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1. Prove that
arctan sinh t = arcsin tanh t.

Answer:

2. Is the set of decreasing sequences of positive integers n1 ≥
n2 ≥ n3 ≥ · · · enumerable?

Answer:

3. Show that in any triangle ABC,

sin
A

2
≤ a

b + c
.

Answer:

4. If a1, a2, . . . an are distinct natural numbers and none of
them is divisible by a prime strictly larger that 3, show
that

1

a1
+

1

a2
+ · · ·+ 1

an
< 3.

Answer:

5. If three points A, B, C are chosen at random on the circum-
ference of a circle, what is the probability that the centre
O of the circle lies inside the triangle ABC?

Answer:



6. How many incongruent triangles are there with integer sides
and perimeter n?

Answer:

7. Find all solutions in integers of the equation

x2 + 2 = y3.

Answer: We know that the ring

Z[
√
−2] = {m + n

√
−2}

is euclidean, and so has unique factorisation. The only
units in this ring are ±1.

Factorising the left hand side of the equation,

x2 + 2 = (x +
√
−2)(x−

√
−2)

Since
d | x +

√
−2, x−

√
−2 =⇒ d | 2

√
−2,

it follows that

gcd x +
√
−2, x−

√
−2 = 1,

√
−2, 2 or 2

√
−2.

Taken with the fact that the only units are ±1, we see that
there are 2 possibilities:

(a) x +
√
−2 = u3, x−

√
−2 = v3,

(b) x +
√
−2 =

√
−2u3, x−

√
−2 =

√
−2v3.

Suppose
u = a +

√
−2b, v = a−

√
−2b.

In the first case, we have

x +
√
−2 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2.

Thus
b(3a2 − 2b2) = 1.



It follows that either

b = 1, 3a2 − 2b2 = 1 or b = −1, 3a2 − 2b2 = −1,

ie

b = 1, a = ±1 or b = −1, 3a2 = 1.

The second choice is impossible; so

b = 1, a = ±1 =⇒ x = ±5.

Similarly, in the second case

x +
√
−2 = −2(3a2b− 2b3) + (a3 − 6ab2)

√
−2,

so that
a(a2 − 6b2) = 1.

It follows that either

a = 1, a2 − 6b2 = 1 or a = −1, a2 − 6b2 = −1,

ie

a = 1, b = 0 or a = −1, 6b2 = 2.

Again, the second choice is impossible; so

a = 1, b = 0 =⇒ x = 0.

We conclude that the only non-trivial solution is

x = 5, y = 3.

8. What is the greatest number of parts into which the plane
can be divided by n circles?

Answer:



9. Let (an) be a sequence of positive reals such that

an ≤ a2n + a2n+1

for all n. Show that
∑

an diverges.

Answer:

10. Find all rational numbers a, b, c such that the roots of the
equation

x3 + ax2 + bx + c = 0

are just a, b, c.

Answer: We have

a = −(a + b + c),

b = ab + ac + bc,

c = −abc.

Thus either c = 0 or

c = −ab.

Ignoring the first possibility for the moment, the first equa-
tion gives

2a + b = ab,

ie

b(a− 1) = 2a,

while the second gives

b(a− 1) = (a + b)ab.

Thus
2a = (a + b)ab,

and so either a = 0 or

a =
2− b

b
.



Ignoring the first possibility, and substituting for b in the
second,

2a2 = (a + 1)(−a2 + a− 1),

ie

a3 + 2a2 − 1 = 0,

ie

(a + 1)(a2 + a− 1) = 0.

Since a is rational, this implies that

a = −1,

which is impossible since

b(a + 1) = 2a.

On the other hand, if c = 0 then from the original equations,

b = −2a and b(a− 1) = 0.

Thus either b = 0, in which case

a = b = c = 0,

or a = 1, in which case

a = 1, b = −2, c = 0.

Hence there are just 3 cubics with the given property:

x3 + x2 + x + 1,

with roots 1, 1, 1



11. Suppose a, b are coprime positive integers. Show that every
integer n ≥ (a− 1)(b− 1) is expressible in the form

n = ax + by,

with integers x, y ≥ 0.

Answer: We know that we can find x, y ∈ Z such that

ax + by = 1.

It follows that we can find x, y ∈ Z such that

ax + by = n

for any integer n.

It is easy to see that if x0, y0 is one solution then the general
solution is

x = x0 + bt, y = y0 − at,

where t ∈ Z. In particular there is just one solution with

0 ≤ x ≤ b− 1.

But if

ax + by ≥ (a− 1)(b− 1) = a(b− 1)− b + 1

then
x ≤ b− 1 =⇒ y > −1 =⇒ y ≥ 0,

so that we have a solution with x, y ≥ 0.

We are not asked this, but it is worth noting that there is
no solution of

ax + by = ab− a− b = a(b− 1)− b

with x, y ≥ 0. For x = b− 1, y = −1 is the unique solution
of this equation with 0 ≤ x ≤ b − 1; so any solution with
x ≥ 0 satisfies

x ≥ b− 1 =⇒ y < 0.



12. Can all the vertices of a regular tetrahedron have integer
coordinates (m, n, p)?

Answer: Yes. Take the cube with vertices

(±1,±1,±1),

and choose one vertex, say A = (1, 1, 1).

Consider the 3 vertices at distance 2
√

2 from A, namely

(1,−1,−1), (−1, 1,−1), (−1,−1, 1).

These are also at distance 2
√

2 from each other; so the 4
vertices form a regular tetrahedron.

13. Show that there are infinitely many pairs of positive inte-
gers m, n for which 4mn−m− n + 1 is a perfect square.

Answer: Take
m = t2, n = 2t2.

We will get a perfect square if

5t2 + 1 = u2,

ie

u2 − 5t2 = 1,

and we know this Pell’s equation has an infinity of solu-
tions.

Concretely, (u, t) = (2, 1) gives

u2 − 5t2 = −1

ie

(2 +
√

5)(2−
√

5) = −1.

It follows that

u +
√

5t = (2 +
√

5)2,



ie

(u, t) = (9, 4)

will solve the Pell’s equation; and then

u +
√

5t = (9 + 4
√

5)n (n = 1, 2, 3, . . . )

will give an infinity of solutions.

14. Each point of the plane is coloured red, green or blue.
Must there be a rectangle all of whose vertices are the same
colour?

Answer: Lets consider 2 colours, say red and green, first.
We’ll only consider rectangles with sides parallel to the axes.

Take 3 vertical lines, and consider the colours of the 3
points where a horizontal line meets these 3 lines.

The colours may be (R, G,R), (R, G,G), etc. There are
23 = 8 possbilities.

It follows that if there are more than 8 horizontal lines then
2 must have the same colours in the same order.

Two of these colours must be the same, in the same place,
say (G, R,G), (G, R,G). Then the 4 G’s are at the vertices
of a rectangle.

Can we extend this to 3 colours?

Let us take 4 vertical lines. Then the 3 colours can be ar-
ranged in 34 = 81 ways. So if we take more than 81 hor-
izontal lines two must have the same colours in the same
order. Two of these colours must be the same; so this gives
us a rectangle with vertices of this colour.

Evidently this argument extends to any number of colours.

15. Show that a sequence of mn+1 distinct real numbers must
contain either a subsequence of m + 1 increasing numbers
or a subsequence of n + 1 decreasing numbers.

Answer:



Challenge Problem

The function f : R → R has a continuous derivative, f(0) = 0
and |f ′(x)| ≤ |f(x)| for all x. Show that f(x) = 0 for all x.

Answer:


