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1. A domino covers 2 squares on a chess-board. If two oppo-
site corner squares on the board are removed, show that it
is not possible to cover the remaining 62 squares with 31
dominoes.

Answer: The squares will be the same colour, say white,
so there will be 32 black squares left but only 30 white. Each
domino covers one black and one white square; hence there
is no way of covering them all.

2. Find all polynomials f(x) such that

f(x2) = f(x)2.

Answer: Suppose f(x) has just one term, say

f(x) = cxn

Then
c2 = c =⇒ c = 1

(if f(x) 6= 0).

Now suppose f(x) has more than one term. Let the first
two terms be

f(x) = anx
n + amx

m + · · · .

Then
f(x2) = anx

2n + amx
2m + · · · ,



while the first two terms of the square are

f(x)2 = a2
nx

2n + 2anamx
n+m + · · · .

Hence
2m = m+ n,

which is impossible.

Hence the only non-zero solutions are

f(x) = xn.

3. Show that if A,B,C are the angles of a triangle then

tanA+ tanB + tanC = tanA tanB tanC.

Answer: Since C = π − (A+B),

tanC = − tan(A+B)

= − tanA+ tanB

1− tanA tanB
.

Hence

tanC − tanA tanB tanC = −(tanA+ tanB),

ie

tanA+ tanB + tanC = tanA tanB tanC.

4. Prove that
n∑

k=1

1

n+ k
=

2n−1∑
k=0

(−1)k

k + 1
.

Answer: If n = 1 the equation reads

1

2
= 1− 1

2
,

while if n = 2 it reads

1

3
+

1

4
= 1− 1

2
+

1

3
− 1

4
.



Let us try to proved the identity by induction. We have seen
that it is true for n = 1. Suppose it is true for n− 1.

On passing to n we add

−1

n
+

1

2n− 1
+

1

2n
=

1

2n
+

1

2n− 1

to the left-hand side, while

1

2n− 1
+

1

2n

is added to the right-hand side.

Since these are equal, it follows by induction that the iden-
tity holds for all n.

5. Does there exist a non-zero polynomial f(x, y) such that

f([x], [2x]) = 0

for all real x. (Recall that [x] is the largest integer ≤ x.)

Answer: If
g(x, y) = y − 2x

then

g([x], [2x]) =

{
0 if n ≤ x < n+ 1/2,

1 if n+ 1/2 ≤ x < n+ 1.

Thus if
h(x, y) = 2y − x− 1

then

g([x], [2x]) =

{
−1 if n ≤ x < n+ 1/2,

0 if n+ 1/2 ≤ x < n+ 1.

Hence
f(x, y) = g(x, y)h(x, y)

has the required property.



6. Evaluate ∫ 1

0

log(x+ 1)

x2 + 1
dx.

Answer: Integrating by parts, the integral

I = S − J,

where

S = [log(x+ 1) arctan(x)]10

= log 2 · π
4
,

J =

∫ 1

0

arctanx

x+ 1
dx

7. Given a point O and a line ` in the plane, what is the locus
of a point P which moves so that the sum of its distances
from O and ` is constant?

Answer: Take the line through O parallel to `, and the line
through O perpendicular to this, as coordinate axes.

Then
OP =

√
x2 + y2,

On the other hand, the distance of O from ` is

d+ y,

where d is the distance from O to `.

Thus the locus is given by the equation√
x2 + y2 + d+ y = c,

ie

x2 + y2 = (c− y − d)2.

This reduces to

x2 = 2(d− c)y + (c+ d)2

= 4ay1,



where a = (d− c)/2 and

y1 = y + (c+ d)2/4a.

Thus the locus is a parabola, symmetric about the y-axis.

8. Show that if an > 0 and limn→∞ an = 0 then the equation

ai + aj + ak = 1

holds only for a finite number of triples i, j, k.

Answer:

9. In how many different ways can 2n points on the circum-
ference of a circle. be joined in pairs by n cords which do
not intersect within the circle?

Answer: This is a nice exercise in generating polynomials.
Let the number of ways of joining 2n points in this way be
an.

Suppose the points are P1, P2, . . . , P2n in that order around
the circle. Let us choose one point, say P1.

It is easy to see that there are an even number of points
between 2 points joined by a chord. So P1 can be joined to
any of the points P2, P4, . . . , P2n.

Suppose P1 is joined to P2r. There are 2(r − 1) points be-
tween P1 and P2r, and it is clear that these points are joined
in accordance with the same rules. Thus these points can
be joined in ar−1 ways.

Similarly the 2(n− r− 1) points between P2r and P1 (going
the same way round the circle) can be joined in an−r−1 ways.

Thus there are ar−1an−r−1 ways of joining the remaining
points if P1 is joined to P2r. (This also holds if P1 is joined
to an adjacent point, P2 or P2n, provided we set a0 = 1.)

Adding the contributions from the different end-points to
the chord from P1,

an = a0an−1 + a1an−2 + · · ·+ an−1a0,



for n ≥ 1.

Now let us introduce the generating function

f(x) = a0 + a1x+ a2x
2 + · · · .

The relation above translates into

f(x)− 1 = xf(x)2,

ie

xf(x)2 − f(x) + 1 = 0.

Solving this quadratic equation for f(x),

f(x) =
1±
√

1− 4x

2x
.

Since f(x) is a power-series in x, we must take the negative
sign:

f(x) =
1−
√

1− 4x

2x
.

By the binomial theorem

(1− 4x)1/2 = 1− (1/2)4x+
(1/2)(−1/2)

2!
(4x)2 − (1/2)(−1/2)(−3/2)

3!
(4x)3 − · · ·

= 1− 2x− 1

2!
(2x)2 − 1 · 3

3!
(2x)3 − · · · .

Thus

an =
1 · 3 · 5 · · · (2n− 1)

(n+ 1)!
2n.

10. A hole of diameter 1 is drilled through the centre of a sphere
of radius 1. What is the volume of the remaining material?

Answer:

11. Solve the simultaneous equations

x+ y + z = 2

x2 + y2 + z2 = 5

x3 + y3 + z3 = 8.



Answer: Note that x, y, z are the roots of the equation

t3 − at2 + bt− c,

where
a =

∑
x = 2, b =

∑
xy, c = xyz.

Now
(
∑

x)2 =
∑

x2 + 2
∑

xy.

Thus ∑
xy = 1/2(4− 5) = −1/2.

Similarly

(
∑

x)3 =
∑

x3 + 3
∑

x2y + 6xyz.

But ∑
x

∑
xy =

∑
x2y + 3xyz.

Hence ∑
x2y =

∑
x

∑
xy − 3xyz,

and so

(
∑

x)3 =
∑

x3 + 3
∑

x
∑

xy − 3xyz.

Thus
xyz = −1.

The cubic is therefore

t3 − 2t2 − 1/2t+ 1 = 0,

ie
2t3 − 4t2 − t+ 2 = 0.

By observation, this has solution t = 2. Dividing by t− 2,

2t3 − 4t2 − t+ 2 = (t− 2)(2t2 − 1).

Thus the roots are 2,± 1√
2
; and the solution to the equations

is

{x, y, z} = {2,± 1√
2
}.



12. Show that for any positive integers m ≤ n the sum

1

m
+

1

m+ 1
+ · · ·+ 1

n
,

when expressed in its lowest terms, has odd numerator.

Answer:

13. The function f(x) satisfies f(0) = 1, f ′(0) = 0 and

(1 + f(x))f”(x) = 1 + x

for all real x. Determine the maximum value of f ′(1), and
the maximum and minimum values of f ′(−1).

Answer:

14. A group G is a union of 3 proper subgroups if and only if
there is a surjective homomorphism G→ K where K is the
Klein 4-group.

Answer:

15. Find all solutions in integers of the equation

x2 = y3 + 1.

Answer:

Challenge Problem

Let a1 = 1/2, an+1 = an − a2
n. Find a real number c for which

the sequence bn = ncan has a finite limit, and determine this
limit.

Answer: By induction

0 < an ≤
1

2
.

Since an is decreasing, it follows that an converges to a limit `.
From the defining relation,

` = `− `2 =⇒ ` = 0,



ie

an → 0.

It is helpful to turn to an analogical problem from differential
calculus, namely: Solve the differental equation

dy

dx
= −y2.

Here we are replacing n with x, the sequence an with the function
y(x), and an+1 − an with dy/dx.

This equation can be written

−dy
y2 = dx,

with the solution

1

y
= x+ c,

ie

y =
1

x+ c
.

So let us try

bn =
1

n+ 1
,

so that

b1 =
1

2
= a1.

Also

a2 = 1/4, b2 = 1/3, a3 = 3/16, b3 = 1/4, a4 = 39/256, b4 = 1/5.

By the Mean Value Theorem,

bn+1 − bn = − 1

(n+ θ)2 ,

where 1 < θ < 2. Thus

1

(n+ 1)2 < bn − nn+1 <
1

n2 ,



ie

b2n+1 < bn − bn+1 < b2n.

As we shall see, it follows from this by induction that

an ≤ bn.

This holds for n = 1. Suppose it holds for 1 ≤ r ≤ n. Then

ar − ar+1 = a2
r ≤ b2r < br−1 − br.

Adding these inequalities for r = 1, 2, . . . , n,

a1 − an+ 1 ≤ b1 − bn+1,

and so

an+1 ≤ bn+1.

Similarly


