4 _ (3 _9)
ﬂ,qufle(a:_Q)qfl:5.(%_1),

or
(19) 47t 4 4z —2)T 42 =27 — (z —2)7.

We now show that equation (19) has no solution (z, ¢) with ¢ an
odd prime. We distinguish the following three situations:

(a) ¢ f x(x —2). In this case, 297! = (z —2)7! =1 (mod q).
Reducing equation (19) modulo ¢ we obtain

4+4+42=x—(x—2)=2 (mod q),

or 8 =0 (mod ¢), which is a contradiction.

(b) q | z. In this case (z —2)7~' =1 (mod ¢). Reducing equation
(19) modulo ¢ we obtain

44+2=—(x—2)=2 (mod q),

or 4 =0 (mod ¢), which is a contradiction.

(c) ¢ | * — 2. In this case 277! =1 (mod ¢). Reducing equation
(19) modulo g we obtain

44+42=z=(x—-2)+2=2 (mod g),
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or 4 =0 (mod q), which is again a contradiction.
This disposes of Case 1.

Case 2. a # 0.
From equations (2) it follows that

(20) 299 (i — gy = ot

Equation (20) implies

(21) 2a71¢(x71’l+1 _ y{l-i-l) _ 1'1 ;yl .
Since z1, y; are odd, and since n is even, it follows that
n n
% =1 (mod 2).

From equation (21) it follows that a = 1, and that 27" — y*! is
an even number whose Euler function is 1. The only such number
2. The equation 2! — y** = 2 has no solution (z1, y1, n) with
y1 > 0,and n > 1.

From the previous analysis we conclude that n is odd. In this
case

(x+y) | ged(z" +y", 2" —y™t).

Moreover, since n is odd, it follows that

n+1l _ ,n+l
T =0 (mod(z —v)).
T+y
In particular, “"Jr;;yn " is even. Now let
y

T+y= 2)‘p¥1...pzk,

where A\ >0,k >0,v;, >0fori =1, ..., k, and p; < ... < py are
'n.+17y'n.+1

p is even, it follows that
y

odd primes. Since £

mn—i—l _ yn+1
Po(T ) [ o ) = by

I
—~
8
_|_
N
~
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or
¢(mn+1_yn+1) ‘ a:+y mn+yn
T+y 22 T+y
gntl_yntl . .
Hence, ¢(T)IS odd. Since the only even number whose

Euler function is odd is 2, it follows that

xn—i—l _ ,n+l

Y
r+y

This implies that n = 1, and y = z — 2. Equation 1 becomes
(22) o(4(z — 1)) =2(z — 1).

Assume that
x—1=2g" g,

where [ > 1,t >0, y; >0fori =1, ..., t,and ¢ < ... < @
are odd primes. We show that ¢ = 0. Indeed, assume that this is
not the case. Since t > 1, it follows that the power at which ¢,
appears in the right hand side of equation (22) is p, but the power
at which ¢; appears in the left hand side of equation (22) is only
p: — 1. This contradiction shows that ¢ = 0. Hence, z = 2! + 1,
and the solution has the asserted form.
The theorem is therefore completely proved. m
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