15th IMC Competition

2008

- A1. Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x) f(y) is rational for all reals x and y such that x y is rational.
- A2. Denote by V the real vector space of all real polynomials in one variable, and let $P: V \to \mathbb{R}$ be a linear map. Suppose that for all $f, g \in V$ with P(fg) = 0 we have P(f) = 0 or P(g) = 0. Prove that there exist real numbers x_0, c such that $P(f) = cf(x_0)$ for all $f \in V$.
- A3. Let p be a polynomial with integer coefficients and let $a_1 < a_2 < ... < a_k$ be integers.
 - (a) Prove that there exists $a \in \mathbb{Z}$ such that $p(a_i)$ divides p(a) for all i = 1, 2, ..., k.
 - (b) Does there exist an $a \in \mathbb{Z}$ such that the product $p(a_1) \cdot p(a_2) \cdots p(a_k)$ divides p(a)?
- B1. Let n, k be positive integers and suppose that the polynomial $x^{2k} x^k + 1$ divides $x^{2n} + x^n + 1$. Prove that $x^{2k} + x^k + 1$ divides $x^{2n} + x^n + 1$.
- B2. Two different ellipses are given. One focus of the first ellipse coincides with one focus of the second ellipse. Prove that the ellipses have at most two points in common.
- B3. Let n be a positive integer. Prove that 2n 1 divides

$$\sum_{0 \le k < n/2} \binom{n}{2k+1} 5^k.$$