
Problem Solving (MA2201)

Week 3

Timothy Murphy

1. Show that the product of any n successive integers is divis-
ible by n!.

2. A rod of length 1 is thrown at random onto a floor tiled in
squares of side 1. What is the probability that the rod will
fall wholly within one square?

Answer:

3. What point P in a triangle ABC minimises

AP +BP + CP?

Answer:

4. Evaluate ∞∑
n=1

n3

3n
.

Answer: Let

f(x) = 1 +
x

3
+
x2

32 +
x3

33 + · · ·

=
∞∑
0

xn

3n
.

(The series is convergent if |x| < 3.)

Differentiating,

f ′(x) =
∞∑
1

nxn−1

3n



Hence

xf ′(x) =
∞∑
1

nxn

3n

=
∞∑
0

nxn

3n
.

Differentiating again,

xf ′′(x) + f ′(x) =
∞∑
1

n2xn−1

3n
,

and so, multiplying by x again,

x2f ′′(x) + xf ′(x) =
∞∑
0

n2xn

3n
.

Differentiating again,

x2f ′′′(x) + 3xf ′′(x) + f ′(x) =
∞∑
1

n3xn−1

3n
.

Setting x = 1,

Σ =
∞∑
0

n3

3n
= f ′′′(1) + 3f ′′(1) + f ′(1).

Now

f(x) =
1

1− x/3

=
3

3− x
.

Hence

f ′(x) =
3

(3− x)2 ,

f ′′(x) =
6

(3− x)3 ,

f ′′′(x) =
18

(3− x)4 .



Thus

f ′(1) =
3

4
,

f ′′(1) =
6

8
=

3

4
,

f ′′′(1) =
18

16
=

9

8
.

It follows that

Σ =
9

8
+ 3

3

4
+

3

4

=
17

8
.

5. What is the minimum value of

f(x) = xx

for x > 0?

Answer: We have

log f(x) = x log x,

and so
f ′(x)

f(x)
= log x+ 1.

Hence
f ′(x) = 0 ⇐⇒ x = 1/e.

If 0 < x < 1/e then log x+1 < 0 and so f(x) is decreasing.
If x > 1/e then log x + 1 > 0 and so f(x) is increasing.
Hence f(x) attains its minimum value at x = 1/e, where

f(1/e) = e−1/e.

6. Prove that 3, 5 and 7 are the only 3 consecutive odd num-
bers all of which are prime.

Answer: One of n, n + 2, n + 4 is divisible by 3, and if
n > 3 this number is not prime.



7. In how many ways can 1, 000, 000 be expressed as the prod-
uct of 3 positive integers. (Factorisations differing only in
order are to be considered the same.)

Answer: We have

1, 000, 000 = 2656.

The three factors must be

2e15f1, 2e25f2, 2e35f3,

where
0 ≤ e1, e2, e3 ≤ 6

and
e1 + e2 + e3 = 6, f1 + f2 + f3 = 6.

8. Prove that 2n can begin with any sequence of digits.

Answer:

9. The point P lies inside the square ABCD. If |PA| = 5,
|PB| = 3 and |PC| = 7, what is the side of the square?

Answer:

10. The function f(x) satisfies f(1) = 1 and

f ′(x) =
1

x2 + f 2(x)

for x > 1. Prove that

lim
x→∞

f(x)

exists and is less than 1 + π/4.

Answer:

11. Find the maximum value of
x+ 2

2x2 + 3x+ 6
.

Answer:

12. Let a1, a2, a3, . . . be the sequence of all positive integers
with no 9’s in their decimal representation. Show that

1

a1
+

1

a2
+

1

a3
+ · · ·

converges.

Answer:



13. How many zeros does the function

f(x) = 2x − 1− x2

have on the real line?

Answer: Observe that

f(0) = 0, f(1) = 0.

Also

f(2) = −1, f(3) = −2, f(4) = −1, f(5) = 6.

Thus f(x) has at least one zero θ ∈ (4, 5).

We shall show that 0, 1, θ are the only zeros of f(x).

If x < 0 then 2x < 1 and so f(x) < 0. Thus there are no
negative zeros, and so we may assume that x ≥ 0.

We have
f ′(x) = log 2 · 2x − 2x

(since 2x = e(log 2)x). Thus

f ′′(x) = (log 2)22x − 2.

Since 2x is increasing, f ′′(x) has at most one zero. Since
f ′′(1) < 0 (as log 2 < 1), while f ′′(x) → ∞ as x → ∞, it
follows that f ′′(x) has just one zero, and this is > 1.

If f(x) had a zero φ ∈ (0, 1) then, by the Mean Value The-
orem, f ′(x) would have zeros in (0, φ) and in (φ, 1), and so
f ′′(x) would have a zero in (0, 1), which we have seen is not
the case. So f(x) has no zeros in (0, 1).

Suppose f(x) has more than one zero in (1,∞). Let α be
the smallest such zero, and β be the largest.

Since f ′(1) < 0, while f ′(x) > 0 for large x, it follows that

Note that f ′(x) does not have a multiple zero, since

f ′(x) = f ′′(x) = 0 =⇒ (log2)f ′(x)− f ′′(x) = 0

=⇒ (log 2)x = 1

=⇒ 2x = e.



14. Suppose f(x) is a polynomial with integer coefficients. If

f(f(f(f(n)))) = n

for some integer n, show that

f(f(n)) = n.

Answer: If u, v ∈ Z then

(u− v) | f(u)− f(v).

Suppose

f(n) = a, f(a) = b, f(b) = c, f(c) = n.

Then

n− a | f(n)− f(a),

ie

n− a | a− b.

Similarly

a− b | b− c, b− c | c− n n− a | a− b.

Hence

n− a = ±(a− b) = ±(b− c) = ±(c− n).

If

n− a = −(a− b)

then

n = b,

which is what we have to prove.

Similarly
b− c = −(c− n) =⇒ b = n,

while

a− b = −(b− c) =⇒ a = c

=⇒ f(a) = f(c)

=⇒ b = n,



Thus we may assume that the signs are all positive, ie

n− a = a− b = b− c = c− n.

Since

(n− a) + (a− b) + (b− c) + (c− n) = 0,

it follows that
n = a = b = c,

and in particular n = b.

15. Show that for any positive reals a, b, c,

[(a+ b)(b+ c)(c+ a)]1/3 ≥ 2√
3

(ab+ bc+ ca)1/2.

Answer:

Method 1 Suppose a, b, c are the roots of

f(x) = x3 − Sx2 +Rx− P.

Then

S = a+ b+ c, R = ab+ bc+ ca, P = abc.

We have

(a+ b)(b+ c)(c+ a) = (S − a)(S − b)(S − c)
= f(S)

= RS − P.

Thus we have to show that

(RS − P )2 ≥ 26

33R
3

ie

∆ = 33(RS − P )2 − 26R3 ≥ 0.

Recall the the discriminant of f(x) is

D = [(a− b)(b− c)(c− a)]2.

Clearly
D ≥ 0



if the roots of f(x) are real.

But suppose f(x) had one real root r and two complex
conjugate roots s± it. Then

D = [(r − s− it)(r − s+ it)(2it)2

= −4t2[(r − s)2 + t2]2.

Thus
D < 0.

So D ≥ 0 is the condition for f(x) to have 3 real roots.

Both D and ∆ are symmetric polynomials of order 6 in
a, b, c. It seems likely that they are equal up to a scalar
multiple.

Method 2 We use partial differentiation to identify the
local minima of

F (a, b, c) = 32f(a, b, c)2 − 26g(a, b, c)3,

where

f(a, b, c) = (a+ b)(b+ c)(c+ a), g(a, b, c) = ab+ bc+ ca,

subject to the constraint

a+ b+ c = 3.

By the ‘Lagrange multiplier’ method, at a stationary
point

∂F

∂a
da+

∂F

∂b
db+

∂F

∂c
dc = 0

whenever
da+ db+ dc = 0.

In other words

∂F

∂a
=
∂F

∂b
=
∂F

∂c

at a stationary point.

Now

∂F

∂a
= 322f

∂f

∂a
− 263g2∂g

∂a
,

∂F

∂b
= 322f

∂f

∂b
− 263g2∂g

∂b
,

∂F

∂c
= 322f

∂f

∂c
− 263g2∂g

∂c
.



But

∂f

∂a
= (b+ c)(2a+ b+ c),

∂g

∂a
= (b+ c),

so the factor b+c comes out of the first equation above,
and similarly for ∂f

∂b , etc.

After removing these factors, subtraction of the first
equation from the second gives

(a− b) 3222f = 0

Thus a = b; and similarly

a = b = c.

So (1, 1, 1) is the only stationary point, and must there-
fore give the minimum value 0 to F .

Method 3 It should simplify matters if we move the origin
to (1, 1, 1) (where we are using the same constraint a+
b+ c = 3 as above.

So let
a = 1 + x, b = 1 + y, c = 1 + z,

where
x+ y + z = 0.

Let x, y, z be the roots of the cubic

h(t) = (t− x)(t− y)(t− z) = t3 + rt− p,

where
r = xy + yz + zx, p = xyz.

We have

(a+ b)(b+ c)(c+ a) = (2 + x+ y)(2 + y + z)(2 + z + x)

= (2− z)(2− x)(2− y)

= h(2)

= 23 + 2r − p,

while

ab+ bc+ ca = (1 + x+ y + xy) + (1 + y + z + yz) + (1 + z + x+ zx)

= 3 + r.



It slightly simplifies the calculations if we set x = 2x′, y =
2y′, z = 2z′. The equation h(t) becomes

j(t) = t3 + 4rt− 8p,

while now

(a+ b)(b+ c)(c+ a) = 23(1 + r − p),
ab+ bc+ ca = 3(1 + r),

and the inequality reads

(1 + r − p)2 = (1 + r)3.

Challenge Problem

Suppose a, b are two positive integers such that ab + 1 divides
a2 + b2. Prove that (a2 + b2)/(ab+ 1) is a perfect square.

Answer: Suppose the prime

p | ab+ 1.

Then
p | a2 + b2.

In other words,

ab ≡ −1 mod p, a2 + b2 ≡ 0 mod p.

From the first of these,

a2b2 ≡ 1 mod p.

Hence a2, b2 are roots of the equation

t2 − 1 ≡ 0 mod p

ie

(t− 1)(t+ 1) ≡ 0 mod p.

If p 6= 2 this implies that

a2 ≡ 1, b2 ≡ −1 mod p or a2 ≡ −1, b2 ≡ 1 mod p

But both these contradict the fact that

a2b2 ≡ 1 mod p.



Hence the only prime dividing ab+ 1 is 2. Thus

ab+ 1 = 2e.

Hence a, b are odd, and so

a2 + b2 ≡ 2 mod 4.

Thus
e ≥ 2 =⇒ 2e - a2 + b2.

It follows that e = 1, so the only solution is the trivial one

a = b = 1


