Problem Solving (MA2201)

Week 11

Timothy Murphy
December 4, 2011

1. Show that if the subset $S \subset\{1,2, \ldots, 2 n\}$ contains more than n numbers then one of these numbers must divide another.
2. Show that the only integral values taken by

$$
\frac{x^{2}+y^{2}+1}{x y}
$$

with integers x, y are ± 3.
3. Find all primes of the form

$$
101010 \cdots 101
$$

(with alternate digits 0,1 , beginning and ending with 1).
4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property that

$$
f(x)-f(y) \leq(x-y)^{2}
$$

for all x, y.
5. Show that the last digit of n^{n} is periodic. What is the period?
6. For which real numbers x does the sequence

$$
x, \cos x, \cos (\cos x), \cos (\cos (\cos x)), \ldots
$$

converge?
7. Can you put 6 points on the plane such that the distance between any two is an integer, but no three are collinear?
8. Prove that every integer ≥ 12 is the sum of two composite numbers.
9. How many "minimal paths" are there from one corner of a chessboard to the opposite corner, going along the edges of the squares? (Evidently each minimal path will consist of 16 such edges.)
10. For each real number $r<0$ the subset $U(r)$ of the complex plane is defined by

$$
U(r)=\left\{z:\left|z^{2}+z+1\right|<r\right\} .
$$

For which r is $U(r)$ connected?
11. Show that

$$
\prod_{1 \leq i<j \leq n} \frac{a_{i}-a_{j}}{i-j}
$$

is an integer for any strictly increasing sequence of integers $a_{1}, a_{2}, \ldots, a_{n}$.
12. What is the largest integer expressible as the product of positive integers with sum 2011?
13. Give two intersecting lines l, m and a constant c, find the locus of a point P such that the sum of the distances from P to the lines m, n is equal to c.
14. The four points A, B, C, D in space have the property that $A B, B C, C D, D A$ touch a sphere at the points P, Q, R, S. Show that P, Q, R, S lie in a plane.
15. How many digits does the number 125^{100} have?

Challenge Problem

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a continuous derivative, $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq|f(x)|$ for all x. Show that $f(x)=0$ for all x.

