Problem Solving (MA2201)

Week 12

Timothy Murphy

December 11, 2011

1. Show that each rational number x is uniquely expressible as a finite sum of the form

$$
x=a_{1}+\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\cdots+\frac{a_{n}}{n!},
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are integers with $0 \leq a_{r}<r$ for $r=$ $2,3, \ldots, n$.
2. Each of four people A, B, C, D tell the truth just 1 time in 3. A makes a statement, and B says that C says that D says that A is telling the truth. What is the probability that A is actually telling the truth?
3. Suppose α, β are positive irrational numbers satisfying $1 / \alpha+1 / \beta=1$. Show that the sequences

$$
[\alpha],[2 \alpha],[3 \alpha], \ldots \quad \text { and } \quad[\beta],[2 \beta],[3 \beta], \ldots
$$

together contain each positive integer just once.
4. Find all pairs of distinctive positive rationals x, y such that

$$
x^{y}=y^{x} .
$$

5. Show that if a, b, c are positive real numbers then

$$
[(a+b)(b+c)(c+a)]^{1 / 3} \geq \frac{2}{\sqrt{3}}(a b+b c+c a)^{1 / 2}
$$

6. Bob and Alice arrange to meet between 1 pm and 2 pm . Each agrees to wait just 15 minutes for the other. What is the probability that they meet?
7. If

$$
N=\overbrace{111 \ldots 1}^{10001^{1} \mathrm{~s}},
$$

what is the 1000th digit after the decimal point of \sqrt{N} ?
8. Show that a continuous function $f:[0,1] \rightarrow[0,1]$ must leave at least one point fixed: $f(x)=x$.
9. Determine

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+1} .
$$

10 . Determine $\operatorname{det} A$, where A is the $n \times n$ matrix with entries

$$
a_{i j}=\frac{1}{x_{i}+y_{j}} .
$$

11. What is the maximal area of a quadrilateral with sides $1,2,3,4$?
12. Can you find an equilateral triangle all of whose vertices have integer coordinates?
13. Given any two polynomials $f(t), g(t)$, show that there exists a non-zero polynomial $F(x, y)$ such that $F(f(t), g(t))=0$ identically.
14. Show that the equation

$$
y^{5}=x^{2}+4
$$

has no integer solutions.
15. Show that there exists a real number α such that the fractional part of α^{n} lies between $1 / 3$ and $2 / 3$ for all positive integers n.

Challenge Problem

Let h and k be positive integers. Prove that for every $\epsilon>0$, there are positive integers m and n such that

$$
\epsilon<|h \sqrt{m}-k \sqrt{n}|<2 \epsilon
$$

