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It is a curious fact that, given any square matrix with entries from

a given �eld, it is possible to produce an invertible matrix simply

by subtracting 1 from some of the diagonal entries of the matrix.

(There is of course nothing special about 1 here; any non-zero

member of the �eld could be used.) An inductive proof is given in

Proposition 1 below. The proof is e�ected by playing o� the two

idempotents of the �eld against one another.

Proposition 1. Suppose n is a natural number and A is an n�n

matrix. Then there exists a diagonal idempotent n� n matrix Q

such that A�Q is invertible.

Proof: The result is trivial if n = 1. Suppose it is true for n =

m � 1 and let

�

� f

z V + P

�

represent an arbitrary (m+1)�(m+1)

matrix, where � is a scalar, f is a 1 � m matrix, z is an m � 1

matrix, V is anm�m invertible matrix and P is anm�m diagonal

idempotent matrix. Note that

�

� f

z V + P

�

=

�

� f

z V

�

+

�

0 0

0 P

�

=

�

�� 1 f

z V

�

+

�

1 0

0 P

�

:

Both

�

0 0

0 P

�

and

�

1 0

0 P

�

are diagonal idempotent matrices;

moreover since the determinants of the matrices

�

�� 1 f

z V

�

and

�

� f

z V

�

di�er by the determinant of V , which is non-zero, one or

other of the matrices is invertible. It follows that the result is true

for n = m+ 1, and the general result follows by induction.
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Let us turn now to in�nite dimensions, where we shall use the

notation L(X;W ) to denote the set of linear operators from any

linear space X to any linear space W and abbreviate this to L(X)

if X =W . The following result is well known.

Proposition 2. Suppose Y and X are linear spaces over the

same �eld and T 2 L(Y � X) is represented matricially by T =

�

A B

C V

�

, where A 2 L(Y ), B 2 L(X;Y ), C 2 L(Y;X) and

V 2 L(X). Suppose V is invertible in L(X); then T is invertible

if and only if A�BV

�1

C is invertible in L(Y ).

Proof: It is easy to check that if A�BV

�1

C is not invertible then

T is not invertible. If A �BV

�1

C is invertible, we set J 2 L(Y )

to be its inverse; then a short calculation will con�rm that

�

J �JBV

�1

�V

�1

CJ V

�1

+ V

�1

CJBV

�1

�

is inverse to T .

When Y is �nite dimensional, the condition of Proposition 2

is, of course, equivalent to det(A � BV

�1

C) 6= 0, which reduces

to A 6= BV

�1

C when Y is one dimensional. This can be used

instead of the determinant argument in Proposition 1 and might

lead us to believe that a statement analogous to Proposition 1

is true for operators on in�nite dimensional spaces. Speci�cally,

suppose X is a linear space, E = fe

i

: i 2 Ig is any basis for

X and T 2 L(X); is it in general possible to �nd an idempotent

Q 2 L(X) with Qe

i

2 fe

i

; 0g for each i 2 I such that T � Q is

invertible? The answer is no, and the reader can easily verify the

impossibility when I is the set of natural numbers and T is the

unilateral shift, i.e., when T satis�es the equations Te

i

= e

i+1

for

each i 2 N.

What happens when we drop the diagonal requirement? It

was upon hearing from Tom La�ey that it has recently been proved

that every operator on a space of countable dimension can be per-

turbed by an idempotent to produce an invertible operator that

my interest in the question was aroused. The condition of count-

ability is unnecessary; in Proposition 3 below we give a proof that
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the perturbation is possible for every operator on any linear space.

It might be of interest to note that the proof of Proposition 3 is

motivated by that of Proposition 1; induction has been replaced

by Zorn's lemma and we again use the trick of playing o� the zero

against the identity, though not with the same degree of ostenta-

tion.

Proposition 3. Let X be a linear space over a �eld F. Suppose

that T 2 L(X), the algebra of linear operators on X . Then there

exists P 2 L(X), with P = P

2

, such that T � P is invertible in

L(X).

Proof: Let S denote the set of all ordered pairs (M;Q) where

M is a subspace of X invariant under T , Q

2

= Q 2 L(M),

(T � Q)M = M and T

M

� Q is injective, where T

M

denotes the

restriction of T to M . Note that S 6= ; since (f0g; 0) 2 S.

De�ne a partial ordering on S by setting (M

i

; Q

i

) � (M

j

; Q

j

)

whenever both are in S, M

i

�M

j

and Q

i

is the restriction of Q

j

to M

i

.

Suppose f(M

i

; Q

i

) : i 2 Ig is a totally ordered subset of S.

Then Q is well-de�ned in L(

S

M

i

) by setting Qx = Q

i

x (i 2

I; x 2 M

i

), and it is easy to check that (

S

M

i

; Q) 2 S and that

(M

i

; Q

i

) � (

S

M

i

; Q) for all i 2 I . It follows from Zorn's Lemma

that there exists a maximal element (Y; P ) in S. We claim that

Y = X .

Firstly, suppose there were to exist x 2 XnY such that Tx 2

Y . Then we could set Px = x and extend P linearly to Y �Fx. It

is an easy matter to check that we should then have (Y �Fx; P ) 2

S, contradicting maximality of (Y; P ).

Secondly suppose there were to exist a polynomial p with non-

zero constant term and a vector x 2 XnY such that p(T )x 2 Y ;

then we might assume p and x to satisfy these criteria with the

degree m of p being the least possible for any such arrangement.

It would follow that fT

k

x : 0 � k < mg was a linearly independent

set and that the subspaceW of X spanned by it satis�edW \Y =

f0g. We could set P = 0 on W and extend P linearly to W � Y .

Using the fact that the constant term of p was speci�ed to be non-

zero, it is easy to check that we should then have (Y �W;P ) 2 S,
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again contradicting maximality of (Y; P ).

Thirdly suppose there were to exist x 2 XnY such that

p(T )(x) 2 XnY for every non-zero polynomial p. Then certainly

fx; Tx; T

2

x; : : :g would form a linearly independent set. Letting

V denote the subspace of X spanned by these vectors, we could

de�ne Q to be the linear operator on V for which QT

2n

x = T

2n

x

and QT

2n+1

x = T

2n+2

x � T

2n

x, (n � 0). Then we should have

Q

2

= Q and it is easy to check that T

V

+ I

V

�Q would be inverse

to T

V

� Q in L(V ), where I

V

would denote the identity oper-

ator on V and T

V

the restriction of T to V . It would follow that

(Y � V; P � Q) 2 S, yet again contradicting the maximality of

(Y; P ).

We must conclude that Y = X . Then T � P is bijective and

therefore invertible in L(X).

In conclusion, let me add one observation which might be of

interest. This is that, in many cases, we must look for a perturb-

ing idempotent with in�nite range. Indeed, if the index ind(T ) of

an operator T is de�ned to be the di�erence between the dimen-

sion of its kernel and the co-dimension of its range whenever these

quantities are �nite, it can be shown that ind(T +F ) = ind(T ) for

every operator of �nite rank F . (The reader who is not familiar

with this result might like to while away a little time in providing a

proof.) Since every invertible operator has zero index and the uni-

lateral shift has index �1, it is easy to check that the observation

is correct.
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