Problem Solving (MA2201)
Week 3

Timothy Murphy

. Show that the product of any n successive integers is divis-
ible by n!.

. A rod of length 1 is thrown at random onto a floor tiled in
squares of side 1. What is the probability that the rod will
fall wholly within one square?

Answer:

. What point P in a triangle ABC minimises

AP + BP +CP?
Answer:
. Evaluate
n=1 3"
Answer: Let
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(The series is convergent if |x| < 3.)
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o0 n—1
o) =3
1




Hence

n

S

i
371

n

S

X

n

w

=3,
25

Differentiating again,
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and so, multiplying by x again,
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Thus

3
f(1) z 7 3
(1) = 158: 7
"N =1=3
It follows that
D= +35+3
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. What is the minimum value of

flz) =2"
for x > 07

Answer: We have

and so

Hence
f(2)=0 <= xz=1/e.

If0 <z <1/e thenlogx+1 < 0 and so f(x) is decreasing.
If x > 1/e then logz +1 > 0 and so f(x) is increasing.
Hence f(z) attains its minimum value at © = 1/e, where

f(1/e) =e Ve

. Prove that 3, 5 and 7 are the only 3 consecutive odd num-
bers all of which are prime.

Answer: One of n,n + 2,n + 4 s divisible by 3, and if
n > 3 this number is not prime.



7. In how many ways can 1, 000, 000 be expressed as the prod-
uct of 3 positive integers. (Factorisations differing only in
order are to be considered the same.)

Answer: We have

1,000, 000 = 2°5°.
The three factors must be

20150 20252 20515,
where

0<epee3<6
and

ert+ext+e3=0,f1+ fat+ f3 =6.
8. Prove that 2" can begin with any sequence of digits.

Answer:

9. The point P lies inside the square ABCD. If |PA| = 5,
|PB| =3 and |PC| = 7, what is the side of the square?

Answer:

10. The function f(x) satisfies f(1) =1 and
1
/ J—
f(SC) - SC2+f2(SC)
for x > 1. Prove that
lim f(z)

r—0o0
exists and is less than 1+ 7/4.

Answer:

11. Find the maximum value of
T+ 2
2024+ 3x+6

Answer:

12. Let aq,as,as,... be the sequence of all positive integers
with no 9’s in their decimal representation. Show that

1 1 1
_t — 4+ — ..
aq a9 as

converges.

Answer:



13. How many zeros does the function
flz)=2"—1—2"

have on the real line?

Answer: Observe that

Also

Thus f(x) has at least one zero 0 € (4,5).
We shall show that 0,1,0 are the only zeros of f(x).

If x <0 then 2* < 1 and so f(x) < 0. Thus there are no
negative zeros, and so we may assume that x > 0.

We have
f(z) =log2-2" — 2z

(since 27 = 1827 ) Thys

" (z) = (log2)*2" — 2.

Since 2% is increasing, f"(x) has at most one zero. Since
f"(1) <0 (aslog2 < 1), while f"(x) — o0 asx — o0, it
follows that f"(x) has just one zero, and this is > 1.

If f(x) had a zero ¢ € (0,1) then, by the Mean Value The-
orem, f'(z) would have zeros in (0, ¢) and in (¢, 1), and so
f"(x) would have a zero in (0, 1), which we have seen is not
the case. So f(x) has no zeros in (0,1).

Suppose f(x) has more than one zero in (1,00). Let « be
the smallest such zero, and 3 be the largest.

Since f'(1) < 0, while f'(z) > 0 for large z, it follows that
Note that f'(x) does not have a multiple zero, since
fl@)=f"(z) =0 = (log2)f'(x) — f"(z) =0
— (log2)z =1
— 2" =ce.



14. Suppose f(z) is a polynomial with integer coefficients. If

FFF(Fn)))) =n

for some integer n, show that
f(f(n)) =n.
Answer: Ifu,v € Z then

(u =) [ f(u) = f(v).

Suppose

f(n) =a, f(a)=b,f(b) = ¢, f(c) =n
Then

n—alf(n)—f(a),
e
n—ala—>o.

Simalarly

a—blb—c,b—clc—nn—al|a—0b.
Hence

n—a==x(a—0b)==x(b—c)==x(c—n).

If
n—a=—(a—0>b)

then

n==~ub,
which is what we have to prove.
Simalarly

b—c=—(c—n) = b=mn,

while



15.

Thus we may assume that the signs are all positive, ie
n—a=a—b=b—c=c—n.
Since
(n—a)+(a—b)+(b—c)+(c—n)=0,

it follows that
n=a=>b=c,

and i particular n = b.

Show that for any positive reals a, b, c,

(a+b)(b+ c)(c+ a)] /3 > —=(ab+ be + ca)/2.

V3
Answer:
Method 1 Suppose a,b, c are the roots of
f(z) =2 - S2* + Ry — P.
Then
S=a+b+c, R=ab+bc+ ca, P=abc.

We have
(a+b)(b+c)c+a)=(S—a)(S—b)(S—c)
= f(S)
= RS- P.

Thus we have to show that
6

(RS — P)* > %R3
ie
A =3%RS - P)?-2°R*>0.
Recall the the discriminant of f(x) is

D = [(a—b)(b—c)(c— a)].

Clearly
D >0



if the roots of f(x) are real.

But suppose f(z) had one real root r and two complex
conjugate roots s + it. Then

D = [(r — s —it)(r — s +it)(2it)?
= —4t*[(r — 5)* + 7).

Thus
D < 0.

So D > 0 is the condition for f(x) to have 3 real roots.

Both D and A are symmetric polynomaials of order 6 in
a,b,c. It seems likely that they are equal up to a scalar
multiple.

Method 2 We wuse partial differentiation to identify the
local minima of

where
f(a,b,c) = (a+0b)(b+c)(c+a), g(a,b,c) = ab+ bc + ca,

subject to the constraint

a+b+c=3.
By the ‘Lagrange multiplier’ method, at a stationary
point
OF OF oF
—da+ —db+ —dc =0
9" T @ T e
whenever
da + db+ dc = 0.
In other words
or OF OF
da  Ob  Oc
at a stationary point.
Now
OF of dg
— =322 ——263 22
da / da’
OF 8 f g
= 322f— — 2034
b f b’
OF f dg
= 3%2f—— — 293¢° .
dc f T B¢



But

of dg

— = (b 2a + b — = (b

P (b+c)(2a+b+c), B (b+c),
so the factor b+c comes out of the first equation abowve,
and similarly for %, etc.

After removing these factors, subtraction of the first
equation from the second gives

(a—b) 3°2%f =0
Thus a = b; and similarly
a="b=c.
So (1,1,1) is the only stationary point, and must there-

fore give the minimum value 0 to F'.

Method 3 It should simplify matters if we move the origin
to (1,1,1) (where we are using the same constraint a +
b+ c =3 as above.

So let
a=1+z, b=1+y, c=1+z,

where
r+y+z2=0.

Let x,y, z be the roots of the cubic
hit)=(t—x)(t —y)(t —2) =t +rt —p,

where
r=xy+yz+zx, p=2ayY=z.

We have

(a+b)(b+c)ct+a)=2+z+y)2+y+2)(2+ 2+2)

=2-2)2-2)2-y)
= h(2)
=234 2r —p,

while

ab+bc+ca=(1+z+y+ay)+(l+y+z+yz)+ (1 +z2+2+ 22
=34



It slightly simplifies the calculations if we set x = 2x', y =
2y', z =27 The equation h(t) becomes

j(t) =t + 4rt — 8p,
while now

(a+Db)(b+c)(c+a) =21 +7r—p),
ab+ bc + ca = 3(1 +r),

and the inequality reads

(1+7r—p)?=(1+r)

Challenge Problem

Suppose a, b are two positive integers such that ab + 1 divides
a® + b?. Prove that (a® +0?)/(ab+ 1) is a perfect square.
Answer: Suppose the prime

plab+ 1.
Then
p|a*+ b
In other words,
ab= —1mod p, a* +v* = 0 mod p.
From the first of these,
a?b? = 1 mod p.
Hence a?,b* are roots of the equation
t2?—1=0mod p
e
(t—1)(t+ 1) =0mod p.
If p # 2 this implies that
a>=1,=—1modp ora®>=—1,0>=1mod p
But both these contradict the fact that

a?b? = 1 mod p.



Hence the only prime dividing ab + 1 s 2. Thus
ab+ 1 = 2°.
Hence a,b are odd, and so
a® 4+ b* = 2 mod 4.

Thus
e>2 = 2°¢a® + b

It follows that e = 1, so the only solution s the trivial one

a=b=1



