18th IMC Competition

2011

- A1. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. A point x is called a shadow point if there exists a point $y \in \mathbb{R}$ with y > x such that f(y) > f(x). Let a < b be real numbers and suppose that
 - all the points of the open interval I = (a, b) are shadow points;
 - a and b are not shadow points.

Prove that

- (a) $f(x) \le f(b)$ for all a < x < b;
- (b) f(a) = f(b).
- A2. Does there exist a real 3×3 matrix A such that tr(A) = 0 and $A^2 + A^t = I$? (tr(A) denotes the trace of A, A^t is the transpose of A, and I is the identity matrix.)

B3.

B2.