Problem Solving (MA2201)

Week 5

Timothy Murphy

1. Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{n}{n^{4}+4}
$$

2. A convex polygon is drawn inside a square of side 1. Prove that the sum of the squares of the lengths of the sides of the polygon is at most 4.
3. Two lines m, n are given, and a positive number d. What is the locus of a point whose perpendicular distances from m and from n add up to d ?
4. What is the last digit of the 100th number in the sequence

$$
3,3^{3}, 3^{3^{3}}, \ldots ?
$$

5. Solve the equation

$$
(x-2)(x-3)(x+4)(x+5)=44 .
$$

6. Show that if the integer n does not end in the digit 0 then one can find a multiple of n containing no 0 's.
7. Show that in a group of 10 people there are either 3 people who know each other ("mututal acquaintances") or 4 people who don't know each other ("Mutual strangers").
8. Find all solutions in integers to the equation

$$
x^{2}+y^{2}+z^{2}=2 x y z
$$

9. How many ways are there of painting the 6 faces of a cube in 6 different colours, if two colourings are considered the same when one can be obtained from the other by rotating the cube?
10. How many positive integers $x<2011$ are there such that 7 divides $2^{x}-x^{2}$?
11. If $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers with sum s, prove that

$$
\left(1+x_{1}\right)\left(1+x_{2}\right) \cdots\left(1+x_{n}\right) \leq 1+s+\frac{s^{2}}{2!}+\cdots+\frac{s^{n}}{n!}
$$

12. Prove that in a finite group G the number of solutions of the equation $x^{n}=e$ is a multiple of n whenever n divides the order of the group.
13. There is a rabbit is in the middle of a circular pond. A poacher is on the edge of the pond. The poacher can run 4-times as fast as the rabbit can swim. Can the rabbit get away?
14. Does there exist an infinite uncountable family of subsets of \mathbb{N} such that $A \cap B$ is finite for all $A \neq B$ from this family?
15. For which real numbers $x>0$ is there a real number $y>x$ such that

$$
x^{y}=y^{x} ?
$$

Challenge Problem

Show that the equation

$$
x^{x} y^{y}=z^{z}
$$

has an infinity of solutions in integers $x, y, z>1$.

