Problem Solving (MA2201)

Week 3

Timothy Murphy

1. Show that the product of any n successive integers is divisible by n !.
2. A rod of length 1 is thrown at random onto a floor tiled in squares of side 1 . What is the probability that the rod will fall wholly within one square?
Answer:
3. What point P in a triangle $A B C$ minimises

$$
A P+B P+C P ?
$$

Answer:

4. Evaluate

$$
\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}} .
$$

Answer: Let

$$
\begin{aligned}
f(x) & =1+\frac{x}{3}+\frac{x^{2}}{3^{2}}+\frac{x^{3}}{3^{3}}+\cdots \\
& =\sum_{0}^{\infty} \frac{x^{n}}{3^{n}} .
\end{aligned}
$$

(The series is convergent if $|x|<3$.)
Differentiating,

$$
f^{\prime}(x)=\sum_{1}^{\infty} \frac{n x^{n-1}}{3^{n}}
$$

Hence

$$
\begin{aligned}
x f^{\prime}(x) & =\sum_{1}^{\infty} \frac{n x^{n}}{3^{n}} \\
& =\sum_{0}^{\infty} \frac{n x^{n}}{3^{n}}
\end{aligned}
$$

Differentiating again,

$$
x f^{\prime \prime}(x)+f^{\prime}(x)=\sum_{1}^{\infty} \frac{n^{2} x^{n-1}}{3^{n}},
$$

and so, multiplying by x again,

$$
x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)=\sum_{0}^{\infty} \frac{n^{2} x^{n}}{3^{n}} .
$$

Differentiating again,

$$
x^{2} f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)+f^{\prime}(x)=\sum_{1}^{\infty} \frac{n^{3} x^{n-1}}{3^{n}} .
$$

Setting $x=1$,

$$
\Sigma=\sum_{0}^{\infty} \frac{n^{3}}{3^{n}}=f^{\prime \prime \prime}(1)+3 f^{\prime \prime}(1)+f^{\prime}(1) .
$$

Now

$$
\begin{aligned}
f(x) & =\frac{1}{1-x / 3} \\
& =\frac{3}{3-x} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
f^{\prime}(x) & =\frac{3}{(3-x)^{2}}, \\
f^{\prime \prime}(x) & =\frac{6}{(3-x)^{3}}, \\
f^{\prime \prime \prime}(x) & =\frac{18}{(3-x)^{4}} .
\end{aligned}
$$

Thus

$$
\begin{gathered}
f^{\prime}(1)=\frac{3}{4} \\
f^{\prime \prime}(1)=\frac{6}{8}=\frac{3}{4}, \\
f^{\prime \prime \prime}(1)=\frac{18}{16}=\frac{9}{8} .
\end{gathered}
$$

It follows that

$$
\begin{aligned}
\Sigma & =\frac{9}{8}+3 \frac{3}{4}+\frac{3}{4} \\
& =\frac{17}{8} .
\end{aligned}
$$

5. What is the minimum value of

$$
f(x)=x^{x}
$$

for $x>0$?
Answer: We have

$$
\log f(x)=x \log x,
$$

and so

$$
\frac{f^{\prime}(x)}{f(x)}=\log x+1
$$

Hence

$$
f^{\prime}(x)=0 \Longleftrightarrow x=1 / e .
$$

If $0<x<1$ /e then $\log x+1<0$ and so $f(x)$ is decreasing. If $x>1 / e$ then $\log x+1>0$ and so $f(x)$ is increasing. Hence $f(x)$ attains its minimum value at $x=1 / e$, where

$$
f(1 / e)=e^{-1 / e} .
$$

6 . Prove that 3,5 and 7 are the only 3 consecutive odd numbers all of which are prime.
Answer: One of $n, n+2, n+4$ is divisible by 3, and if $n>3$ this number is not prime.
7. In how many ways can $1,000,000$ be expressed as the product of 3 positive integers. (Factorisations differing only in order are to be considered the same.)
Answer: We have

$$
1,000,000=2^{6} 5^{6} .
$$

The three factors must be

$$
2^{e_{1}} 5^{f_{1}}, 2^{e_{2}} 5^{f_{2}}, 2^{e_{3}} 5^{f_{3}}
$$

where

$$
0 \leq e_{1}, e_{2}, e_{3} \leq 6
$$

and

$$
e_{1}+e_{2}+e_{3}=6, f_{1}+f_{2}+f_{3}=6 .
$$

8. Prove that 2^{n} can begin with any sequence of digits.

Answer:

9. The point P lies inside the square $A B C D$. If $|P A|=5$, $|P B|=3$ and $|P C|=7$, what is the side of the square?
Answer:
10. The function $f(x)$ satisfies $f(1)=1$ and

$$
f^{\prime}(x)=\frac{1}{x^{2}+f^{2}(x)}
$$

for $x>1$. Prove that

$$
\lim _{x \rightarrow \infty} f(x)
$$

exists and is less than $1+\pi / 4$.

Answer:

11. Find the maximum value of

$$
\frac{x+2}{2 x^{2}+3 x+6} .
$$

Answer:

12. Let $a_{1}, a_{2}, a_{3}, \ldots$ be the sequence of all positive integers with no 9's in their decimal representation. Show that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\cdots
$$

converges.
Answer:
13. How many zeros does the function

$$
f(x)=2^{x}-1-x^{2}
$$

have on the real line?
Answer: Observe that

$$
f(0)=0, f(1)=0 .
$$

Also

$$
f(2)=-1, f(3)=-2, f(4)=-1, f(5)=6
$$

Thus $f(x)$ has at least one zero $\theta \in(4,5)$.
We shall show that $0,1, \theta$ are the only zeros of $f(x)$.
If $x<0$ then $2^{x}<1$ and so $f(x)<0$. Thus there are no negative zeros, and so we may assume that $x \geq 0$.
We have

$$
f^{\prime}(x)=\log 2 \cdot 2^{x}-2 x
$$

(since $\left.2^{x}=e^{(\log 2) x}\right)$. Thus

$$
f^{\prime \prime}(x)=(\log 2)^{2} 2^{x}-2 .
$$

Since 2^{x} is increasing, $f^{\prime \prime}(x)$ has at most one zero. Since $f^{\prime \prime}(1)<0$ (as $\log 2<1$), while $f^{\prime \prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$, it follows that $f^{\prime \prime}(x)$ has just one zero, and this is >1.
If $f(x)$ had a zero $\phi \in(0,1)$ then, by the Mean Value Theorem, $f^{\prime}(x)$ would have zeros in $(0, \phi)$ and in $(\phi, 1)$, and so $f^{\prime \prime}(x)$ would have a zero in $(0,1)$, which we have seen is not the case. So $f(x)$ has no zeros in $(0,1)$.
Suppose $f(x)$ has more than one zero in $(1, \infty)$. Let α be the smallest such zero, and β be the largest.
Since $f^{\prime}(1)<0$, while $f^{\prime}(x)>0$ for large x, it follows that Note that $f^{\prime}(x)$ does not have a multiple zero, since

$$
\begin{aligned}
f^{\prime}(x)=f^{\prime \prime}(x)=0 & \Longrightarrow(\log 2) f^{\prime}(x)-f^{\prime \prime}(x)=0 \\
& \Longrightarrow(\log 2) x=1 \\
& \Longrightarrow 2^{x}=e
\end{aligned}
$$

14. Suppose $f(x)$ is a polynomial with integer coefficients. If

$$
f(f(f(f(n))))=n
$$

for some integer n, show that

$$
f(f(n))=n
$$

Answer: If $u, v \in \mathbb{Z}$ then

$$
(u-v) \mid f(u)-f(v)
$$

Suppose

$$
f(n)=a, f(a)=b, f(b)=c, f(c)=n
$$

Then

$$
n-a \mid f(n)-f(a)
$$

ie

$$
n-a \mid a-b
$$

Similarly

$$
a-b|b-c, b-c| c-n n-a \mid a-b
$$

Hence

$$
n-a= \pm(a-b)= \pm(b-c)= \pm(c-n)
$$

If

$$
n-a=-(a-b)
$$

then

$$
n=b
$$

which is what we have to prove.
Similarly

$$
b-c=-(c-n) \Longrightarrow b=n
$$

while

$$
\begin{aligned}
a-b=-(b-c) & \Longrightarrow a=c \\
& \Longrightarrow f(a)=f(c) \\
& \Longrightarrow b=n
\end{aligned}
$$

Thus we may assume that the signs are all positive, ie

$$
n-a=a-b=b-c=c-n .
$$

Since

$$
(n-a)+(a-b)+(b-c)+(c-n)=0,
$$

it follows that

$$
n=a=b=c,
$$

and in particular $n=b$.
15. Show that for any positive reals a, b, c,

$$
[(a+b)(b+c)(c+a)]^{1 / 3} \geq \frac{2}{\sqrt{3}}(a b+b c+c a)^{1 / 2}
$$

Answer:

Method 1 Suppose a,b,c are the roots of

$$
f(x)=x^{3}-S x^{2}+R x-P .
$$

Then

$$
S=a+b+c, R=a b+b c+c a, P=a b c .
$$

We have

$$
\begin{aligned}
(a+b)(b+c)(c+a) & =(S-a)(S-b)(S-c) \\
& =f(S) \\
& =R S-P .
\end{aligned}
$$

Thus we have to show that

$$
(R S-P)^{2} \geq \frac{2^{6}}{3^{3}} R^{3}
$$

ie

$$
\Delta=3^{3}(R S-P)^{2}-2^{6} R^{3} \geq 0 .
$$

Recall the the discriminant of $f(x)$ is

$$
D=[(a-b)(b-c)(c-a)]^{2} .
$$

Clearly

$$
D \geq 0
$$

if the roots of $f(x)$ are real.
But suppose $f(x)$ had one real root r and two complex conjugate roots $s \pm i t$. Then

$$
\begin{aligned}
D & =\left[(r-s-i t)(r-s+i t)(2 i t)^{2}\right. \\
& =-4 t^{2}\left[(r-s)^{2}+t^{2}\right]^{2} .
\end{aligned}
$$

Thus

$$
D<0
$$

So $D \geq 0$ is the condition for $f(x)$ to have 3 real roots. Both D and Δ are symmetric polynomials of order 6 in a, b, c. It seems likely that they are equal up to a scalar multiple.
Method 2 We use partial differentiation to identify the local minima of

$$
F(a, b, c)=3^{2} f(a, b, c)^{2}-2^{6} g(a, b, c)^{3},
$$

where
$f(a, b, c)=(a+b)(b+c)(c+a), g(a, b, c)=a b+b c+c a$, subject to the constraint

$$
a+b+c=3 .
$$

By the 'Lagrange multiplier' method, at a stationary point

$$
\frac{\partial F}{\partial a} d a+\frac{\partial F}{\partial b} d b+\frac{\partial F}{\partial c} d c=0
$$

whenever

$$
d a+d b+d c=0 .
$$

In other words

$$
\frac{\partial F}{\partial a}=\frac{\partial F}{\partial b}=\frac{\partial F}{\partial c}
$$

at a stationary point.
Now

$$
\begin{aligned}
& \frac{\partial F}{\partial a}=3^{2} 2 f \frac{\partial f}{\partial a}-2^{6} 3 g^{2} \frac{\partial g}{\partial a} \\
& \frac{\partial F}{\partial b}=3^{2} 2 f \frac{\partial f}{\partial b}-2^{6} 3 g^{2} \frac{\partial g}{\partial b} \\
& \frac{\partial F}{\partial c}=3^{2} 2 f \frac{\partial f}{\partial c}-2^{6} 3 g^{2} \frac{\partial g}{\partial c}
\end{aligned}
$$

But

$$
\frac{\partial f}{\partial a}=(b+c)(2 a+b+c), \frac{\partial g}{\partial a}=(b+c),
$$

so the factor $b+c$ comes out of the first equation above, and similarly for $\frac{\partial f}{\partial b}$, etc.
After removing these factors, subtraction of the first equation from the second gives

$$
(a-b) 3^{2} 2^{2} f=0
$$

Thus $a=b$; and similarly

$$
a=b=c .
$$

So $(1,1,1)$ is the only stationary point, and must therefore give the minimum value 0 to F.
Method 3 It should simplify matters if we move the origin to $(1,1,1)$ (where we are using the same constraint $a+$ $b+c=3$ as above.
So let

$$
a=1+x, b=1+y, c=1+z,
$$

where

$$
x+y+z=0 .
$$

Let x, y, z be the roots of the cubic

$$
h(t)=(t-x)(t-y)(t-z)=t^{3}+r t-p,
$$

where

$$
r=x y+y z+z x, p=x y z .
$$

We have

$$
\begin{aligned}
(a+b)(b+c)(c+a) & =(2+x+y)(2+y+z)(2+z+x) \\
& =(2-z)(2-x)(2-y) \\
& =h(2) \\
& =2^{3}+2 r-p
\end{aligned}
$$

while

$$
\begin{aligned}
a b+b c+c a & =(1+x+y+x y)+(1+y+z+y z)+(1+z+x+z x) \\
& =3+r .
\end{aligned}
$$

It slightly simplifies the calculations if we set $x=2 x^{\prime}, y=$ $2 y^{\prime}, z=2 z^{\prime}$. The equation $h(t)$ becomes

$$
j(t)=t^{3}+4 r t-8 p
$$

while now

$$
\begin{gathered}
(a+b)(b+c)(c+a)=2^{3}(1+r-p) \\
a b+b c+c a=3(1+r)
\end{gathered}
$$

and the inequality reads

$$
(1+r-p)^{2}=(1+r)^{3}
$$

Challenge Problem

Suppose a, b are two positive integers such that $a b+1$ divides $a^{2}+b^{2}$. Prove that $\left(a^{2}+b^{2}\right) /(a b+1)$ is a perfect square.

Answer: Suppose the prime

$$
p \mid a b+1
$$

Then

$$
p \mid a^{2}+b^{2}
$$

In other words,

$$
a b \equiv-1 \bmod p, a^{2}+b^{2} \equiv 0 \bmod p
$$

From the first of these,

$$
a^{2} b^{2} \equiv 1 \bmod p
$$

Hence a^{2}, b^{2} are roots of the equation

$$
t^{2}-1 \equiv 0 \bmod p
$$

ie

$$
(t-1)(t+1) \equiv 0 \bmod p
$$

If $p \neq 2$ this implies that

$$
a^{2} \equiv 1, b^{2} \equiv-1 \bmod p \text { or } a^{2} \equiv-1, b^{2} \equiv 1 \bmod p
$$

But both these contradict the fact that

$$
a^{2} b^{2} \equiv 1 \bmod p
$$

Hence the only prime dividing $a b+1$ is 2. Thus

$$
a b+1=2^{e}
$$

Hence a, b are odd, and so

$$
a^{2}+b^{2} \equiv 2 \bmod 4
$$

Thus

$$
e \geq 2 \Longrightarrow 2^{e} \nmid a^{2}+b^{2}
$$

It follows that $e=1$, so the only solution is the trivial one

$$
a=b=1
$$

