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. Prove that
arctan sinh ¢ = arcsin tanh ¢.

Answer:
. Is the set of decreasing sequences of positive integers n; >

ny > ng > --- enumerable?

Answer:

. Show that in any triangle ABC,
A a

sin — < )
2 " b+c

Answer:

. If ay,as,...a, are distinct natural numbers and none of
them is divisible by a prime strictly larger that 3, show

that
1 1 1
—+ =+ 4+ — <3
aq a9 Qy,

Answer:
. If three points A, B, C' are chosen at random on the circum-

ference of a circle, what is the probability that the centre
O of the circle lies inside the triangle ABC?

Answer:



6. How many incongruent triangles are there with integer sides
and perimeter n?

Answer:

7. Find all solutions in integers of the equation
2?42 = yg.
Answer: We know that the ring
ZIV=2] = {m +nv—-2}

15 euclidean, and so has unique factorisation. The only
units in this ring are £1.

Factorising the left hand side of the equation,
2+ 2= (v +V=-2)(z —V-2)

Since
dlz+vV-2,z—vV-2 = d|2V-2,

it follows that
gedr++vV—-2,0 —V/—-2=1,vV—2,2 or 2v—2.

Taken with the fact that the only units are =1, we see that
there are 2 possibilities:

(a) v+ v—2=u’ 12— /-2=1°
(b) x4+ =2 =+=2u? 1 —/-2= /=203

Suppose

u=a++vV—-2b,v=a—+v—2b.
In the first case, we have
r+ /=2 = (a® — 6ab?) + (3a®b — 2b%)v/—2.

Thus
b(3a® — 20%) = 1.



It follows that either
b=1,3a>—2 =1 orb=—1,3a> — 2b* = —1,
e
b=1,a==+1 orb=—1,3a> = 1.
The second choice 1s tmpossible; so

b=1,a=4+1 = x = 45.

Simalarly, in the second case

T +vV—=2=—2(3a’b — 20*) + (a® — 6ab®)V/—2,

so that
a(a® — 6b%) = 1.

It follows that either
a=1,a>—60>=1ora=—1,a>— 60> = —1,
1€
a=1,b=0ora=—1,60°>=2.
Again, the second choice is impossible; so

a:l)b:o :> £U=0

We conclude that the only non-trivial solution s

r =95,y =3.

8. What is the greatest number of parts into which the plane
can be divided by n circles?

Answer:



9.

10.

Let (a,) be a sequence of positive reals such that
ap < agy + A2n+1

for all n. Show that > a,, diverges.

Answer:

Find all rational numbers a, b, ¢ such that the roots of the
equation
2?4 ar® +br +c=0

are just a, b, c.

Answer: We have

a=—(a+b+c),
b= ab+ ac + be,

c = —abc.
Thus either ¢ = 0 or

c = —ab.

Ignoring the first possibility for the moment, the first equa-
tion gives

2a + b = ab,
e
bla —1) = 2a,
while the second gives
bla—1) = (a+ b)ab.

Thus
2a = (a + b)ab,

and so either a =0 or



Ignoring the first possibility, and substituting for b in the
second,

20> = (a+1)(—a® 4+ a — 1),
1€
a®+2a*>—1=0,
e
(a+1D)(a*+a—1)=0.
Since a is rational, this implies that
a=—1,
which 1s impossible since
bla+1) = 2a.
On the other hand, if c = 0 then from the original equations,
b= —2a and b(a — 1) = 0.
Thus either b = 0, wn which case
a=b=c=0,
or a =1, in which case
a=1,b=—-2,c=0.
Hence there are just 3 cubics with the given property:
i e

with roots 1,1, 1



11. Suppose a, b are coprime positive integers. Show that every
integer n > (a — 1)(b — 1) is expressible in the form

n = ax + by,

with integers x,y > 0.

Answer: We know that we can find x,y € Z such that
ar + by = 1.

It follows that we can find x,y € Z such that
ar +by =n

for any integer n.

It is easy to see that if xq, yo is one solution then the general
solution 18
xr=uz0+bt, y=1yy— at,

where t € Z. In particular there 1s just one solution with

0<z<b-1.

But if
ar+by>(a—1)(b—1)=alb—-1)—-b+1
then
r<b—1 = y>-1 = y >0,
so that we have a solution with x,y > 0.

We are not asked this, but it is worth noting that there is
no solution of

ar+by=ab—a—-b=alb—1)—10

with x,y > 0. Forx =b— 1,y = —1 is the unique solution
of this equation with 0 < x < b — 1, so any solution with
x > 0 satisfies

r>b—1 = y<0.



12.

13.

Can all the vertices of a regular tetrahedron have integer
coordinates (m,n,p)?

Answer: Yes. Take the cube with vertices
(+1,+£1,£1),

and choose one vertex, say A= (1,1,1).

Consider the 3 vertices at distance 2v/2 from A, namely
(1,-1,-1), (-1,1,-1), (—-1,-1,1).

These are also at distance 2v/2 from each other; so the /
vertices form a reqular tetrahedron.

Show that there are infinitely many pairs of positive inte-
gers m, n for which 4mn — m —n + 1 is a perfect square.

Answer: Tuake
m = t*,n = 2t

We will get a perfect square if

5t2 + 1 = u?,
1€

u? —5t? =1,

and we know this Pell’s equation has an infinity of solu-
tions.

Concretely, (u,t) = (2,1) gives
u? — 5t = —1
e
24+ V5)(2-V5) = —1.
It follows that

u—+ V5t = (2+V5)?,



14.

15.

ie
(u,t) = (9,4)
will solve the Pell’s equation; and then
u+V5t=(9+4V5" (n=1,2,3,...)
will give an infinity of solutions.

Each point of the plane is coloured red, green or blue.
Must there be a rectangle all of whose vertices are the same
colour?

Answer: Lets consider 2 colours, say red and green, first.
We’ll only consider rectangles with sides parallel to the azxes.

Take 3 wvertical lines, and consider the colours of the 3
points where a horizontal line meets these 3 lines.

The colours may be (R,G,R),(R,G,G), etc. There are
23 = 8 possbilities.
It follows that if there are more than 8 horizontal lines then

2 must have the same colours in the same order.

Two of these colours must be the same, in the same place,
say (G, R,G), (G, R,G). Then the 4 G’s are at the vertices
of a rectangle.

Can we extend this to 3 colours?

Let us take 4 vertical lines. Then the & colours can be ar-
ranged in 3* = 81 ways. So if we take more than 81 hor-
1zontal lines two must have the same colours in the same
order. Two of these colours must be the same; so this gives
us a rectangle with vertices of this colour.

Fuvidently this argument extends to any number of colours.
Show that a sequence of mn + 1 distinct real numbers must

contain either a subsequence of m + 1 increasing numbers
or a subsequence of n 4+ 1 decreasing numbers.

Answer:



Challenge Problem

The function f : R — R has a continuous derivative, f(0) = 0
and |f'(x)| < |f(z)] for all z. Show that f(x) = 0 for all z.
Answer:



