Problem Solving Answers to Problem Set 4

07 July 2012

1. Let $f \in C^1[a, b]$, f(a) = 0 and suppose that $\lambda \in \mathbb{R}$, $\lambda > 0$ is such that

$$|f'(x)| \le \lambda |f(x)|$$

for all $x \in [a, b]$. Is it true that f(x) = 0 for all $x \in [a, b]$?

Answer: My first thought is that this says f(x) is 'subexponential' in some sense; and if $|f(x)| < Ce^{\lambda x}$ then f(a) = 0 will imply that f(x) = 0. Can we make this rigorous?

I think one could do it by integrating f'(x)/f(x). But it is probably easier to use the Mean Value Theorem.

First, assuming the result is false we can replace a by the largest $t \in [a, b]$ such that f(x) = 0 on [a, t].

So we may assume that there are reals $x \in [a, b]$ arbitrarily close to a such that $f(x) \neq 0$.

Choose $c \in [a, b]$ close to a. (We will decide later what this means.) Let

$$d = \max_{x \in [a,c]} |f(x)|.$$

By the Mean Value Theorem

$$f(d) = f(d) - f(a)$$
$$= (d - a)f'(t)$$

for some $t \in (a, d)$.

But then, by the hypothesis in the question

$$|f(d)| \le (d-a)\lambda |f(t)|$$

$$\le (d-a)\lambda |f(d)|.$$

It follows that

$$d-a \ge 1/\lambda,$$

which cannot hold if we choose

$$c-a < 1/\lambda.$$

2. What is the greatest sum that cannot be paid for in 2c and 5c coins?

Answer: This is a simple exercise in the Chinese Remainder Theorem.

We know that given n we can solve

$$2x + 5y = n$$

in integers (positive or negative).

Suppose $n \geq 10$; and suppose

$$2x + 5y = 10,$$

with $x, y \in \mathbb{Z}$. Then $(x_0, y_0) = (x + 5t, y - 2t)$ will also satisfy the equation

$$2x_0 + 5y_0 = 10,$$

for any $t \in \mathbb{Z}$.

We can choose t such that $x_0 \in [0, 5)$. Then $2x_0 < 10$ and so $y_0 > 0$. Thus we have a solution of the equation with $x, y \ge 0$.

So we only need to consider $0 \le n < 10$; and it is evident that the largest integer not expressible in the form 2x + 5ywith $x, y \ge 0$ is 3. By the same argument, if m, n are coprime then any integer $\geq mn$ is expressible in the form mx + ny with $x, y \geq 0$.

It's a little more difficult to show that the largest integer not expressible in this form is mn - (m + n). This uses the uniqueness modulo mn) part of the Chinese Remainder Theorem.