1st IMC Competition

Plovdiv, Bulgaria

July 29-30, 1994

- A1. (a) Let A be a $n \times n$, $n \ge 2$, symmetric, invertible matrix with real positive elements. Show that $z_n \le n^2 2n$, where z_n is the number of zero elements in A^{-1} .
 - (b) How many zero elements are there in the inverse of the $n \times n$ matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2 & 2 & \dots & 2 \\ 1 & 2 & 1 & 1 & \dots & 1 \\ 1 & 2 & 1 & 2 & \dots & 2 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 2 & 1 & 2 & \dots & \dots \end{pmatrix} ?$$

- A2. Let $f \in C^1(a, b)$, $\lim_{x \to a+} f(x) = +\infty$, $\lim_{x \to b-} f(x) = -\infty$ and $f'(x) + f^2(x) \ge -1$ for $x \in (a, b)$. Prove that $b a \ge \pi$ and give an example where $b a = \pi$.
- A3. Given a set S of 2n 1, $n \in \mathbb{N}$, different irrational numbers. Prove that there are n different elements $x_1, x_2, \ldots, x_n \in S$ such that for all nonnegative rational numbers a_1, a_2, \ldots, a_n with $a_1 + a_2 + \cdots + a_n > 0$ we have that $a_1x_1 + a_2x_2 + \cdots + a_nx_n$ is an irrational number.