PERTURBATION OF LINEAR OPERATORS BY IDEMPOTENTS

Mícheál Ó Searcóid

It is a curious fact that, given any square matrix with entries from a given field, it is possible to produce an invertible matrix simply by subtracting 1 from some of the diagonal entries of the matrix. (There is of course nothing special about 1 here; any non-zero member of the field could be used.) An inductive proof is given in Proposition 1 below. The proof is effected by playing off the two idempotents of the field against one another.

Proposition 1. Suppose n is a natural number and A is an $n \times n$ matrix. Then there exists a diagonal idempotent $n \times n$ matrix Q such that A - Q is invertible.

Proof: The result is trivial if n = 1. Suppose it is true for $n = m \ge 1$ and let $\begin{pmatrix} \alpha & f \\ z & V+P \end{pmatrix}$ represent an arbitrary $(m+1) \times (m+1)$ matrix, where α is a scalar, f is a $1 \times m$ matrix, z is an $m \times 1$ matrix, V is an $m \times m$ invertible matrix and P is an $m \times m$ diagonal idempotent matrix. Note that

$$\begin{pmatrix} \alpha & f \\ z & V+P \end{pmatrix} = \begin{pmatrix} \alpha & f \\ z & V \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & P \end{pmatrix} = \begin{pmatrix} \alpha - 1 & f \\ z & V \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}.$$

Both $\begin{pmatrix} 0 & 0 \\ 0 & P \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}$ are diagonal idempotent matrices; moreover since the determinants of the matrices $\begin{pmatrix} \alpha - 1 & f \\ z & V \end{pmatrix}$ and $\begin{pmatrix} \alpha & f \\ z & V \end{pmatrix}$ differ by the determinant of V, which is non-zero, one or other of the matrices is invertible. It follows that the result is true for n = m + 1, and the general result follows by induction.

10

Let us turn now to infinite dimensions, where we shall use the notation $\mathcal{L}(X, W)$ to denote the set of linear operators from any linear space X to any linear space W and abbreviate this to $\mathcal{L}(X)$ if X = W. The following result is well known.

Proposition 2. Suppose Y and X are linear spaces over the same field and $T \in \mathcal{L}(Y \oplus X)$ is represented matricially by $T = \begin{pmatrix} A & B \\ C & V \end{pmatrix}$, where $A \in \mathcal{L}(Y)$, $B \in \mathcal{L}(X,Y)$, $C \in \mathcal{L}(Y,X)$ and $V \in \mathcal{L}(X)$. Suppose V is invertible in $\mathcal{L}(X)$; then T is invertible if and only if $A - BV^{-1}C$ is invertible in $\mathcal{L}(Y)$.

Proof: It is easy to check that if $A - BV^{-1}C$ is not invertible then T is not invertible. If $A - BV^{-1}C$ is invertible, we set $J \in \mathcal{L}(Y)$ to be its inverse; then a short calculation will confirm that

$$\begin{pmatrix} J & -JBV^{-1} \\ -V^{-1}CJ & V^{-1} + V^{-1}CJBV^{-1} \end{pmatrix}$$

is inverse to T.

Q

When Y is finite dimensional, the condition of Proposition 2 is, of course, equivalent to $\det(A - BV^{-1}C) \neq 0$, which reduces to $A \neq BV^{-1}C$ when Y is one dimensional. This can be used instead of the determinant argument in Proposition 1 and might lead us to believe that a statement analogous to Proposition 1 is true for operators on infinite dimensional spaces. Specifically, suppose X is a linear space, $\mathcal{E} = \{e_i : i \in I\}$ is any basis for X and $T \in \mathcal{L}(X)$; is it in general possible to find an idempotent $Q \in \mathcal{L}(X)$ with $Qe_i \in \{e_i, 0\}$ for each $i \in I$ such that T - Q is invertible? The answer is no, and the reader can easily verify the impossibility when I is the set of natural numbers and T is the unilateral shift, i.e., when T satisfies the equations $Te_i = e_{i+1}$ for each $i \in \mathbf{N}$.

What happens when we drop the diagonal requirement? It was upon hearing from Tom Laffey that it has recently been proved that every operator on a space of countable dimension can be perturbed by an idempotent to produce an invertible operator that my interest in the question was aroused. The condition of countability is unnecessary; in Proposition 3 below we give a proof that

the perturbation is possible for every operator on any linear space. It might be of interest to note that the proof of Proposition 3 is motivated by that of Proposition 1; induction has been replaced by Zorn's lemma and we again use the trick of playing off the zero

Proposition 3. Let X be a linear space over a field \mathbf{F} . Suppose that $T \in \mathcal{L}(X)$, the algebra of linear operators on X. Then there exists $P \in \mathcal{L}(X)$, with $P = P^2$, such that T - P is invertible in $\mathcal{L}(X)$.

against the identity, though not with the same degree of ostenta-

Proof: Let S denote the set of all ordered pairs (M, Q) where M is a subspace of X invariant under T, $Q^2 = Q \in \mathcal{L}(M)$, (T-Q)M = M and $T_M - Q$ is injective, where T_M denotes the restriction of T to M. Note that $S \neq \emptyset$ since $(\{0\}, 0) \in S$.

Define a partial ordering on S by setting $(M_i, Q_i) \leq (M_j, Q_j)$ whenever both are in S, $M_i \subseteq M_j$ and Q_i is the restriction of Q_j to M_i .

Suppose $\{(M_i, Q_i) : i \in I\}$ is a totally ordered subset of S. Then Q is well-defined in $\mathcal{L}(\bigcup M_i)$ by setting $Qx = Q_i x$ $(i \in I, x \in M_i)$, and it is easy to check that $(\bigcup M_i, Q) \in S$ and that $(M_i, Q_i) \leq (\bigcup M_i, Q)$ for all $i \in I$. It follows from Zorn's Lemma that there exists a maximal element (Y, P) in S. We claim that Y = X.

Firstly, suppose there were to exist $x \in X \setminus Y$ such that $Tx \in Y$. Then we could set Px = x and extend P linearly to $Y \oplus \mathbf{F}x$. It is an easy matter to check that we should then have $(Y \oplus \mathbf{F}x, P) \in S$, contradicting maximality of (Y, P).

Secondly suppose there were to exist a polynomial p with nonzero constant term and a vector $x \in X \setminus Y$ such that $p(T)x \in Y$; then we might assume p and x to satisfy these criteria with the degree m of p being the least possible for any such arrangement. It would follow that $\{T^k x : 0 \le k < m\}$ was a linearly independent set and that the subspace W of X spanned by it satisfied $W \cap Y =$ $\{0\}$. We could set P = 0 on W and extend P linearly to $W \oplus Y$. Using the fact that the constant term of p was specified to be nonzero, it is easy to check that we should then have $(Y \oplus W, P) \in S$,

tion.

again contradicting maximality of (Y, P).

Thirdly suppose there were to exist $x \in X \setminus Y$ such that $p(T)(x) \in X \setminus Y$ for every non-zero polynomial p. Then certainly $\{x, Tx, T^2x, \ldots\}$ would form a linearly independent set. Letting V denote the subspace of X spanned by these vectors, we could define Q to be the linear operator on V for which $QT^{2n}x = T^{2n}x$ and $QT^{2n+1}x = T^{2n+2}x - T^{2n}x$, $(n \ge 0)$. Then we should have $Q^2 = Q$ and it is easy to check that $T_V + I_V - Q$ would be inverse to $T_V - Q$ in $\mathcal{L}(V)$, where I_V would denote the identity operator on V and T_V the restriction of T to V. It would follow that $(Y \oplus V, P \oplus Q) \in S$, yet again contradicting the maximality of (Y, P).

We must conclude that Y = X. Then T - P is bijective and therefore invertible in $\mathcal{L}(X)$.

In conclusion, let me add one observation which might be of interest. This is that, in many cases, we must look for a perturbing idempotent with infinite range. Indeed, if the index $\operatorname{ind}(T)$ of an operator T is defined to be the difference between the dimension of its kernel and the co-dimension of its range whenever these quantities are finite, it can be shown that $\operatorname{ind}(T + F) = \operatorname{ind}(T)$ for every operator of finite rank F. (The reader who is not familiar with this result might like to while away a little time in providing a proof.) Since every invertible operator has zero index and the unilateral shift has index -1, it is easy to check that the observation is correct.

Mícheál Ó Searcóid Department of Mathematics University College Dublin email: micheal.osearcoid@ucd.ie