$18^{\text {th }}$ IMC Competition

2012

A1. For every positive integer n, let $p(n)$ denote the number of ways to express n as a sum of positive integers. For instance, $p(4)=5$ because $4=3+1=2+2=2+1+1=1+1+1+1$. Also define $p(0)=1$. Prove that $p(n)-p(n-1)$ is the number of ways to express n as a sum of integers each of which is strictly greater than 1 .

A2. Let n be a fixed positive integer. Determine the smallest possible rank of an $n \times n$ matrix that has zeros along the main diagonal and strictly positive real numbers off the main diagonal.

A3. Given an integer $n>1$, let S_{n} be the group of permutations of the numbers $1,2, \ldots, n$. Two players, A and B, play the following game. Taking turns, they select elements (one element at a time) from the group S_{n}. It is forbidden to select an element that has already been selected. The game ends when the selected elements generate the whole group S_{n}. The player who made the last move loses the game. The first move is made by A. Which player has a winning strategy?

A4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function that satises $f(t)>f(f(t))$ for all $t \in \mathbb{R}$. Prove that $f(f(f(t))) \leq 0$ for all $t \geq 0$.

A5. Let a be a rational number and let n be a positive integer. Prove that the polynomial $X^{2^{n}}(X+a)^{2^{n}}+1$ is irreducible in the ring $\mathbb{Q}[X]$ of polynomials with rational coefficients.

B1. Consider a polynomial

$$
f(x)=x^{2012}+a_{2011} x^{2011}+\cdots+a_{1} x+a_{0} .
$$

Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the coeffcients a_{0}, \ldots, a_{2011} and assign a real value to it. Albert has the first move. Once a value is assigned to
a coeffcient, it cannot be changed any more. The game ends after all the coefficients have been assigned values. Homers goal is to make $f(x)$ divisible by a fixed polynomial $\mathrm{m}(\mathrm{x})$ and Alberts goal is to prevent this.
(a) Which of the players has a winning strategy if $m(x)=x-2012$?
(b) Which of the players has a winning strategy if $m(x)=x^{2}+1$?

B2. Define the sequence a_{0}, a_{1}, \ldots inductively by $a_{0}=1, a_{1}=\frac{1}{2}$ and

$$
a_{n+1}=\frac{n a_{n}^{2}}{1+(n+1) a_{n}} \quad \text { for } n \geq 1
$$

Show that the series $\sum_{k=0}^{\infty} \frac{a_{k+1}}{a_{k}}$ converges and determine its value.
B3. Is the set of positive integers n such that $n!+1$ divides (2012n)! finite or infinite?

B4. Let $n \geq 2$ be an integer. Find all real numbers a such that there exist real numbers x_{1}, \ldots, x_{n} satisfying

$$
x_{1}\left(1-x_{2}\right)=x_{2}\left(1-x_{3}\right)=\cdots=x_{n-1}\left(1-x_{n}\right)=x_{n}\left(1-x_{1}\right)=a .
$$

B5. Let $c \geq 1$ be a real number. Let G be an abelian group and let $A \subset G$ be a nite set satisfying $|A+A| \leq c|A|$, where $X+Y:=\{x+y \mid x \in$ $X, y \in Y\}$ and $|Z|$ denotes the cardinality of Z. Prove that

$$
|A+A+\cdots+A| \leq c^{k}|A|
$$

for every positive integer k.

