Problem Solving (MA2201)

Week 5

Timothy Murphy

1. Find the sum of the series

$$\sum_{n=1}^{\infty} \frac{n}{n^4 + 4}.$$

Answer: Questions like this can sometimes be solved by using partial fractions, if they have a solution.

In this case

$$n^{4} + 4 = (n - \sqrt{2}\omega)(n - \sqrt{2}\omega^{3})(n - \sqrt{2}\omega^{5})(n - \sqrt{2}\omega^{7})$$

where $\omega = e^{2\pi/8}$.

We can combine conjugate factors to give 2 real quadratics

 $x^{4} + 4 = (x^{2} + ax + b)(x^{2} + cx + d).$

From the coefficients of x^3 and x, we must have c = -a, b = d.

$$x^{4} + 4 = (x^{2} + ax + b)(x^{2} - ax + b).$$

Thus

$$-a^2 + 2b = 0, \ b^2 = 4.$$

Hence b = 2, a = 2, yielding

$$x^{4} + 4 = (x^{2} + 2x + 2)(x^{2} - 2x + 2).$$

Now

$$\frac{1}{n^2 - 2n + 2} - \frac{1}{n^2 + 2n + 2} = \frac{4n}{n^4 + 4}$$

Hopefully, the 2 terms will cancel out in some way. In fact

$$(n+2)^2 - 2(n+2) + 2 = n^2 + 2n + 2.$$

Thus the first term with n + 2 cancels out the second term with n. We are left with the first term for n = 1, 2.

$$\sum \frac{n}{n^4 + 4} = \frac{1}{4} \left(\frac{1}{1} + \frac{1}{2} \right) = \frac{3}{8}.$$

2. A convex polygon is drawn inside a square of side 1. Prove that the sum of the squares of the lengths of the sides of the polygon is at most 4.

Answer:

3. Two lines m, n are given, and a positive number d. What is the locus of a point whose perpendicular distances from m and from n add up to d?

Answer:

4. What is the last digit of the 100th number in the sequence

$$3, 3^3, 3^{3^3}, \ldots?$$

Answer: We have the sequence

 $a_{n+1} = 3^{a_n},$

with $a_1 = 1$. We have to determine $a_{100} \mod 10$. Since

$$3^4 \equiv 1 \bmod 10,$$

it follows that

$$a_{n+1} \equiv \begin{cases} 1 \mod 10 \ if \ a_n \equiv 0 \mod 4 \\ 3 \mod 10 \ if \ a_n \equiv 1 \mod 4 \\ -1 \mod 10 \ if \ a_n \equiv 2 \mod 4 \\ -3 \mod 10 \ if \ a_n \equiv 3 \mod 4 \end{cases}$$

But

$$3^2 \equiv 1 \bmod 4,$$

it follows that

$$a_n \equiv \begin{cases} 1 \mod 4 \text{ if } a_{n-1} \text{ is even} \\ 3 \mod 4 \text{ if } a_{n-1} \text{ is odd} \end{cases}$$

Evidently a_n is odd for all n. In particular a_{98} is odd. Hence

$$a_{99} \equiv 1 \mod 4$$
,

and so

$$a_{100} \equiv 3 \bmod 10,$$

ie the last digit of a_{100} is 3.

5. Solve the equation

$$(x-2)(x-3)(x+4)(x+5) = 44.$$

Answer: Writing x = t - 1, the equation becomes

$$(t-3)(t-4)(t+3)(t+4) = 44,$$

ie

$$(t^2 - 9)(t^2 - 16) = 44.$$

Thus $u = t^2$ satisfies

$$(u-9)(u-16) = 44,$$

ie

$$u^2 - 25u + 100 = 0.$$

Writing u = 5v,

$$v^2 - 5v + 4 = 0,$$

ie

$$(v-1)(v-4) = 0.$$

Thus

$$v = 1 \ or \ 4,$$

ie

$$u = 5 \ or \ 20.$$

Hence

$$t = \pm \sqrt{5} \ or \ 2 \pm 5,$$

 $and \ so$

$$x = \sqrt{5} - 1, -\sqrt{5} - 1, 2\sqrt{5} - 1$$
 or $-2\sqrt{5} - 1.$

6. Show that if the integer n does not end in the digit 0 then one can find a multiple of n containing no 0's.

Answer: Suppose first that gcd(n, 10) = 1.

Let

$$N = 10^e - 1 = \underbrace{9^{\circ}s}_{\bullet \ldots 9}.$$

Then

$$n \mid N \iff 10^e \equiv 1 \mod n,$$

which holds if e is a multiple of the order of 10 in the group $(\mathbb{Z}/m)^{\times}$.

Now suppose 2 or 5 divides n. The argument is the same in both cases, so we may assume that

$$n = 2^f m,$$

where gcd(m, 10) = 1.

Note first that a number is divisible by 2^e if and only if the number formed by the last e digits is divisible by 2^e (since $2^e \mid 10^f$ if $f \ge e$).

It is easy to find a number E with e non-zero digits divisible by 2^e . For if we have a multiple of 2^e with a zero rplaces from the end, and no zeros beyone that, then we can eliminate this zero by adding $10^{r-1}2^e$ (since the last digit of 2^e cannot be zero); and then we can eliminate any digits beyond the eth place.

Now we use the same argument as in the previous case, except that now we repeat E rather than 9. Thus we consider

$$N = \overbrace{EE \dots E}^{f E's}$$

= $\left(10^{e(f-1)} + 10^{e(f-2)} + \dots + 10^{e} + 1\right)E$
= $\frac{10ef - 1}{10^{e} - 1}E.$

This is divisible by 2^e , since it ends in E; and it is divisible by m if

 $10^{ef} \equiv 1 \bmod (10^e - 1)m,$

which will be the case if f is a multiple of the order of 10 in the group

$$(\mathbb{Z}/((10^e - 1)m))^{\times}.$$

7. Show that in a group of 10 people there are either 3 people who know each other ("mututal acquaintances") or 4 people who don't know each other ("Mutual strangers").

Answer:

8. Find all solutions in integers to the equation

$$x^2 + y^2 + z^2 = 2xyz.$$

Answer: Since $x^2 + y^2 + z^2$ is even, one of x, y, z is even. We may assume that x is even.

Then $4 \mid 2xyz$ and so

$$y^2 + z^2 \equiv 0 \bmod 4.$$

It follows that y, z are both even. (If both are odd then $x^2+y^2 \equiv 2 \mod 4$; If one is odd and one even then $x^2+y^2 \equiv 1 \mod 4$.)

Let x = 2X, y = 2Y, z = 2Z. Then

$$X^2 + y^2 + Z^2 = 4XYZ$$

By the same argument, X, Y, Z are all even. Let X = 2X', Y = 2Y, Z = 2Z'. Then

$$X'^2 + y'^2 + Z'^2 = 8X'Y'Z'.$$

Continuing in this way, x, y.z are all divisible by an arbitrarily high power of 2, which is absurd.

9. How many ways are there of painting the 6 faces of a cube in 6 different colours, if two colourings are considered the same when one can be obtained from the other by rotating the cube?

Answer: Let us apply the Burnside-Polya Lemma.

The cube has 24 rotational symmetries: rotations through $\pm 2\pi/3$ about the 4 diagonals, giving 2 conjugacy classes, each containing 4 symmetries; rotations about the lines joining mid-points of opposite faces

10. How many positive integers x < 2011 are there such that 7 divides $2^x - x^2$?

Answer: Since

$$2^3 = 1 \bmod 7,$$

It follows that

$$2^{x} \equiv \begin{cases} 1 \mod 7 & \text{if } x \equiv 0 \mod 3\\ 2 \mod 7 & \text{if } x \equiv 1 \mod 3\\ 4 \mod 7 & \text{if } x \equiv 2 \mod 3 \end{cases}$$

On the other hand,

$$x^{2} \equiv \begin{cases} 1 \mod 7 & \text{if } x \equiv \pm 1 \mod 7 \\ 2 \mod 7 & \text{if } x \equiv \pm 3 \mod 7 \\ 4 \mod 7 & \text{if } x \equiv \pm 2 \mod 7 \end{cases}$$

Thus

$$2^{x} \equiv x^{2} \equiv 1 \mod 7 \text{ if } x \equiv 15 \text{ or } 6 \mod 21,$$

$$2^{x} \equiv x^{2} \equiv 2 \mod 7 \text{ if } x \equiv 10 \text{ or } 4 \mod 21,$$

$$2^{x} \equiv x^{2} \equiv 4 \mod 7 \text{ if } x \equiv 2 \text{ or } 5 \mod 21.$$

Since $21 \cdot 95 = 1995$, there are $6 \times 95 = 570$ solutions in [1, 1995]. Since $2010 \equiv 15 \mod 21$, there are 5 solutions in [1996, 2010].

Hence there are 575 solutions in all.

11. If x_1, x_2, \ldots, x_n are positive numbers with sum s, prove that

$$(1+x_1)(1+x_2)\cdots(1+x_n) \le 1+s+\frac{s^2}{2!}+\cdots+\frac{s^n}{n!}.$$

Answer:

Method 1 We have

$$1 + x < e^x = 1 + x + \frac{x^2}{2!} + \cdots$$

Thus

$$(1+x_1)(1+x_2)\cdots(1+x_n) < e^s = 1+s+s^2/2!+\cdots$$

But if we consider this as an inequality in the variables x_1, \ldots, x_n , we observe that the terms on the left will only occur in the terms on the right up to $s^n/n!$. It follows that

$$(1+x_1)(1+x_2)\cdots(1+x_n) < e^s = 1+s+s^2/2!+\cdots+s^n/n!$$

Method 2 For given s, let us try to find the maximum of

 $f(x_1, \ldots, x_n) = (1 + x_1) \cdots (1 + x_n)$

subject to the constraint

$$x_1 + \dots + x_n = s.$$

Applying the Lagrange multiplier method, at a stationary point

$$\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \dots = \frac{\partial f}{\partial x_n}.$$

12. Prove that in a finite group G the number of solutions of the equation $x^n = e$ is a multiple of n whenever n divides the order of the group.

Answer:

13. There is a rabbit is in the middle of a circular pond. A poacher is on the edge of the pond. The poacher can run 4-times as fast as the rabbit can swim. Can the rabbit get away ?

Answer: The rabbit can escape.

Suppose the pond has radius R, and the rabbit can swim at speed v.

Let us say the poacher starts at angle π at the edge of the pond, and starts to run round the edge in anti-clockwise direction at speed v.

And let us suppose that the rabbit starts swimming along the radius at angle α .

To reach the rabbit the poacher has to run through angle $\pi + \alpha$. This will take time $R(\pi + \alpha)/4v$.

Meanwhile the rabbit takes time R/v to reach the edge.

Thus the rabbit will reach the edge before the poacher gets there if

$$(\pi + \alpha)/4 > 1,$$

$$\alpha > \pi - 4.$$

So the rabbit aims for a point a little larger than $\pi - 4$. Suppose the poacher is clever, and reverses direction after going through angle θ , in time $R\theta/4v$. The rabbit now aims for position $-\beta$. The poacher has to go through angle $\pi + 2\theta + \beta$. Meanwhile the rabbit is $R \cos \alpha$ nearer the edge, but has to travel through angle $\alpha + \beta$.

14. Does there exist an infinite uncountable family of subsets of \mathbb{N} such that $A \cap B$ is finite for all $A \neq B$ from this family?

Answer:

15. For which real numbers x > 0 is there a real number y > x such that

$$x^y = y^x$$
?

Answer: If $x^{y} = y^{x}$ (and x, y > 0) then $x^{1/x} = y^{1/y}$.

Consider the function

$$f(x) = x^{1/x} = e^{\log x/x}$$

for x > 0. We have to find for which c the equation

$$f(x) = c$$

has 2 (or more) solutions.

We have

$$f'(x) = (1/x^2 - \log x/x^2)e^{\log x/x}.$$

Thus

$$f'(x) = 0 \iff x = e.$$

ie

As $x \to 0$ (from above), $\log x/x \to -\infty$ and so $f(x) \to 0$. As $x \to \infty$, $\log x/x \to 0$ and so $f(x) \to 1$. We see that f(x) increases from 0 (at x = 0) to a maximum of $e^{1/e}$ at x = e, and then decreases to 1 at ∞ . It follows that the equation

$$f(x) = c$$

has 2 solutions if and only if

1 < c;

and the smallest of these solutions will satisfy

0 < x < e.

Challenge Problem

Show that the equation

$$x^x y^y = z^z$$

has an infinity of solutions in integers x, y, z > 1. Answer: