$14^{\text {th }}$ IMC Competition

2007

A1. Let f be a polynomial of degree 2 with integer coefficients. Suppose that $f(k)$ is divisible by 5 for every integer k. Prove that all coefficients of f are divisible by 5 .

A2. Let $n \geq 2$ be an integer. What is the minimal and maximal possible rank of an $n \times n$ matrix whose n^{2} entries are precisely the numbers $1,2, \ldots, n^{2}$?

A3. Let C be a nonempty closed bounded subset of the real line and f : $C \rightarrow C$ be a nondecreasing continuous function. Show that there exists a point $p \in C$ such that $f(p)=p$.
(A set is closed if its complement is a union of open intervals. A function g is nondecreasing if $g(x) \leq g(y)$ for all $x \leq y$.)

B1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Suppose that for any $c>0$, the graph of f can be moved to the graph of $c f$ using only a translation or a rotation. Does this imply that $f(x)=a x+b$ for some real numbers a and b ?

B2. Let x, y, and z be integers such that $S=x^{4}+y^{4}+z^{4}$ is divisible by 29. Show that S is divisible by 29^{4}.

B3. Call a polynomial $P\left(x_{1}, \ldots, x_{k}\right)$ good if there exist 2×2 real matrices A_{1}, \ldots, A_{k} such that

$$
P\left(x_{1}, \ldots, x_{k}\right)=\operatorname{det}\left(\sum_{i=1}^{k} x_{i} A_{i}\right) .
$$

Find all values of k for which all homogeneous polynomials with k variables of degree 2 are good.
(A polynomial is homogeneous if each term has the same total degree.)

B4. Let $n>1$ be an odd positive integer and $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ be the $n \times n$ matrix with

$$
a_{i j}= \begin{cases}2 & \text { if } i=j \\ 1 & \text { if } i-j= \pm 2 \quad(\bmod n) \\ 0 & \text { otherwise }\end{cases}
$$

Find $\operatorname{det} A$.

