Problem Solving (MA2201)

Week 3

Timothy Murphy

1. Show that the product of any n successive integers is divisible by n !.
2. A rod of length 1 is thrown at random onto a floor tiled in squares of side 1 . What is the probability that the rod will fall wholly within one square?
3. What point P in a triangle $A B C$ minimises

$$
A P+B P+C P ?
$$

4. Evaluate

$$
\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}}
$$

5. What is the minimum value of

$$
f(x)=x^{x}
$$

for $x>0$?
6. Prove that 3,5 and 7 are the only 3 consecutive odd numbers all of which are prime.
7. In how many ways can $1,000,000$ be expressed as the product of 3 positive integers. (Factorisations differing only in order are to be considered the same.)
8. Prove that 2^{n} can begin with any sequence of digits.
9. The point P lies inside the square $A B C D$. If $|P A|=5$, $|P B|=3$ and $|P C|=7$, what is the side of the square?
10. The function $f(x)$ satisfies $f(1)=1$ and

$$
f^{\prime}(x)=\frac{1}{x^{2}+f^{2}(x)}
$$

for $x>1$. Prove that

$$
\lim _{x \rightarrow \infty} f(x)
$$

exists and is less than $1+\pi / 4$.
11. Find the maximum value of

$$
\frac{x+2}{2 x^{2}+3 x+6} .
$$

12. Let $a_{1}, a_{2}, a_{3}, \ldots$ be the sequence of all positive integers with no 9's in their decimal representation. Show that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\cdots
$$

converges.
13. How many zeros does the function

$$
f(x)=2^{x}-1-x^{2}
$$

have on the real line?
14. Suppose $f(x)$ is a polynomial with integer coefficients. If

$$
f(f(f(f(n))))=n
$$

for some integer n, show that

$$
f(f(n))=n
$$

15. Show that for any positive reals a, b, c,

$$
[(a+b)(b+c)(c+a)]^{1 / 3} \geq \frac{2}{\sqrt{3}}(a b+b c+c a)^{1 / 2}
$$

Challenge Problem

Suppose a, b are two positive integers such that $a b+1$ divides $a^{2}+b^{2}$. Prove that $\left(a^{2}+b^{2}\right) /(a b+1)$ is a perfect square.

