$7^{\text {th }}$ IMC Competition

2000

A1 Does every monotone increasing function $f:[0,1] \rightarrow[0,1]$ have a fixed point? What about every monotone decreasing function?

A2 $p(x)=x^{5}+x, q(x)=x^{5}+x^{2}$. Find all pairs (w, z) of complex numbers with $w \neq z$ such that $p(w)=p(z)$ and $q(w)=q(z)$.

A3 A, B are square complex matrices and $\operatorname{rank}(A B-B A)=1$. Show that $(A B-B A)^{2}=0$.

A4 Show that if $\left(x_{i}\right)$ is a decreasing sequence of positive reals then

$$
\left(\sum_{1}^{n} x_{i}^{2}\right)^{1 / 2} \leq \sum_{1}^{n} \frac{x_{i}}{\sqrt{i}}
$$

A5 R is a ring of characteristic zero. e, f, g are elements of R such that $e+f+g=0, e^{2}=e, f^{2}=f, g^{2}=g$. Show that $e=f=g=0$.

A6 $f: R \rightarrow(0, \infty)$ is an increasing differentiable function such that $f(x) \rightarrow$ ∞ as $x \rightarrow \infty$, and f^{\prime} is bounded. Let $F(x)=\int_{0}^{x} f(t) d t$. Define

$$
a_{0}=1, a_{n+1}=a_{n}+1 / f\left(a_{n}\right) \text { and } b_{n}=F^{-1}(n) .
$$

Prove that $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=0$.
B1 Show that a square may be partitioned into n smaller squares for sufficiently large n. Show that for some constant $N(d)$, a d-dimensional cube can be partitioned into n smaller cubes if $n \geq N(d)$.

B2 f is continuous on $[0,1]$. There is no open subinterval of $[0,1]$ on which f is monotone. Show that the set of points on which f attains a local minimum is dense in $[0,1]$.

B3 $p(z)$ is a polynomial of degree $n>0$ with complex coefficients. Show that $p(z)$ is 0 or 1 for at least $n+1$ complex numbers z.

B4 The graph of a polynomial of degree 6 is tangent to a straight line at A, B and C where B lies between A and C. If B is the midpoint of $A C$ show that the area bounded by $A B$ and the graph equals the area bounded by $B C$ and the graph. If $B C / A C=k$, show that the ratio K of these areas satisfies

$$
2 k^{5} / 7<K<7 k^{5} / 2
$$

B5 R^{+}is the set of positive real numbers. Find all functions $f: R^{+} \rightarrow R^{+}$ such that $f(x) f(y f(x))=f(x+y)$ for all x, y.

B6 For any $m \times m$ real matrix A, define $e^{A}=\sum_{0}^{\infty} A^{n} / n$!. Prove or disprove that for any real polynomial $p(x), p\left(e^{A B}\right)$ is nilpotent iff $p\left(e^{B A}\right)$ is nilpotent.

