Problem Solving (MA2201)

Week 8

Timothy Murphy

December 9, 2011

1. Show that there must be 2 people at a party who know the same number of people at the party.

Answer:

2. If a set S of circles in the plane has the property that each point P in the plane lies in only a finite number of the circles, does it follow that S is enumerable?

Answer:
3. Show that there are an infinite number of distinct positive integers a, b such that both $a b$ and $(a+1)(b+1)$ are perfect squares.
Answer: Let us take

$$
a=c, b=c t^{2} .
$$

Then

$$
a b=(c t)^{2}
$$

is a perfect square, and we have to find t such that

$$
(c+1)\left(c t^{2}+1\right)=u^{2},
$$

ie

$$
u^{2}-c(c+1) t^{2}=c+1
$$

Let us try $c=1$. We have to solve the Pell-like equation

$$
u^{2}-2 t^{2}=2 .
$$

This has the trivial solution $(u, t)=(2,1)$, arising from $a=b=1$. That solution is invalid; but we know that the equation has an infinity of solutions if it has one.

For

$$
\left(u^{2}-2 t^{2}\right)\left(U^{2}-2 T^{2}\right)=(u U+2 t T)^{2}-2(u T-t U)^{2} .
$$

Thus any solution of Pell's equation

$$
U^{2}-2 T^{2}=1
$$

will give a solution of our equation.
Again, this Pell's equation has the simple solution $(U, T)=$ $(3,2)$; and the identity above enables us to get an infinity of solutions.
It is easier to express this in terms of square roots, using

$$
(u-\sqrt{2} t)(u+\sqrt{2} t)=u^{2}-2 t^{2} .
$$

It follows that we get a solution

$$
U+\sqrt{2} T=(3+2 \sqrt{2} t)^{e}
$$

to Pell's equation for each power e, and this gives us a solution

$$
u+\sqrt{t}=(2+\sqrt{2})(U+T \sqrt{2})
$$

For example,

$$
(3+2 \sqrt{2})=17+12 \sqrt{2}
$$

gives $(U, T)=(17,12) ;$ and since

$$
(2+\sqrt{2})(17+12 \sqrt{2})=58+39 \sqrt{2},
$$

this gives the solution

$$
a b=1 \cdot 1521=39^{2},(a+1)(b+1)=2 \cdot 1522=58^{2} .
$$

4. Determine the 100th derivative of the function

$$
\frac{x^{2}+1}{x^{3}-x}
$$

Answer: Let

$$
f(x)=\frac{x^{2}+1}{x^{3}-x}
$$

Since

$$
x^{3}-x=x(x-1)(x+1)
$$

we can express $f(x)$ as partial fractions

$$
f(x)=\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x+1}
$$

Multiplying by x and setting $x=0$,

$$
a=-1
$$

Multiplying by $x-1$ and setting $x=1$,

$$
b=\frac{3}{2}
$$

Multiplying by $x+1$ and setting $x=-1$,

$$
c=\frac{3}{2}
$$

Thus

$$
f(x)=-\frac{1}{x}+\frac{3}{2}\left(\frac{1}{x-1}+\frac{1}{x+1}\right)
$$

The nth derivative of

$$
\frac{1}{x+c}
$$

is

$$
\frac{(-1)^{n} n!}{(x+c)^{n+1}}
$$

Hence the 100th derivative of $f(x)$ is

$$
\frac{100!}{2}\left(-\frac{2}{x^{100}}+\frac{3}{(x-1)^{100}}+\frac{3}{(x+1)^{100}}\right)
$$

5. Find all positive integers a, b satisfying

$$
1+2^{a}=3^{b}
$$

Answer: There are 2 obvious solutions:

$$
1+2=3 \text { and } 1+2^{3}=3^{2}
$$

Omitting these cases, we may assume that $a \geq 4, b \geq 3$ If $a \geq 2$ then

$$
3^{b} \equiv 1 \bmod 4
$$

Hence b is even.
6. What fraction of the volume of a hypercube in 5 dimensions is taken by an inscribed sphere?

Answer: We must determine the volume $V(n)$ of a unit sphere in n dimensions.
We have

$$
V(n)=\int_{x_{1}^{2}+\cdots+x_{n}^{2} \leq 1} d x_{1} \cdots d x_{n}
$$

Integrating first over x_{1}, \ldots, x_{n-1} for each x_{n}, and then over x_{n},

$$
\begin{aligned}
V(n) & =\int_{-1}^{1}\left(\int_{x_{1}^{2}+\cdots+x_{n-1}^{2} \leq 1-x_{n}^{2}} d x_{1} \cdots d x_{n-1}\right) d x_{n} \\
& =\int_{-1}^{1} V(n-1)\left(1-x_{n}^{2}\right)^{(n-1) / 2} d x_{n}
\end{aligned}
$$

since a sphere of radius r in n dimensions has volume $V(n) r^{n}$.

Setting $x_{n}=\sin \theta$,

$$
\begin{aligned}
V(n) & =2 V(n-1) \int_{0}^{\pi / 2} \cos ^{n-1} \theta \cos \theta d \theta \\
& =2 V(n-1) \int_{0}^{\pi / 2} \cos ^{n} \theta d \theta \\
& =2 V(n-1) I(n)
\end{aligned}
$$

where

$$
I(n)=\int_{0}^{\pi / 2} \cos ^{n} \theta d \theta
$$

Now

$$
I(n)=\int_{0}^{\pi / 2} \cos ^{n-2} \theta\left(1-\sin ^{2} \theta\right) d \theta
$$

On integrating by parts,

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos ^{n-2} \theta \sin ^{2} \theta d \theta & =\int_{0}^{\pi / 2}\left(\cos ^{n-2} \theta \sin \theta\right) \sin \theta d \theta \\
& =\left[\frac{\cos ^{n-1} \theta}{n-1} \sin \theta\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \frac{\cos ^{n-1} \theta}{n-1} \cos \theta d \theta \\
& =-\frac{I(n)}{n-1} .
\end{aligned}
$$

Thus

$$
I(n)=I(n-2)+I(n) /(n-1),
$$

ie

$$
I(n)=\frac{n-1}{n-2} I(n-2)
$$

Since

$$
V(1)=2, V(2)=\pi,
$$

it follows that

$$
V(n)=\left\{\frac{(n-1)(n-3) \cdots 1}{(n-2)(n-4) \cdots 2} \pi \text { if } n\right. \text { is even, }
$$

7. A man makes 45 phone-calls in 30 days. He makes at least one call each day. Show that there is a succession of days on which he makes 14 calls.

Answer:

8. Solve the differential equation

$$
\frac{d y}{d x}=x+\frac{x^{3}}{y}
$$

Answer: Suppose

$$
y=c x^{2}
$$

Then

$$
2 c x=x+\frac{x}{c}
$$

Thus

$$
2 c=1+\frac{1}{c}
$$

ie

$$
2 c^{2}-c-1=0,
$$

ie

$$
(2 c+1)(c-1)=0
$$

ie

$$
c=1 \text { or }-\frac{1}{2}
$$

We have

$$
y \frac{d y}{d x}=x y+x^{3}
$$

Let

$$
y=x^{3} z
$$

Then

$$
\frac{d y}{d x}=3 x^{2} z+x^{3} \frac{d z}{d x}
$$

Thus

$$
\frac{d z}{d x}=-\frac{3 z}{x}+x+\frac{1}{z}
$$

9. For what value (or values) of c is the line $y=10 x$ tangent to the curve $y=e^{c x}$ at some point in the $x y$-plane?
Answer: We have

$$
\frac{d y}{d x}=c e^{c x}=10
$$

when

$$
c x=\log (10 / c),
$$

ie

$$
x=\text { fraclog } 10-\log c c .
$$

At this point

$$
y=\frac{10}{c}
$$

and the tangent to the curve is

$$
y-\frac{1}{c}=10(x-f r a c \log 10-\log c c)
$$

This passes through the origin if

$$
\frac{1}{c}=10 \mathrm{fraclog} 10-\log c c
$$

ie

$$
\frac{1}{10}=\log 10-\log c
$$

Thus

$$
\log c=\log 10-\frac{1}{10},
$$

ie

$$
c=10 e^{1 / 10}
$$

10. Suppose $P(x), Q(x)$] are two non-constant real polynomials such that

$$
P(x)^{n}-1 \mid Q(x)^{n}-1
$$

for all $n \in \mathbb{N}$. Does it follow that $Q(x)=P(x)^{k}$ for some k ?

Answer:
11. Alice and Bob take turns to fill in entries in a 100×100 matrix. The matrix has no entries initially, and Alice goes first. If when all of the entries are filled in, the determinant of the matrix is 0 , then Bob wins; otherwise Alice wins. What is the result if each adopts the best strategy?
Answer:
12. Show that

$$
\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{1}{8} .
$$

Answer:

13. Show that

$$
\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}<\frac{3}{4} .
$$

Answer:
14. There are 25 men and 25 women sitting around a table. Show that some person is sitting between 2 women.

Answer:

15. Determine

$$
\int \sec \theta d \theta
$$

Answer:

Challenge Problem

Suppose $f(P)$ is a real-valued function on the plane such that

$$
f(A)+f(B)+f(C)+f(D)=0
$$

for every square $A B C D$ in the plane. Does it follow that $f(P)=$ 0 for all points P ?

Answer: Draw a square $A B C D$. Split it into 4 squares of half the size. Let the mid-points of $A B, B C, C D, D A$ be X, Y, Z, T, and let the centre of the square be O.

From the identity for square $A X O T$,

$$
f(A)+f(X)+f(O)+f(T)=0 .
$$

From the identity for square $Z D T O$,

$$
f(Z)+f(X)+f(T)+f(O)=0 .
$$

Subtracting the second from the first,

$$
f(A)+f(X)-f(Z)+f(D)=0
$$

ie

$$
f(A)-f(D)=-(f(X)-f(O))
$$

By the same argument, applied to the lower 2 squares,

$$
f(X)-f(O)=-(f(B)-f(C)) .
$$

Thus

$$
f(A)-f(D)=f(B)-f(C)
$$

ie

$$
f(A)-f(B)+f(C)-f(D)=0 .
$$

Adding the identity

$$
f(A)+f(B)+f(C)+f(D)=0
$$

for the whole square,

$$
2(f(A)+f(C))=0
$$

ie

$$
f(C)=-f(A)
$$

This hold for any 2 (different) points, since we can construct a square with any two points as diagonally opposite vertices. But then, taking any other point, say B, we have

$$
f(A)=-f(B)=f(C)
$$

Hence

$$
f(A)=0
$$

for any point A.

