Problem Solving (MA2201)

Week 2

Timothy Murphy

1. Find the largest positive integer such that $n^{3}+100$ is divisible by $n+10$.
Answer: Let

$$
N=n+10 .
$$

Then

$$
n^{3}+100=0 \bmod N .
$$

But

$$
n=-10 \bmod N,
$$

SO

$$
n^{3}+100=-900 \bmod N .
$$

Thus

$$
N \mid 900 .
$$

2. Find all positive integers n such that $n!+5$ is a perfect cube.

Answer: For any prime p,

$$
n!+5 \equiv 5 \bmod p
$$

for all $n \geq p$.

So if $n!+5$ is a perfect cube, then 5 is a cubic residue $\bmod p$

Recall that $(\mathbb{Z} / p)^{\times}$is a cyclic group of order $p-1$.
If $3 \nmid p-1$ then the homomorphism

$$
x \mapsto x^{3}:(\mathbb{Z} / p)^{\times} \rightarrow(\mathbb{Z} / p)^{\times}
$$

has trivial kernel, and so is surjective, ie every element is a cubic residue.

But if $3 \mid p-1$ then the kernel contains just 3 elements (the elements of order 3), and so ($p-1$)/3 elements are cubic residues, so there is a reasonable chance the 5 will not be.

Take $p=7$. There are $6 / 3=2$ cubic residues, namely $\pm 1 \bmod p$. So 5 is not a cubic residue $\bmod 7$, and it follows that $n!+5$ cannot be a cube if $n \geq 7$.

Checking $n!+5$ for $n<7$ we see that the only cube occurs when $n=5$.
3. Show that the product of 4 successive integers cannot be a perfect square.

Answer:

Method 1 Let the successive integers be $n, n+1, n+2, n+$ 3.

We have

$$
n(n+3)=n^{2}+3 n,(n+1)(n+2)=n^{2}+3 n+2 .
$$

Thus

$$
n(n+3)<(n+1)(n+2),
$$

and so

$$
[n(n+3)]^{2}<n(n+1)(n+2)(n+3)<\left[(n+1)\left(n_{2}\right)\right]^{2} .
$$

Also

$$
(n+1)(n+2)=n(n+3)+2 .
$$

Thus if $n(n+1)(n+2)(n+3)$ is a perfect square, we must have

$$
n(n+1)(n+2)(n+3)=[n(n+3)+1]^{2} /
$$

But that is impossible, since the left-hand side is even while the right-hand side is odd, since one of $n, n+3$ is even.

Method 2 Suppose $n(n+1)(n+2)(n+3)$ is a perfect square.
Suppose first that $3 \nmid n$.
Two of the numbers are even, and two are odd. Suppose $n, n+2$ are even. Then
$\operatorname{gcd}(n, n+1)=1, \operatorname{gcd}(n, n+2)=2, \operatorname{gcd}(n, n+3)=1, \operatorname{gcd}(n+1, n+2)$
It follows that

$$
n=2 a^{2}, n+1=b^{2}, n+2=2 c^{2}, n+3=d^{2} .
$$

But then

$$
b^{2}<n+3<(b+1)^{2}=n+2+2 b .
$$

So $n+2$ cannot be a square (unless $b=0$).
In the same way, if $n+1, n+3$ are even then

$$
n=a^{2}, n+1=2 b^{2}, n+2=c^{2}, n+3=2 d^{2} .
$$

Again,

$$
a^{2}<n+2<(a+1)^{2} .
$$

Now suppose $3 \mid n$. Then $3 \mid n, n+3$.
Suppose $n, n+2$ are even. Then
$\operatorname{gcd}(n, n+1)=1, \operatorname{gcd}(n, n+2)=2, \operatorname{gcd}(n, n+3)=3, \operatorname{gcd}(n+1, n+2)$
It follows that

$$
n=6 a^{2}, n+1=b^{2}, n+2=2 c^{2}, n+3=3 d^{2} .
$$

Can we go on from here?
4. Find the positive integer n for which

$$
\left[\log _{2} 1\right]+\left[\log _{2} 2\right]+\left[\log _{2} 3\right]+\cdots+\left[\log _{2} n\right]=2010
$$

where $[x]$ denotes the greatest integer $\leq x$.
Answer: Let

$$
N(n)=\left[\log _{2} 1\right]+\left[\log _{2} 2\right]+\left[\log _{2} 3\right]+\cdots+\left[\log _{2} n\right]
$$

We have

$$
\begin{array}{r}
{[\log r]=0 \text { if } r=1} \\
{[\log r]=1 \text { if } r=2,3} \\
{[\log r]=2 \text { if } 4 \leq r<8} \\
\ldots \\
{[\log r]=e-1 \text { if } 2^{e-1} \leq r<2^{e} .}
\end{array}
$$

Hence

$$
\begin{aligned}
N\left(2^{e}-1\right) & =\sum_{1}^{2^{e}-1}[\log r] \\
& =0 \cdot 1+1 \cdot 2+2 \cdot 2^{2}+\ldots+(e-1) 2^{e-1}
\end{aligned}
$$

Let

$$
\begin{aligned}
f(x) & =1+x+x^{2}+\ldots+x^{e-1} \\
& =\frac{x^{e}-1}{x-1}
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}(x) & =1+2 x+\ldots+(e-1) x^{e-2} \\
& =\frac{e x^{e-1}}{x-1}-\frac{x^{e}-1}{(x-1)^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
N\left(2^{e}-1\right) & =2 f^{\prime}(2) \\
& =2 e 2^{e-1}-2\left(2^{e}-1\right) \\
& =(e-2) 2^{e}+2
\end{aligned}
$$

In particular

$$
N\left(2^{9}-1\right)=7 \cdot 2^{8}+2
$$

ie

$$
N(511)=1538
$$

After this we are adding 8 for each number. Since

$$
1538=2 \bmod 8
$$

we get numbers $=2$ mod 8, such as 2010.
5. If the number n is chosen at random, what is the probability that 2^{n} ends in 2 ?
6. If the number n is chosen at random, what is the probability that 2^{n} starts with 1 ?
7. Let us say that a number is almost-prime if it is not divisible by $2,3,5$ or 7 . How many almost-prime numbers are there less than 1,000 ?

Answer: Let $S(r)$ be the natural numbers ≤ 1000 that are divisible by r :

$$
S(r)=\{1 \leq n \leq 1000: r \mid n\}
$$

Then

$$
\# S(r)=[1000 / r]
$$

We have to determine the number of elements in

$$
X=[1,1000] \backslash(S(2) \cup S(3) \cup S(5) \cup S(7))
$$

By the Principle of Inclusion-Exclusion,

$$
\begin{aligned}
\#(S(2) \cup S(3) \cup S(5) \cup S(7))= & \# S(2)+\# S(3)+\# S(5)+\# S(7) \\
& -\#(S(2) \cap S(3))-\#(S(2) \cap S(5))-\#(S \\
& +\#(S(3) \cap S(5))+\#(S(3) \cap S(7))+\#(S) \\
& -\#(S(2) \cap S(3) \cap S(5))+\#(S(2) \cap S(5) \upharpoonright \\
& -\#(S(2) \cap S(3) \cap S(7))-\#(S(3) \cap S(5) \\
& +\#(S(2) \cap S(3) \cap S(5) \cap S(7)
\end{aligned}
$$

8. 8 people are sitting round a circular table. In how many ways can they change places so that each person has a different neighbour to the right?
Answer: Let us solve the problem with a set X of n people around the table. Let the number of solutions be $f(n)$.
For simplicity let us number the people $0,1, \ldots, n-1 \bmod n$.
Consider a permutation π of the set X. Suppose in fact just r people still have the same person on their right, Then we can define a permutation σ of the $n-r$ remaining people $X \backslash S$ by identifying i with $i+1$ if

$$
\pi(i+1) \equiv \pi(i)+1
$$

Thus suppose the interval $[j, k] \subset X$, ie

$$
\pi(i+1) \equiv \pi(i)+1
$$

for $i=j, j+1, \ldots, j+k$, but

$$
\pi(j-1) \not \equiv \pi(j)-1, \pi(k+1) \not \equiv \pi(k)+1 ;
$$

and suppose

$$
\pi(\ell)=j .
$$

Then we set

$$
\sigma(\ell)=k .
$$

9. If a set of circles is placed in the plane so that no circle in the set lies inside another one, does it follow that the set is enumerable?

Answer:

10. Can you find 3integers x, y, z, not all zero, such that

$$
x^{3}+2 y^{3}+4 z^{3}=0 ?
$$

Answer:

11. What point P in a triangle $A B C$ minimises

$$
A P^{2}+B P^{2}+C P^{2} ?
$$

Answer:

12. Show that in a group of 6 people there are either 3 people who know each other ("mututal acquaintances") or 3 people who don't know each other ("Mutual strangers")

Answer:

13. Show that the complex numbers x, y, z form an equilateral triangle if and only if

$$
x^{2}+y^{2}+z^{2}=x y+y z+z x .
$$

Answer:

14. Show that in any graph with at least 2 vertices there must be 2 vertices with the same degree. (The degree of a vertex is the number of edges with an end-point at that vertex.)

Answer:

15. Show that for any $k>2$ one can find k integers $0<a_{1}<$ $a_{2}<\cdots<a_{k}$ such that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots \frac{1}{a_{k}}=1 .
$$

Answer: We have

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1 .
$$

Suppose

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots \frac{1}{a_{k}}=1 .
$$

Then

$$
\frac{1}{k}=\frac{1}{a_{k}}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=\frac{1}{2 a_{k}}+=\frac{1}{3 a_{k}}+=\frac{1}{6 a_{k}}
$$

giving a sum of the same kind with 2 additional terms.
The sum

$$
\frac{1}{2}+\frac{1}{2}=1
$$

gives successive sums with $4,6,8, \ldots$ terms, while

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1
$$

gives successive sums with $5,7,9, \ldots$ terms.
Thus we have solutions for all $k \geq 3$.

Challenge Problem
Do there exist primes p, q such that

$$
p \mid q(q-1)+1 \text { and } q \mid p(p-1)+1 ?
$$

Answer:

