Problem Solving (MA2201)

Week 9

Timothy Murphy

December 9, 2011

1. A domino covers 2 squares on a chess-board. If two opposite corner squares on the board are removed, show that it is not possible to cover the remaining 62 squares with 31 dominoes.

Answer: The squares will be the same colour, say white, so there will be 32 black squares left but only 30 white. Each domino covers one black and one white square; hence there is no way of covering them all.
2. Find all polynomials $f(x)$ such that

$$
f\left(x^{2}\right)=f(x)^{2} .
$$

Answer: Suppose $f(x)$ has just one term, say

$$
f(x)=c x^{n}
$$

Then

$$
c^{2}=c \Longrightarrow c=1
$$

(if $f(x) \neq 0$).
Now suppose $f(x)$ has more than one term. Let the first two terms be

$$
f(x)=a_{n} x^{n}+a_{m} x^{m}+\cdots .
$$

Then

$$
f\left(x^{2}\right)=a_{n} x^{2 n}+a_{m} x^{2 m}+\cdots,
$$

while the first two terms of the square are

$$
f(x)^{2}=a_{n}^{2} x^{2 n}+2 a_{n} a_{m} x^{n+m}+\cdots
$$

Hence

$$
2 m=m+n
$$

which is impossible.
Hence the only non-zero solutions are

$$
f(x)=x^{n}
$$

3. Show that if A, B, C are the angles of a triangle then

$$
\tan A+\tan B+\tan C=\tan A \tan B \tan C
$$

Answer: Since $C=\pi-(A+B)$,

$$
\begin{aligned}
\tan C & =-\tan (A+B) \\
& =-\frac{\tan A+\tan B}{1-\tan A \tan B}
\end{aligned}
$$

Hence

$$
\tan C-\tan A \tan B \tan C=-(\tan A+\tan B)
$$

ie

$$
\tan A+\tan B+\tan C=\tan A \tan B \tan C
$$

4. Prove that

$$
\sum_{k=1}^{n} \frac{1}{n+k}=\sum_{k=0}^{2 n-1} \frac{(-1)^{k}}{k+1}
$$

Answer: If $n=1$ the equation reads

$$
\frac{1}{2}=1-\frac{1}{2}
$$

while if $n=2$ it reads

$$
\frac{1}{3}+\frac{1}{4}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}
$$

Let us try to proved the identity by induction. We have seen that it is true for $n=1$. Suppose it is true for $n-1$.
On passing to n we add

$$
-\frac{1}{n}+\frac{1}{2 n-1}+\frac{1}{2 n}=\frac{1}{2 n}+\frac{1}{2 n-1}
$$

to the left-hand side, while

$$
\frac{1}{2 n-1}+\frac{1}{2 n}
$$

is added to the right-hand side.
Since these are equal, it follows by induction that the identity holds for all n.
5. Does there exist a non-zero polynomial $f(x, y)$ such that

$$
f([x],[2 x])=0
$$

for all real x . (Recall that $[x]$ is the largest integer $\leq x$.)
Answer: If

$$
g(x, y)=y-2 x
$$

then

$$
g([x],[2 x])=\left\{\begin{array}{l}
0 \text { if } n \leq x<n+1 / 2 \\
1 \text { if } n+1 / 2 \leq x<n+1
\end{array}\right.
$$

Thus if

$$
h(x, y)=2 y-x-1
$$

then

$$
g([x],[2 x])=\left\{\begin{array}{l}
-1 \text { if } n \leq x<n+1 / 2 \\
0 \text { if } n+1 / 2 \leq x<n+1
\end{array}\right.
$$

Hence

$$
f(x, y)=g(x, y) h(x, y)
$$

has the required property.
6. Evaluate

$$
\int_{0}^{1} \frac{\log (x+1)}{x^{2}+1} d x
$$

Answer: Integrating by parts, the integral

$$
I=S-J
$$

where

$$
\begin{aligned}
S & =[\log (x+1) \arctan (x)]_{0}^{1} \\
& =\log 2 \cdot \frac{\pi}{4} \\
J & =\int_{0}^{1} \frac{\arctan x}{x+1} d x
\end{aligned}
$$

7. Given a point O and a line ℓ in the plane, what is the locus of a point P which moves so that the sum of its distances from O and ℓ is constant?
Answer: Take the line through O parallel to ℓ, and the line through O perpendicular to this, as coordinate axes.
Then

$$
O P=\sqrt{x^{2}+y^{2}}
$$

On the other hand, the distance of O from ℓ is

$$
d+y
$$

where d is the distance from O to ℓ.
Thus the locus is given by the equation

$$
\sqrt{x^{2}+y^{2}}+d+y=c
$$

$i e$

$$
x^{2}+y^{2}=(c-y-d)^{2}
$$

This reduces to

$$
\begin{aligned}
x^{2} & =2(d-c) y+(c+d)^{2} \\
& =4 a y_{1}
\end{aligned}
$$

where $a=(d-c) / 2$ and

$$
y_{1}=y+(c+d)^{2} / 4 a
$$

Thus the locus is a parabola, symmetric about the y-axis.
8. Show that if $a_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n}=0$ then the equation

$$
a_{i}+a_{j}+a_{k}=1
$$

holds only for a finite number of triples i, j, k.

Answer:

9. In how many different ways can $2 n$ points on the circumference of a circle. be joined in pairs by n cords which do not intersect within the circle?

Answer: This is a nice exercise in generating polynomials. Let the number of ways of joining $2 n$ points in this way be a_{n}.
Suppose the points are $P_{1}, P_{2}, \ldots, P_{2 n}$ in that order around the circle. Let us choose one point, say P_{1}.

It is easy to see that there are an even number of points between 2 points joined by a chord. So P_{1} can be joined to any of the points $P_{2}, P_{4}, \ldots, P_{2 n}$.
Suppose P_{1} is joined to $P_{2 r}$. There are $2(r-1)$ points between P_{1} and $P_{2 r}$, and it is clear that these points are joined in accordance with the same rules. Thus these points can be joined in a_{r-1} ways.

Similarly the $2(n-r-1)$ points between $P_{2 r}$ and P_{1} (going the same way round the circle) can be joined in a_{n-r-1} ways.
Thus there are $a_{r-1} a_{n-r-1}$ ways of joining the remaining points if P_{1} is joined to $P_{2 r}$. (This also holds if P_{1} is joined to an adjacent point, P_{2} or $P_{2 n}$, provided we set $a_{0}=1$.)
Adding the contributions from the different end-points to the chord from P_{1},

$$
a_{n}=a_{0} a_{n-1}+a_{1} a_{n-2}+\cdots+a_{n-1} a_{0}
$$

for $n \geq 1$.
Now let us introduce the generating function

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots .
$$

The relation above translates into

$$
f(x)-1=x f(x)^{2},
$$

ie

$$
x f(x)^{2}-f(x)+1=0 .
$$

Solving this quadratic equation for $f(x)$,

$$
f(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}
$$

Since $f(x)$ is a power-series in x, we must take the negative sign:

$$
f(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

By the binomial theorem

$$
\begin{aligned}
(1-4 x)^{1 / 2} & =1-(1 / 2) 4 x+\frac{(1 / 2)(-1 / 2)}{2!}(4 x)^{2}-\frac{(1 / 2)(-1 / 2)(-3 / 2)}{3!}(4 x)^{3} \\
& =1-2 x-\frac{1}{2!}(2 x)^{2}-\frac{1 \cdot 3}{3!}(2 x)^{3}-\cdots
\end{aligned}
$$

Thus

$$
a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{(n+1)!} 2^{n} .
$$

10. A hole of diameter 1 is drilled through the centre of a sphere of radius 1 . What is the volume of the remaining material?

Answer:

11. Solve the simultaneous equations

$$
\begin{array}{r}
x+y+z=2 \\
x^{2}+y^{2}+z^{2}=5 \\
x^{3}+y^{3}+z^{3}=8
\end{array}
$$

Answer: Note that x, y, z are the roots of the equation

$$
t^{3}-a t^{2}+b t-c,
$$

where

$$
a=\sum x=2, b=\sum x y, c=x y z .
$$

Now

$$
\left(\sum x\right)^{2}=\sum x^{2}+2 \sum x y .
$$

Thus

$$
\sum x y=1 / 2(4-5)=-1 / 2 .
$$

Similarly

$$
\left(\sum x\right)^{3}=\sum x^{3}+3 \sum x^{2} y+6 x y z
$$

But

$$
\sum x \sum x y=\sum x^{2} y+3 x y z
$$

Hence

$$
\sum x^{2} y=\sum x \sum x y-3 x y z,
$$

and so

$$
\left(\sum x\right)^{3}=\sum x^{3}+3 \sum x \sum x y-3 x y z .
$$

Thus

$$
x y z=-1 .
$$

The cubic is therefore

$$
t^{3}-2 t^{2}-1 / 2 t+1=0
$$

ie

$$
2 t^{3}-4 t^{2}-t+2=0
$$

By observation, this has solution $t=2$. Dividing by $t-2$,

$$
2 t^{3}-4 t^{2}-t+2=(t-2)\left(2 t^{2}-1\right) .
$$

Thus the roots are $2, \pm \frac{1}{\sqrt{2}}$; and the solution to the equations is

$$
\{x, y, z\}=\left\{2, \pm \frac{1}{\sqrt{2}}\right\} .
$$

12. Show that for any positive integers $m \leq n$ the sum

$$
\frac{1}{m}+\frac{1}{m+1}+\cdots+\frac{1}{n}
$$

when expressed in its lowest terms, has odd numerator.

Answer:

13. The function $f(x)$ satisfies $f(0)=1, f^{\prime}(0)=0$ and

$$
(1+f(x)) f^{\prime \prime}(x)=1+x
$$

for all real x. Determine the maximum value of $f^{\prime}(1)$, and the maximum and minimum values of $f^{\prime}(-1)$.

Answer:

14. A group G is a union of 3 proper subgroups if and only if there is a surjective homomorphism $G \rightarrow K$ where K is the Klein 4-group.

Answer:

15. Find all solutions in integers of the equation

$$
x^{2}=y^{3}+1
$$

Answer:

Challenge Problem

Let $a_{1}=1 / 2, a_{n+1}=a_{n}-a_{n}^{2}$. Find a real number c for which the sequence $b_{n}=n^{c} a_{n}$ has a finite limit, and determine this limit.

Answer: By induction

$$
0<a_{n} \leq \frac{1}{2}
$$

Since a_{n} is decreasing, it follows that a_{n} converges to a limit ℓ. From the defining relation,

$$
\ell=\ell-\ell^{2} \Longrightarrow \ell=0
$$

$$
a_{n} \rightarrow 0 .
$$

It is helpful to turn to an analogical problem from differential calculus, namely: Solve the differental equation

$$
\frac{d y}{d x}=-y^{2} .
$$

Here we are replacing n with x, the sequence a_{n} with the function $y(x)$, and $a_{n+1}-a_{n}$ with $d y / d x$.

This equation can be written

$$
-\frac{d y}{y^{2}}=d x
$$

with the solution

$$
\frac{1}{y}=x+c,
$$

ie

$$
y=\frac{1}{x+c} .
$$

So let us try

$$
b_{n}=\frac{1}{n+1},
$$

so that

$$
b_{1}=\frac{1}{2}=a_{1} .
$$

Also

$$
a_{2}=1 / 4, b_{2}=1 / 3, a_{3}=3 / 16, b_{3}=1 / 4, a_{4}=39 / 256, b_{4}=1 / 5 .
$$

By the Mean Value Theorem,

$$
b_{n+1}-b_{n}=-\frac{1}{(n+\theta)^{2}},
$$

where $1<\theta<2$. Thus

$$
\frac{1}{(n+1)^{2}}<b_{n}-n_{n+1}<\frac{1}{n^{2}},
$$

$$
b_{n+1}^{2}<b_{n}-b_{n+1}<b_{n}^{2}
$$

As we shall see, it follows from this by induction that

$$
a_{n} \leq b_{n}
$$

This holds for $n=1$. Suppose it holds for $1 \leq r \leq n$. Then

$$
a_{r}-a_{r+1}=a_{r}^{2} \leq b_{r}^{2}<b_{r-1}-b_{r}
$$

Adding these inequalities for $r=1,2, \ldots, n$,

$$
a_{1}-a n+1 \leq b_{1}-b_{n+1}
$$

and so

$$
a_{n+1} \leq b_{n+1}
$$

Similarly

