Problem Solving (MA2201)

Week 10

Timothy Murphy

December 9, 2011

1. Prove that

$$
\arctan \sinh t=\arcsin \tanh t
$$

Answer:

2. Is the set of decreasing sequences of positive integers $n_{1} \geq$ $n_{2} \geq n_{3} \geq \cdots$ enumerable?

Answer:

3. Show that in any triangle $A B C$,

$$
\sin \frac{A}{2} \leq \frac{a}{b+c} .
$$

Answer:

4. If $a_{1}, a_{2}, \ldots a_{n}$ are distinct natural numbers and none of them is divisible by a prime strictly larger that 3 , show that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}<3 .
$$

Answer:
5. If three points A, B, C are chosen at random on the circumference of a circle, what is the probability that the centre O of the circle lies inside the triangle $A B C$?

Answer:
6. How many incongruent triangles are there with integer sides and perimeter n ?

Answer:

7. Find all solutions in integers of the equation

$$
x^{2}+2=y^{3} .
$$

Answer: We know that the ring

$$
\mathbb{Z}[\sqrt{-2}]=\{m+n \sqrt{-2}\}
$$

is euclidean, and so has unique factorisation. The only units in this ring are ± 1.
Factorising the left hand side of the equation,

$$
x^{2}+2=(x+\sqrt{-2})(x-\sqrt{-2})
$$

Since

$$
d|x+\sqrt{-2}, x-\sqrt{-2} \Longrightarrow d| 2 \sqrt{-2}
$$

it follows that

$$
\operatorname{gcd} x+\sqrt{-2}, x-\sqrt{-2}=1, \sqrt{-2}, 2 \text { or } 2 \sqrt{-2} .
$$

Taken with the fact that the only units are ± 1, we see that there are 2 possibilities:
(a) $x+\sqrt{-2}=u^{3}, x-\sqrt{-2}=v^{3}$,
(b) $x+\sqrt{-2}=\sqrt{-2} u^{3}, x-\sqrt{-2}=\sqrt{-2} v^{3}$.

Suppose

$$
u=a+\sqrt{-2} b, v=a-\sqrt{-2} b
$$

In the first case, we have

$$
x+\sqrt{-2}=\left(a^{3}-6 a b^{2}\right)+\left(3 a^{2} b-2 b^{3}\right) \sqrt{-2} .
$$

Thus

$$
b\left(3 a^{2}-2 b^{2}\right)=1
$$

It follows that either

$$
b=1,3 a^{2}-2 b^{2}=1 \text { or } b=-1,3 a^{2}-2 b^{2}=-1,
$$

ie

$$
b=1, a= \pm 1 \text { or } b=-1,3 a^{2}=1 .
$$

The second choice is impossible; so

$$
b=1, a= \pm 1 \Longrightarrow x= \pm 5 .
$$

Similarly, in the second case

$$
x+\sqrt{-2}=-2\left(3 a^{2} b-2 b^{3}\right)+\left(a^{3}-6 a b^{2}\right) \sqrt{-2},
$$

so that

$$
a\left(a^{2}-6 b^{2}\right)=1 .
$$

It follows that either

$$
a=1, a^{2}-6 b^{2}=1 \text { or } a=-1, a^{2}-6 b^{2}=-1,
$$

ie

$$
a=1, b=0 \text { or } a=-1,6 b^{2}=2 .
$$

Again, the second choice is impossible; so

$$
a=1, b=0 \Longrightarrow x=0 .
$$

We conclude that the only non-trivial solution is

$$
x=5, y=3
$$

8. What is the greatest number of parts into which the plane can be divided by n circles?

Answer:

9. Let $\left(a_{n}\right)$ be a sequence of positive reals such that

$$
a_{n} \leq a_{2 n}+a_{2 n+1}
$$

for all n. Show that $\sum a_{n}$ diverges.

Answer:

10. Find all rational numbers a, b, c such that the roots of the equation

$$
x^{3}+a x^{2}+b x+c=0
$$

are just a, b, c.
Answer: We have

$$
\begin{aligned}
a & =-(a+b+c) \\
b & =a b+a c+b c \\
c & =-a b c
\end{aligned}
$$

Thus either $c=0$ or

$$
c=-a b .
$$

Ignoring the first possibility for the moment, the first equation gives

$$
2 a+b=a b
$$

ie

$$
b(a-1)=2 a
$$

while the second gives

$$
b(a-1)=(a+b) a b
$$

Thus

$$
2 a=(a+b) a b
$$

and so either $a=0$ or

$$
a=\frac{2-b}{b}
$$

Ignoring the first possibility, and substituting for b in the second,

$$
2 a^{2}=(a+1)\left(-a^{2}+a-1\right),
$$

ie

$$
a^{3}+2 a^{2}-1=0,
$$

ie

$$
(a+1)\left(a^{2}+a-1\right)=0 .
$$

Since a is rational, this implies that

$$
a=-1,
$$

which is impossible since

$$
b(a+1)=2 a .
$$

On the other hand, if $c=0$ then from the original equations,

$$
b=-2 a \text { and } b(a-1)=0 .
$$

Thus either $b=0$, in which case

$$
a=b=c=0,
$$

or $a=1$, in which case

$$
a=1, b=-2, c=0 .
$$

Hence there are just 3 cubics with the given property:

$$
x^{3}+x^{2}+x+1,
$$

with roots $1,1,1$
11. Suppose a, b are coprime positive integers. Show that every integer $n \geq(a-1)(b-1)$ is expressible in the form

$$
n=a x+b y,
$$

with integers $x, y \geq 0$.
Answer: We know that we can find $x, y \in \mathbb{Z}$ such that

$$
a x+b y=1 .
$$

It follows that we can find $x, y \in \mathbb{Z}$ such that

$$
a x+b y=n
$$

for any integer n.
It is easy to see that if x_{0}, y_{0} is one solution then the general solution is

$$
x=x_{0}+b t, y=y_{0}-a t,
$$

where $t \in \mathbb{Z}$. In particular there is just one solution with

$$
0 \leq x \leq b-1
$$

But if

$$
a x+b y \geq(a-1)(b-1)=a(b-1)-b+1
$$

then

$$
x \leq b-1 \Longrightarrow y>-1 \Longrightarrow y \geq 0
$$

so that we have a solution with $x, y \geq 0$.
We are not asked this, but it is worth noting that there is no solution of

$$
a x+b y=a b-a-b=a(b-1)-b
$$

with $x, y \geq 0$. For $x=b-1, y=-1$ is the unique solution of this equation with $0 \leq x \leq b-1$; so any solution with $x \geq 0$ satisfies

$$
x \geq b-1 \Longrightarrow y<0 .
$$

12. Can all the vertices of a regular tetrahedron have integer coordinates (m, n, p) ?
Answer: Yes. Take the cube with vertices

$$
(\pm 1, \pm 1, \pm 1)
$$

and choose one vertex, say $A=(1,1,1)$.
Consider the 3 vertices at distance $2 \sqrt{2}$ from A, namely

$$
(1,-1,-1),(-1,1,-1),(-1,-1,1) .
$$

These are also at distance $2 \sqrt{2}$ from each other; so the 4 vertices form a regular tetrahedron.
13. Show that there are infinitely many pairs of positive integers m, n for which $4 m n-m-n+1$ is a perfect square.
Answer: Take

$$
m=t^{2}, n=2 t^{2} .
$$

We will get a perfect square if

$$
5 t^{2}+1=u^{2},
$$

ie

$$
u^{2}-5 t^{2}=1,
$$

and we know this Pell's equation has an infinity of solutions.

Concretely, $(u, t)=(2,1)$ gives

$$
u^{2}-5 t^{2}=-1
$$

ie

$$
(2+\sqrt{5})(2-\sqrt{5})=-1 .
$$

It follows that

$$
u+\sqrt{5} t=(2+\sqrt{5})^{2}
$$

ie

$$
(u, t)=(9,4)
$$

will solve the Pell's equation; and then

$$
u+\sqrt{5} t=(9+4 \sqrt{5})^{n} \quad(n=1,2,3, \ldots)
$$

will give an infinity of solutions.
14. Each point of the plane is coloured red, green or blue. Must there be a rectangle all of whose vertices are the same colour?
Answer: Lets consider 2 colours, say red and green, first. We'll only consider rectangles with sides parallel to the axes.
Take 3 vertical lines, and consider the colours of the 3 points where a horizontal line meets these 3 lines.
The colours may be $(R, G, R),(R, G, G)$, etc. There are $2^{3}=8$ possbilities .

It follows that if there are more than 8 horizontal lines then 2 must have the same colours in the same order.

Two of these colours must be the same, in the same place, say $(G, R, G),(G, R, G)$. Then the $4 G$'s are at the vertices of a rectangle.

Can we extend this to 3 colours?
Let us take 4 vertical lines. Then the 3 colours can be arranged in $3^{4}=81$ ways. So if we take more than 81 horizontal lines two must have the same colours in the same order. Two of these colours must be the same; so this gives us a rectangle with vertices of this colour.

Evidently this argument extends to any number of colours.
15. Show that a sequence of $m n+1$ distinct real numbers must contain either a subsequence of $m+1$ increasing numbers or a subsequence of $n+1$ decreasing numbers.

Answer:

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a continuous derivative, $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq|f(x)|$ for all x. Show that $f(x)=0$ for all x.

Answer:

