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1. Show that if the subset S ⊂ {1, 2, . . . , 2n} contains more
than n numbers then one of these numbers must divide
another.

Answer: For each odd number

a ∈ {1, 3, 5, . . . , 2n− 1}

consider the set of numbers

U(a) = {a, 2a, 22a, . . . , 2ea : 2ea ≤ 2n < 2e+1a}.

These subsets U(1), U(3), . . . are disjoint, and

{1, 2, . . . , 2n} = U(1) ∩ U(3) ∩ · · · ∩ U(2n− 1).

There are n subsets; so one of them, say U(a), must contain
two elements of S:

2ea, 2fa ∈ S.

But then
2ea | 2fa

if e < f .

2. Show that the only integral values taken by

x2 + y2 + 1

xy



with integers x, y are ±3.

Answer: Consider the equation

x2 + y2 + 1

xy
= k,

ie

x2 + y2 − kxy + 1 = 0

for a given integer k.

Suppose (x0, y0) is a integer solution of this equation. If we
fix y0, we can regard the equation as a quadratic equation in
x. This equation will have a second solution x1; and since

x0 + x1 = ky0,

it follows that x1 is an integer.

Thus (x0, y0) gives rise to a second solution (x1, y0); and
similarly, regarding the equation now as a quadratic in y,
this gives rise to a third solution (x1, y1), and so on:

(x0, y0)→ (x1, y0)→ (x1, y1)→ (x2, y1)→ · · ·

But now we can use the fact that for two such solutions,
say xr, yr), (xr+1, yr) we will have

xrxr+1 = −(1 + y2
r).

Note that there is no solution with k = ±1, Note that there
is no solution with x = ±y, since this will give k = ±1,
and then

x2 ± xy + y2 = −1,

ie

(x± y/2)2 + 3y2/4 = −1,



which is absurd.

So we may assume that

|yr| < |xr| ,

in which case

|xrxr+1| ≤ |yr|2 ,

and so

|xr+1| < |yr| .

So each solution gives a smaller solution (in the sense that
|x| + |y| is smaller), and we would finish with a solution
with x = y = 0, which we see from the original equation is
impossible.

We conclude that there is no solution unless k = ±3.

3. Find all primes of the form

101010 · · · 101

(with alternate digits 0, 1, beginning and ending with 1).

Answer: Suppose there are n 1’s. Then the number is

N = 100n−1 + 100n−2 + · · ·+ 1

=
100n − 1

99
. =

(10n − 1)(10n + 1)

99
.

Thus
10n − 1 = rx, 10n + 1 = sy,

where rs = 99, and x, y are integers.

If n > 2 then one of x, y > 1, and since x, y | N , N cannot
be prime.



4. Find all functions f : R→ R with the property that

f(x)− f(y) ≤ (x− y)2

for all x, y.

Answer: The function f(x) is continuous, since

|f(x)− f(y)| < ε if |x− y| <
√
epsilon.

Moreover f(x) is differentiable for all x, with f ′(x) = 0,
since

lim
h→0

f(x+ h)− f(x)

h
≤ lim

h→0
h = 0.

Hence f(x) is constant:

f(x) = C;

and clearly any constant function satisfies the condition.

5. Show that the last digit of nn is periodic. What is the
period?

Answer: Let us compute

nn mod 5 and nn mod 2.

It is evident that

nn ≡

{
0 mod 2 if n is even

1 mod 2 if n is odd.

In particular
(n+ 2)n+2 ≡ nn mod 2

for all n.

By Fermat’s Little Theorem, if 5 - m then

m4 ≡ 1 mod 5,

and so

m4r ≡ 1 mod 5.



Also

(m+ 5)n ≡ mn mod 5.

and so

(m+ 5s)n ≡ mn mod 5

Putting these together, if 5 - n then

(n+ 20)n+20 ≡ nn+20 ≡ nn mod 5.

If 5 - n (and n > 0) then evidently

5 | nn, 5 | (n+ 20)n+20;

and so

(n+ 20)n+20 ≡ 0 ≡ nn+20 mod 5.

Since trivially

(n+ 20)n+20 ≡ 0 ≡ nn+20 mod 2,

it follows that

(n+ 20)n+20 ≡ 0 ≡ nn+20 mod 10.

Thus nn mod 10 has period dividing 20, ie period 1,2,4,5,10
or 20.

Clearly the period is not 1,2,4 or 5. (Eg 11 ≡ 1, while
66 ≡ 6.)

To see that the period is not 10, note that

22 ≡ 4 mod 5 while 1212 ≡ 1 mod 5

since 124 ≡ 1.

Hence the last digit of the sequence nn has period 20.

[As a carry-on problem, show that for any r the last r digits
of nn are periodic.]



6. For which real numbers x does the sequence

x, cosx, cos(cosx), cos(cos(cosx)), . . .

converge?

Answer: Suppose the given sequence

an+1 = cos(an)

does converge to `. Then

` = cos(`).

Since |cosx| ≤ 1, we must have

−1 ≤ ` ≤ 1;

and then, since cosx > 0 for −1 ≤ x ≤ 1 we must have

` ∈ [0, 1].

Since cosx decreases from 1 to cos 1 on this interval, while
x increases from 0 to 1 there is one and only one solution
` to the equation.

By the argument above,

a2 = cos(cosx)) ∈ [0, 1],

so we only need to consider x in this range.

By the Mean Value Theorem,

cosx− `
x− `

= − sin θ,

where θ lies between x and `, and so in [0, 1].

Setting x = an, it follows that

|an+1 − `|
|an − `|

≤ sin 1.

Since sin 1 < 1, we conclude that an will get closer and
closer to `, and so

an → `

for all x.



7. Can you put 6 points on the plane such that the distance
between any two is an integer, but no three are collinear?

Answer: Yes.

It is sufficient (and simpler) to show that we can find 6
points such that the distance between any two is rational.

Suppose ABC is a rational right-angle triangle with right-
angle at B ie a right-angle triangle with sides of rational
length). Then it is clear that

sinA, cosA ∈ Q.

Conversely, if
sin θ, cos θ ∈ Q

then θ is the angle in a right-angle triangle.

Consider the reflection ABC ′ of the triangle in the line BC.
The two triangles form a rational isosceles triangle ACC ′

with AC = AC ′ and angle 2A at A.

Conversely if ACC ′ is an isosceles triangle, with rational
sides AC = AC ′ and angle 2θ at A, where sin θ, cos θ ∈ Q,
then the triangle is rational, ie CC ′ is rational.

Now take points P1, P2, P3, . . . , Pn equally spaced around a
unit circle centre O, with

P1ÔP2 = P2ÔP3 = · · · = Pn−1ÔPn = 2θ,

where sin θ, cos θ ∈ Q.

Note that

sin θ, cos θ ∈ Q =⇒ sin rθ, cos rθ ∈ Q

for r = 1, 2, 3, . . . , since sin rθ, cos rθ can be expressed as
polynomials in sin θ, cos θ with integral coefficients.

It follows that the distance between any two of our points
Pi, Pj is rational, since OPiPj is an isosceles triangle with
angle 2φ, where

φ = (j − i)θ.



We note that the result still holds if the points Pn continue
around the circle. So we have in fact constructed an enu-
merably infinite set of points with rational distance between
any two of them.

Strictly speaking, to prove this we should show that the se-
quence of points does not recur, ie θ 6= rπ for any r ∈ Q.

However, this is not necessary for the question as posed,
since we can certainly make the angle θ as small as we like.
For we know that we have a pythagorian right-angle triangle
with sides m2−n2, 2mn,m2 +n2, and if we take m = n+ 2
this has an angle with

sin θ =
2n+ 1

2n2 + 2n+ 1
,

which can be arbitrarily small.

I shall leave the proposition above as a question for week
12!

8. Prove that every integer ≥ 12 is the sum of two composite
numbers.

Answer: This is trivial. If n is even then so is n− 4, and

n = 4 + (n− 4).

If n is odd then n− 9 is even, and

n = 9 + (n− 9).

9. How many “minimal paths” are there from one corner of a
chessboard to the opposite corner, going along the edges of
the squares? (Evidently each minimal path will consist of
16 such edges.)

Answer: Let us go from the top left corner to the bottom
right. Then we must take a sequence of moves like

RRDRDD . . . ,



where there are 8 R’s and 8 D’s, and we have to determine
how many ways we can arrange these.

This is the same as the coefficient of x8 in

(1 + x)(1 + x) · · · (1 + x) = (1 + x)16.

Hence the number of paths is(
16

8

)
.

10. For each real number r < 0 the subset U(r) of the complex
plane is defined by

U(r) = {z :
∣∣z2 + z + 1

∣∣ < r}.

For which r is U(r) connected?

Answer: Note that

f(z) = z2 + z + 1 = (z − ω)(z − ω2),

where

ω = −1

2
+

√
3

2
i.

Let A = ω,B = ω2, C = −1/2. Then we can write

U(r) = {P : PA.PB < r},

where P = z.

If r ≤ 0 the set U(r) is empty. If r > 0 then

A,B ∈ U(r).

Suppose P ∈ U(r). Let X be the foot of the perpendicular
from P to the line AB. Then

XA ≤ PA,XB ≤ PB.

So
X ∈ U(r);



and the same argument shows that the whole segment

PX ⊂ U(r).

Note that since U(r) is open, it is connected if and only if
it is arcwise-connected.

Suppose P,Q ∈ U(r); and suppose Y is the foot of the
perpendicular from Q to the line AB. Then by the argument
above, if there is a path from P to Q in U(r) then the
orthogonal projection of this path onto the line AB will give
a path on AB from X to Y , and so the segment

XY ⊂ U(r).

In particular A,B are connected by a path if and only if

AB ⊂ U(r).

Now

C ∈ U(r) ⇐⇒ r >
3

4
.

Hence U is not connected if

0 < r ≤ 3

4
.

We shall show that if r > 3/4 then U(r) is connected. From
the argument above it is sufficient to show that the points
of the line AB in U(r) form a connected set.

To see this, suppose first that Z lies on the segment AB,
ie between A and B. Then by the inequality between the
geometric and arithmetic means,

AX.XB ≤ (AX +XB)2/4 = AB2/4 = 3/4.

Hence the segment
AB ⊂ U(r).

On the other hand, if X lies on the line AB on the opposite
side of A to B then as X moves towards A both XA and



XB decrease. Hence if X lies in U(r) so does the segment
XA; and similarly if X lies on the other side of B.

Thus if r > 3/4 then the points of U(r) on AB form a
connected set (ie an open segment), and so the whole of
U(r) is connected.

11. Show that ∏
1≤i<j≤n

ai − aj

i− j

is an integer for any strictly increasing sequence of integers
a1, a2, . . . , an.

Answer: Take any prime p. Consider the remainders of
the number a1, . . . , an mod p. Suppose that r0, r1, . . . , rp−1

have remainders 0, 1, . . . , p−1 mod p respectively. Then the
number of terms ai − aj that are divisible by p is

(r0 − 1)!(r1 − 1)! . . . (rp−1 − 1)! (r0 + r1 + · · ·+ rp−1 = n)

The same is true of the terms i−j on the bottom, except that
here in place of r0, r1, . . . , rp−1 the number of remainders are
all either [n/p] or [n/p] + 1.

To show that the number of terms on the top divisible by p
is ≥ the corresponding number on the bottom it is sufficient
to show that the product

(r0 − 1)!(r1 − 1)! . . . (rp−1 − 1)!

(subject to the constraint r0 + r1 + · · ·+ rp−1 = n) is mini-
mized when the ri are as equal as possible. To prove this it
is sufficient to show that if two of the ri differ by 2 or more,
then the product is reduced by making them more equal, ie
if r ≤ r′ − 2 then

r!r′! > (r + 1)!(r′ − 1)!,

ie

r′ > r + 1.



By the same argument, To show that the number of terms
on the top divisible by p2 is ≥ the number on the bottom
divisible by p2; and the same is true with p3, p4, etc. Since
the power of p dividing the numerator is equal to the sum
of the numbers of terms divisible by p, p2, . . . , it follows
that the power of p dividing the numerator is ≥ the power
dividing the bottom.

Since this is true for all primes p, the denominator divides
the numerator, so the number is an integer.

12. What is the largest integer expressible as the product of
positive integers with sum 2011?

Answer: Note that if n ≥ 5 then

2(n− 2) > n.

It follows that we can increase the product by splitting any
factor ≥ 5. So the maximal value will be attained by using
only factors 2,3,4.

We can ignore 4 since we can replace any factor 4 by 22.

Also
32 > 23,

while both have sum 6.

So we can assume that the number of 2’s is less that 3.

Hence the maximum will be attained by

2e3f ,

where
2e+ 3f = 2011,

with 0 ≤ 3 < 3.

Since
2011 ≡ 1 mod 3,

we must in fact have 2 2’s. So the maximum is

22369.



13. Give two intersecting lines l,m and a constant c, find the
locus of a point P such that the sum of the distances from
P to the lines m,n is equal to c.

Answer: Recall that the distance of the point P = (X, Y )
from the line

`(x, y) = ax+ by + c = 0

is

d(P, `) =
abs`(X, Y )

(a2 + b2)1/2 .

So the locus will be

±`(X, Y )

C1
± m(X, Y )

C2
= c

where C1, C2 > 0. and we have to choose the signs so that
each term is positive. Note that we get a linear form in
X, Y , ie a line or line-segment, in each case.

Recall that
`(X, Y )

is positive for points P on one side of the line, and nega-
tive for those on the other. Let us say that the point is at
distance +d or −d from the line, according to the sign.

It follows that the locus consists of 4 edges of a parallelo-
gram PQRS, where P is on the line ` at distance +c from
m, Q is on the line m at distance +c from `, R is on the
line ` at distance −c from m, and S is on the line m at
distance −c from `.

14. The four points A,B,C,D in space have the property that
AB,BC,CD,DA touch a sphere at the points P,Q,R, S.
Show that P,Q,R, S lie in a plane.

Answer:



15. How many digits does the number 125100 have?

Answer: The number is 200 + r, where r is the number of
digits before the decimal point in 1.25100, ie

10r−1 < 1.25100 < 10r.

Taking logarithms to base 10,

r − 1 < 100 log10 1.25 < r,

ie

r = [100 log10 1.25] + 1.

Now

log10 1.25 =
loge 1.25

loge 10

=
0.223143551

2.30258509
= 0.096910013.

It follows that
r = 10,

and the number of digits is 210.

Challenge Problem

The function f : R → R has a continuous derivative, f(0) = 0
and |f ′(x)| ≤ |f(x)| for all x. Show that f(x) = 0 for all x.

Answer: Suppose f(x) 6= 0 for some x > 0.
Let x0 be the largest integer such that f(x) = 0 for 0 ≤ x ≤

x0; and let |f(x)| attain its maximum M in [x0.x0+1/2 at x0+t,
where 0 ≤ t ≤ 1/2.

By the Mean Value Theorem,

f(x0 + t)

t
= f ′(t),



and so

M = t |f ′(t)| .

But by hypothesis,

|f ′(t)| ≤ |f(t)| ≤M,

while 0 < t < 1/2. Hence

M ≤M/2,

which is absurd.
Thus f(x) = 0 for all x ≥ 0; and by the same argument

applied to f(−x), f(x) = 0 for all x ≤ 0. Hence f(x) = 0 for
all x.

Comment: If
f ′(x)

f(x)
= 1

then
f(x) = Cex;

and since f(0) = 0 it follows that C = 0.
We have to translate this idea into something rigorous; and

the easiest way to do that is often to use the Mean Value Theo-
rem as we have done.


