6th IMC Competition

1999

- A1 Show that there is a real $m \times m$ matrix A such that $A^3 = A + I$, and show that it must satisfy det A > 0.
- A2 Is there a bijection f on the positive integers such that $\sum f(n)/n^2$ converges?
- **A3** $f: R \to R$ satisfies

$$\left|\sum_{k=1}^{n} 3k \left(f(x+ky) - f(x-ky) \right) \right| \le 1$$

for all x, y and all positive integers n. Show that it must be constant.

- A4 Find all strictly monotonic functions $f : (0, \infty) \to (0, \infty)$ such that $f(x^2/f(x)) = x$ for all x.
- A5 2*n* points in an $n \times n$ array are colored red. Show that one can select an even number of red points a_i such that a_{2i}, a_{2i+1} are in the same column for $i \leq n$ (taking a_{2n+1} to mean a_1) and a_{2i-1}, a_{2i} are in the same row.
- A6 Let S be the set of functions $f : [-1,1] \to R$ which have continuous derivatives such that f(1) > f(-1) and $|f'(x)| \le 1$ for all x. Show that for $1 we can find a constant <math>c_p$, such that given $f \in S$ we can find x_0 such that $|f'(x_0)| > 0$ and

$$|f(x) - f(x_0)| \le c_p f'(x_0)^{1/p} |x - x_0|$$

for all x. Does c_1 exist?

B1 R is a ring. For every $a \in R$, a2 = 0. Show that abc + abc = 0 for any $a, b, c \in R$.

- **B2** A fair die is thrown 10 times. What is the probability that the total is divisble by 5?
- **B3** x_1, x_2, \ldots, x_n are reals ≥ -1 such that $\sum x_i^3 = 0$. Show that $\sum x_i \leq n/3$.
- **B4** Show that no function $f: (0, \infty) \to (0, \infty)$ satisfies $f(x)f(x) \leq f(x + y)(f(x) + y)$ for all x, y.
- **B5** S is the set of all words made from the letters x, y, z. The equivalence relation \sim on S satisfies
 - 1. $uu \sim u$,
 - 2. if $u \sim v$, then $uw \sim uw$ and $wu \sim wv$.

Show that every word is equivalent to a word of length ≤ 8 .

B6 A is a subset of Z/(n) (the integers mod n) with at most $(\ln n)/100$ elements. Define $f(r) = \sum_{s \in A} e^{2isr/n}$. Show that for some $r \neq 0$ we have $|f(r)| \geq |A|/2$.