# Problem Solving (MA2201) 

## Week 1

Timothy Murphy

1. Show that the product of 3 successive integers is always divisible by 6 .
2. What are the last two digits of $2011^{2011}$ ?
3. Given 100 integers $a_{1}, \ldots, a_{100}$, show that there is a sum of consecutive elements $a_{i}+\cdots+a_{i+j}$ divisible by 100 .
4. Show that if $\cos a=b$ and $\cos b=a$ then $b=a$.
5. Show that there are an infinite number of positive integers $n$ such that $4 n$ consists of the same digits in reverse order.
6. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the identity $f(f(x))=x$ holds for all real $x$.
7. Prove that

$$
x^{y}+y^{x}>1
$$

for all positive real $x, y$.
8. The rectangle $A B C D$ has sides $A B=1, B C=2$. What is the minimum of $A E+B E+E F+C F+D F$ for any two points $E, F$ in $A B C D$ ?
9. The 8 numbers $x_{1}, x_{2}, \ldots, x_{8}$ have the property that the sum of any three consecutive numbers is 16 . If $x_{2}=9$ and $x_{6}=2$, what are the values of the remaining numbers?
10. Can you find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f^{\prime}(x)=f(x+1)
$$

such that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ ?
11. The set of pairs of positive reals $(x, y)$ such that

$$
x^{y}=y^{x}
$$

form the straight line $y=x$ and a curve. Determine the point at which the curve cuts the line.
12. Show that there is just one tetrahedron whose edges are consecutive positive integers and whose volume is a positive integer.
13. Every point of the circle is colored using one of two colors - black or white. Show that there exists some isosceles triangle that has vertices on that circle and which has all its vertices the same color).
14. Given 11 integers $x_{1}, \ldots, x_{11}$ show that there must exist some non-zero finite sequence $a_{1}, \ldots, a_{11}$ of elements from $\{-1,0,1\}$ such that the sum $a_{1} x_{1}+\cdots+a_{11} x_{11}$ is divisible by 2011 .
15. I have two children, one of whom is a boy born on a Tuesday. What is the probability that my other child is a boy?

## Challenge Problem ${ }^{1}$

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
f(x+y) \leq y f(x)+f(f(x))
$$

for all $x, y \in \mathbb{R}$. Show that $f(x)=0$ for all $x \leq 0$.

[^0]
[^0]:    ${ }^{1}$ Each week one very difficult problem will be posed. This one took me 8 days to solve!

