$6^{\text {th }}$ IMC Competition

1999

A1 Show that there is a real $m \times m$ matrix A such that $A^{3}=A+I$, and show that it must satisfy $\operatorname{det} A>0$.

A2 Is there a bijection f on the positive integers such that $\sum f(n) / n^{2}$ converges?

A3 $f: R \rightarrow R$ satisfies

$$
\left|\sum_{k=1}^{n} 3 k(f(x+k y)-f(x-k y))\right| \leq 1
$$

for all x, y and all positive integers n. Show that it must be constant.
A4 Find all strictly monotonic functions $f:(0, \infty) \rightarrow(0, \infty)$ such that $f\left(x^{2} / f(x)\right)=x$ for all x.

A5 $2 n$ points in an $n \times n$ array are colored red. Show that one can select an even number of red points a_{i} such that $a_{2 i}, a_{2 i+1}$ are in the same column for $i \leq n\left(\right.$ taking $a_{2 n+1}$ to mean $\left.a_{1}\right)$ and $a_{2 i-1}, a_{2 i}$ are in the same row.

A6 Let S be the set of functions $f:[-1,1] \rightarrow R$ which have continuous derivatives such that $f(1)>f(-1)$ and $\left|f^{\prime}(x)\right| \leq 1$ for all x. Show that for $1<p<\infty$ we can find a constant c_{p}, such that given $f \in S$ we can find x_{0} such that $\left|f^{\prime}\left(x_{0}\right)\right|>0$ and

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq c_{p} f^{\prime}(x 0)^{1 / p}\left|x-x_{0}\right|
$$

for all x. Does c_{1} exist?
B1 R is a ring. For every $a \in R, a 2=0$. Show that $a b c+a b c=0$ for any $a, b, c \in R$.

B2 A fair die is thrown 10 times. What is the probability that the total is divisble by 5 ?

B3 $x_{1}, x_{2}, \ldots, x_{n}$ are reals ≥-1 such that $\sum x_{i}^{3}=0$. Show that $\sum x_{i} \leq n / 3$.
B4 Show that no function $f:(0, \infty) \rightarrow(0, \infty)$ satisfies $f(x) f(x) \leq f(x+$ $y)(f(x)+y)$ for all x, y.

B5 S is the set of all words made from the letters x, y, z. The equivalence relation \sim on S satisfies

1. $u u \sim u$,
2. if $u \sim v$, then $u w \sim u w$ and $w u \sim w v$.

Show that every word is equivalent to a word of length ≤ 8.
B6 A is a subset of $Z /(n)$ (the integers $\bmod n)$ with at most $(\ln n) / 100$ elements. Define $f(r)=\sum_{s \in A} e^{2 i s r / n}$. Show that for some $r \neq 0$ we have $|f(r)| \geq|A| / 2$.

