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1. Show that each rational number x is uniquely expressible
as a finite sum of the form

x = a1 +
a2

2!
+
a3

3!
+ · · ·+ an

n!
,

where a1, a2, . . . , an are integers with 0 ≤ ar < r for r =
2, 3, . . . , n.

Answer: We denote the fractional part of the real number
x by {x}, so that

x = [x] + {x}.
Let us define x1, x2, . . . ; a1, a2, . . . ; s1, s2, . . . successively as
follows:

a1 = [x], x1 = {x}, s1 = a1;

a2 = [2x1], x2 = {2x1}, s2 = s1 + a2/2!;

. . .

ar = [rxr−1], xr = {rxr−1}, sr = sr−1 + ar/r!

. . . .

Then

rxr−1 = ar + xr,

and

0 ≤ xr−1 < 1 =⇒ 0 ≤ ar < r.



Also, it follows by induction that

x = sr +
xr
r!
.

This is true when r = 1; and if it is true for r − 1 then

x = sr−1 +
xr−1

(r − 1)!

= sr−1 +
rxr−1

r!

= sr−1 +
ar + xr
r!

= sr +
xr
r!
.

To see that the series terminates if x is rational, evidently

n!x ∈ Z

for some n. Let n be the least positive integer with this
property.

We can see by induction that

r!sr ∈ Z.

For this is true when r = 1; and if it is true for r − 1 then

r!sr = r!sr−1 + ar ∈ Z.

Now
n!x = n!sn +

xn
.

Since n!x, n!sn ∈ Z it follows that xn ∈ Z. But 0 ≤ {x} <
1. Hence

{xn} = 0 =⇒ an+1 = 0,

so the series terminates at this point.

Finally, to show that the series is unique, suppose

x = a1 +
a2

2!
+ · · ·+ an

n!
= b1 +

b2

2!
+ · · ·+ bm

m!
.

We can assume that an, bm 6= 0.



We argue by induction on max(m,n). The result is trivially
true if m = n = 1. Suppose m 6= n, say m < n. Multiplying
the equation by (n− 1)!,

an
n
∈ Z,

and so an = 0. Again, if m = n then multiplying the equa-
tion by (n− 1)!,

an
n
− bn
n
∈ Z,

and so an = bn Thus

x = a1 +
a2

2!
+ · · ·+ an−1

(n− 1)!
= b1 +

b2

2!
+ · · ·+ bn−1

(n− 1)!
,

and it follows from the inductive hypothesis that ar = br for
all r.

2. Each of four people A,B,C,D tell the truth just 1 time in
3. A makes a statement, and B says that C says that D
says that A is telling the truth. What is the probability
that A is actually telling the truth?

Answer: Let
a, b, c, d = ±1

according as each of A,B,C,D is telling the truth or not.

We are told that A is telling the truth if

abcd = 1.

Thus we have to compute the relative probability that a = 1
given that abcd = 1. ie

prob(a = 1 & bcd = 1)

prob(abcd = 1)
.

Now abcd = 1 if either a = b = c = d = 1 or else just two
of a, b, c, d is 1. We can choose these two in 6 ways. Thus

prob(abcd = 1) =

(
1

3

)4

+ 6

(
1

3

)2(
2

3

)2

=
25

81
.



Similarly bcd = 1 if either b = c = d = 1 or else just one of
a, b, c is 1, which can be arranged in 3 ways. Thus

prob(a = 1 & bcd = 1) = prob(a = 1) · prob(bcd = 1)

=
1

3

((
1

3

)3

+ 3
1

3

(
2

3

)2
)

=
13

81
.

Hence the relative probability is

13

25
.

3. Suppose α, β are positive irrational numbers satisfying
1/α + 1/β = 1. Show that the sequences

[α], [2α], [3α], . . . and [β], [2β], [3β], . . .

together contain each positive integer just once.

Answer: Clearly α, β > 1. It follows that

[(r + 1)α] > [rα], [(s+ 1)β] > [sβ].

So the integers in each of the two sequences are distinct.

We claim that no integer can occur in both the sequences.
For suppose

[rα] = [sβ] = n.

Then

n < rα < n+ 1, n < sβ < n+ 1,

ie

n

α
< r <

n+ 1

α
,
n

β
< s <

n+ 1

β
.

(Note that we have inequality rather than equality on the
left because α, β are irrational.) Adding,

n < r + s < n+ 1,

which is impossible.



Next we show that there are n − 1 elements of the two se-
quences in the range [1, n− 1] For suppose [rα], [sβ are the
largest elements of the two sequences in this range. Then

rα < n < (r + 1)α, sβ < n < (s+ 1)β,

ie

r <
n

α
< r + 1, s <

n

β
< s+ 1.

Adding,
r + s < n < r + s+ 2.

Hence
r + s = n− 1.

Since the elements of the sequences in the range are all
different, it follows that every number in the range appears
in one sequence or the other; and so this is true for all
positive integers.

4. Find all pairs of distinctive positive rationals x, y such that

xy = yx.

Answer: Suppose

x =
a

d
, y =

b

d
with gcd(a, b, d) = 1.

We may assume that a > b. (If a = b then x = y.

Raising the equation to the dth power,

(a/d)b = (b/d)a.

Multiplying by da+b,

abda = badb.

Hence
abda−b = ba.



Evidently b > 1 (since b = 1 =⇒ a = 1). So gcd(a, d) = 1
(since otherwise gcd(a, b, d) > 1). It follows that b splits
into coprime factors b = b1b2 with

ab = ba1, d
a−b = ba2.

Let

gcd(a, b) = e, a = ea′, b = eb′, gcd(a′, b′) = 1.

Note that if gcd(m,n) = 1 then

am = bn =⇒ a = cn, b = cm

for some c ∈ N.

Thus
a = ua

′
, b1 = ub

′
, d = va

′
, b2 = va

′−b′.

Now

e = gcd(a, b) = ub
′
= b1 =⇒ a′ = ua

′−b′, b′ = b2 = va
′−b′.

Thus
a = uu

a′−b′

, b1 = uv
a′−b′

Let
a′ − b′ = n.

Then

a = uu
n

, b = uv
n

vn, d = vu
n

, a′ = un, b′ = vn.

Thus
n = un − vn.

But if n ≥ 2 then

n = un − vn ≥ (v + 1)n − vn > nvn−1 ≥ n.

Hence

n = 1;



and so

u− v = 1.

Thus

a′ = v+1, b′ = v, e = (v+1)v, a = (v+1)v+1, b = (v+1)vv, d = vv+1.

It seems that

x =
a

d
=

(
v + 1

v

)v+1

, y =
b

d
=

(
v + 1

v

)v
,

does indeed give the general solution to the identity

xy = yx.

As an example, if we take v = 2 then

x = (3/2)3, y = (3/2)2,

and

xb
′
= (3/2)6 = ya

′
,

so that

xb = ya,

and

xb/d = ya/d,

ie

xy = yx.

[As a particular case, we see that if x, y are integers then

d = 1 =⇒ v = 1, u = 2,

with just one solution

x = a = 22, y = b = 2;

that is,

42 = 24.



5. Show that if a, b, c are positive real numbers then

[(a+ b)(b+ c)(c+ a)]1/3 ≥ 2√
3

(ab+ bc+ ca)1/2.

Answer:

6. Bob and Alice arrange to meet between 1pm and 2pm.
Each agrees to wait just 15 minutes for the other. What is
the probability that they meet?

Answer:

7. If

N =

1000 1’s︷ ︸︸ ︷
111 . . . 1,

what is the 1000th digit after the decimal point of
√
N?

Answer: We have

N =
101000 − 1

9
.

Thus

√
N =

√
101000 − 1

3

=
10500

3

(
1− 1

101000

)1/2

=
10500

3

(
1− 1

2

1

101000 +
3

4

1

102000 + . . .

)
.

So
√
N =

10500

3
− 1

6

1

10500 +
1

4

1

101500 + . . .

√
N =

10500

3
− 1

6

1

10500 + ε

where 0 < ε < 1/101500. Thus

√
N = 33 . . . 33.333 · · · − 0.

500 0’s︷ ︸︸ ︷
00 . . . 00 1666 · · ·+ ε

= 33 . . . 33.

500 3’s︷ ︸︸ ︷
33 . . . 33 1666 · · ·+ ε.

Thus the 1000th digit after the decimal point is 6.



8. Show that a continuous function f : [0, 1] → [0, 1] must
leave at least one point fixed: f(x) = x.

Answer: We have

0 ≤ f(0), f(1) ≤ 1.

Let
S = {x ∈ [0, 1] : t ≤ f(t) for 0 ≤ t ≤ x}

Then S is not empty, since 0 ∈ S. Let X be the upper
bound of S. Then

f(X) = X.

For by the continuity of f(x), if f(X) > X then

f(x) > X > x

for xin(X − ε,X], contradicting the definition of X; and
similarly if f(X) < X then

f(x) < X < x

for xin[X,X+ ε). again contradicting the definition of X.

9. Determine ∞∑
n=1

1

n2 + 1
.

Answer: This question was a bit of a cheat, as it requires
some simple complex analysis, which is probably not allowed
in competition problems.

But the idea is interesting and useful, and often not cov-
ered in courses on complex analysis, so it is worth looking
at. It really only requires knowledge of Cauchy’s Residue
Theorem.

I shall prove the more general result: Suppose

f(z) =
p(z)

q(z)

is a rational function (where p(z), q(z) are polynomials),
with

deg q(z) ≥ deg p(z) + 2;



and suppose f(z) has poles at z1, . . . , zn, with residues r1, . . . , rn
Then ∞∑

−∞
f(n) = 2iπ2

n∑
k=1

cot(πzk)rk.

Before proving the theorem, let us apply it to our problem.
The function

f(z) =
1

1 + z2 =
i

2

(
1

z − i
− 1

z + i

)
has poles at z = ±i with residues ±i/2. Since

cot(z) =
cos z

sin z
= i

e2iz + 1

e2iz − 1
,

we have

cot(±πi) = ∓ie
2π + 1

e2π − 1
.

Hence ∞∑
−∞

1

n2 + 1
=
π2

2

e2π + 1

e2π − 1
.

Thus
∞∑
n=1

1

n2 + 1
=

1

2

( ∞∑
−∞

1

n2 + 1
− 1

)

=
1

2

(
e2π + 1

e2π − 1
− 1

)
=

1

e2π − 1
.

Turning to the theorem, the importance of

cot(πz) =
cos(πz)

sin(πz)

is that it is periodic with period 1, and has a simple pole with
residue 1/π at z = 0, and therefore at each point z = n ∈ Z.
These are the only poles of cot(πz), since

sin(πz) =
eiπz − e−iπz

2
= 0 ⇐⇒ e2πz = 1 ⇐⇒ z = n ∈ Z.

It follows that
F (z) = cot(πz)f(z)



has a simple pole with residue f(n)/π at each integer point
z = n. (It also has poles of course at the poles of f(z).)

Thus if we draw a large circle Γ = Γ(N) with radius N+1/2
about the origin (we add the 1/2 to make sure we miss a
pole) then

I(N) =

∫
Γ(N)

cot πzf(z)dz =
N∑

n=−N

f(n)

π
+ Σ,

where

Σ = 2πi
n∑
j=1

rif(zi) cot(πzi),

summed over the residues of f(z).

It is not difficult to see that cot(πz) is bounded away from
the poles, let us say apart from a disk radius 1/4 around
each integer point. For

cot(πz) =
1 + e−2πiz

1− e−2πiz =
e2πiz + 1

e2πiz − 1
;

so∣∣eπiz∣∣ ≥ 2 =⇒
∣∣e−πiz∣∣ ≤ 1

2
=⇒ |cot(πz)| ≤ 17/4

3/4
< 6,

and similarly

∣∣e−πiz∣∣ ≥ 2 =⇒
∣∣eπiz∣∣ ≤ 1

2
=⇒ |cot(πz)| ≤ 17/4

3/4
< 6.

But if z = x+ iy then ∣∣eπiz∣∣ = e−πy

so ∣∣eπiz∣∣ ≤ 2 and
∣∣eπiz∣∣ ≤ 2 =⇒ |y| < 1.

Thus by the periodicity of cot(πz) we need only consider the
compact region

{(x, y) : |x| ≤ 1/2, |y| ≤ 1;x2 + y2 ≥ 1

4
},



where cot(πz) is evidently bounded; so

|cot(πz)| < C

provided |z − n| ≥ 1/4 for all n ∈ Z (and in particular on
the circles Γ(N)).

On the other hand, since deg q(z) ≥ deg p(z) + 2 it follows
that

|f(z)| < C ′

R2

for sufficiently large z. Hence

|I(N)| ≤ 2π(N + 1/2)CC ′/(N + 1/2)2;

and so
I(N)→ 0 as N →∞.

Thus

N∑
n=−N

f(n)

π
→ Σ,

ie

∞∑
−∞

f(n) = πΣ.

As an addendum, let us see how to compute

∞∑
n=1

1

n2

by this method.

In this case we have to modify the argument slightly, since
f(z) = 1/z2 has a pole at z = 0. We must compute the
residue of

f(z) cot(πz)

at z = 0.



Since

cot(πz) =
cos(πz

sin(πz)
=

1− π2z2/2! + · · ·
πz − π3z3/3! + · · ·

=
1

πz

1− π2z2/2! + · · ·
1− π2z2/3! + · · ·

=
1

πz
(1− π2z2/2)(1 + π2z2/3!) +O(z4)

=
1

πz
(1− π2z2/3) +O(z4),

it follows that

f(z) cot(πz) =
1

πz3 −
π

3z
+O(z).

Thus f(z) cot(πz) has residue −π/3 at z = 0. Our argu-
ment gives

2

π

∞∑
n=1

1

n2 − π/3 = 0,

ie

∞∑
n=1

1

n2 = π2/6.

10. Determine detA, where A is the n× n matrix with entries

aij =
1

xi + yj
.

Answer: Let us multiply row i by
∏

j(xi + y + j), to give
the matrix B where

bij = pj(xi),

with
pj(x) =

∏
k 6=j

(x+ yk),

and

detA =
1∏

)i, j(xi + yj)
detB.



Each polynomial pj(t) is of degree n− 1 in the variables n2

variables xi, yj; so detB is a polynomial of degree n(n−1).

But if xi = xi′ or (yj = yj′ then detB = 0. It follows that
each of the n(n−1) terms (xi−xi′) and (yj−yj′) is a factor
of detB. Hence

detB = c
∏
i<i′

(xi − xi′)
∏
j<j′

(yj − yj′),

for some constant c.

To compute c, note that if we subtract column 1 from each
of the other columns we get

pj(xi) = p1(xi) = pj(xi) = (y1 − yj)

11. What is the maximal area of a quadrilateral with sides
1, 2, 3, 4?

Answer: Suppose

AB = 1, BC = 2, CD = 3, DA = 4.

Suppose
DÂB = θ, BĈD = φ,

The areas of the triangles DAB,BCD are

1

2
|DA| |AB| sin θ = 2 sin θ,

1

2
|BC| |CD| sinφ = 3 sinφ.

Thus the area of the quadrilateral is

Σ = 2 sin θ + 3 sinφ

By the cosine rules for these 2 triangles,

BD2 = 42 + 12 − 8 cos θ = 22 + 32 − 12 cosφ,

ie

8 cos θ − 12 cosφ = 17− 13,

ie

2 cos θ − 3 cosφ = 1.



Squaring and adding,

Σ2 + 12 = 22 + 32 + 12(sin θ sinφ− cos θ cosφ),

ie

Σ2 = 12(1 + cos(θ + φ)).

Thus Σ is maximized when

cos(θ + φ) = 1,

ie

θ + φ = π,

that is, when the quadrilateral is cyclic.

In this case,
Σ2 = 24,

ie the maximal area is

Σ = 2
√

6.

12. Can you find an equilateral triangle all of whose vertices
have integer coordinates?

Answer: Identifying the plane with the field of complex
numbers, let the vertices A,B,C of the triangle be repre-
sented by the complex numbers

a, b, c ∈ Γ,

the ring of gaussian integers.

Then
b− a = ω(c− a),

where ω = e±2π/3.

Thus

ω =
b− a
c− a

= x+ yi,

where x, y ∈ Q.



13. Given any two polynomials f(t), g(t), show that there exists
a non-zero polynomial F (x, y) such that F (f(t), g(t)) = 0
identically.

Answer: Suppose the degrees of f(t), g(t) are m,n. Take
the polynomials

f(t)i (0 ≤ i ≤ rn), g(t)j (0 ≤ j ≤ rm),

where r is an integer yet to be chosen; and consider the
products

f(t)ig(t)j.

There are r2mn products, each of degree < 2rmn. The poly-
nomials of degree < 2rmn form a vector space of dimension
2rmn. So if

r2mn ≥ 2rmn,

ie

r ≥ 2,

then the products f(t)ig(t)j must be linearly dependent over
the base field, say ∑

ai,jf(t)ig(t)j = 0,

ie

F (f(t), g(t)) = 0,

where

F (x, y) =
∑
i,j

aijx
iyj.

14. Show that the equation

y5 = x2 + 4

has no integer solutions.

Answer: If p is an odd prime then (Z/p)× is a cyclic group
Cp−1. It follows that if 5 | p − 1 then there are just (p −



1)/5 ‘quintic residues’ modp. For example, there are just
2 such residues mod11, and evidently these must be ±1.

Accordingly, if there is a solution then

x2 ≡ −3 or − 5 mod 11,

ie

x2 ≡ 8 or 6 mod 11.

The quadratic residues mod11 are

12 ≡ 1, 22 ≡ 4, 32 ≡ 9, 42 ≡ 5, 52 ≡ 3.

So 6 and 8 are both quadratic non-residues, and the equa-
tion has no solution.

[The next modulus we could have chosen would be 31, with
6 quintic residues. It is unlikely that none of these is 4 plus
one of the 15 quadratic residues.]

15. Show that there exists a real number α such that the frac-
tional part of αn lies between 1/3 and 2/3 for all positive
integers n.

Challenge Problem

Let h and k be positive integers. Prove that for every ε > 0,
there are positive integers m and n such that

ε <
∣∣h√m− k√n∣∣ < 2ε.

Answer: Although this was a Putnam question, it doesn’t
seem that difficult. The essential point is that if n is large then√
n+ 1 is close to

√
n.

More precisely, since

f(x) =
√
x =⇒ f ′(x) =

1

2
√
x
,

it follows by the Mean Value Theorem that

√
m+ 1−

√
m =

1

2
√
m+ θ

,



where 0 < θ < 1.
Thus if m ≥M then

√
M + 1−

√
M <

1

2
√
M
.

So if set

M 1/2 ≥ h

ε
then

m ≥M =⇒ h
√
m+ 1− h

√
m < ε.

Now let us choose N so that

h
√
M − k

√
N < 0;

and let us successively set m = M,M + 1,M + 2, . . . .
Then

f(m) = h
√
m− k

√
N

starts negative, and increases by < ε at each step, but tending
ultimately to ∞. It follows that

f(m) ∈ (ε, 2ε)

for some m.


