Problem Solving (MA2201)

Week 1

Timothy Murphy

1. Show that the product of 3 successive integers is always divisible by 6 .
Answer: One (or two) of the numbers is divisible by 2, and one of the numbers is divisible by 3. Since $\operatorname{gcd}(2,3)=1$ it follows that the product of the numbers is divisible by $2 \cdot 3$.
2. What are the last two digits of 2011^{2011} ?

Answer:

Method 1 We have to determine

$$
2011^{2011} \bmod 100
$$

First of all, since

$$
2011 \equiv 11 \bmod 100
$$

it follows that

$$
2011^{2011} \equiv 11^{2011} \bmod 100
$$

By Fermat's Last Theorem (or the extension to it), if a is coprime to n then

$$
a^{\phi(n)} \equiv 1 \bmod n,
$$

where $\phi()$ is Euler's 'totient function' (the number of numbers between 0 and n coprime to n).
This function is 'multiplicative in the number-theoretic sense, ie

$$
\operatorname{gcd}(m, n)=1 \Longrightarrow \phi(m n)=\phi(m) \phi(n)
$$

Thus

$$
\phi(100)=\phi\left(2^{2}\right) \phi\left(5^{2}\right)
$$

But if p is prime,

$$
\phi\left(p^{e}\right)=p^{e}-p^{e-1}=p^{e-1}(p-1)
$$

(This follows easily, since a number is not coprime to p^{e} if and and only if it is divisible by p.)
Hence

$$
\phi(100)=(2 \cdot 1)(5 \cdot 4)=40
$$

So

$$
11^{40} \equiv 1 \bmod 100
$$

It follows that

$$
11^{2011} \equiv 11^{11} \bmod 100
$$

Now

$$
\begin{align*}
& 11^{2}=121 \equiv 21 \bmod 100 \tag{1}\\
& 11^{3} \equiv 11 \cdot 21 \equiv 31 \bmod 100 \tag{2}
\end{align*}
$$

and so on, until

$$
\begin{align*}
& 11^{9} \equiv 91 \bmod 100 \tag{3}\\
& 11^{10} \equiv 11 \cdot 91 \equiv 1 \bmod 100 \tag{4}
\end{align*}
$$

and finally,

$$
11^{11} \equiv 11 \bmod 100
$$

Method 2 We can use the binomial theorem instead of Fermat's Last Theorem in this case:

$$
\begin{align*}
11^{11} & =(1+10)^{11} \tag{6}\\
& =1+10 \cdot 11+\binom{11}{2} 10^{2}+\cdots \equiv 1+110 \bmod 100 \tag{7}
\end{align*}
$$

since all the terms after the first 2 are divisible by 100. Thus

$$
11^{11} \equiv 11 \bmod 100
$$

3. Given 100 integers a_{1}, \ldots, a_{100}, show that there is a sum of consecutive elements $a_{i}+\cdots+a_{i+j}$ divisible by 100 .
Answer: A classic Pigeon Hole Principle problem.
Let

$$
s_{i}=a_{1}+a_{2}+\cdots+a_{i}
$$

with $s_{0}=0$.
Then two of the 101 integers s_{i} must have the same remainder mod100, say

$$
s_{i} \equiv s_{j} \bmod 100
$$

where $i<j$.
But then

$$
s_{j}-s_{i} \equiv 0 \bmod 100
$$

ie

$$
a_{i+1}+a_{i+2}+\cdot+a_{j} \equiv 0 \bmod 100 /
$$

4. Show that if $\cos a=b$ and $\cos b=a$ then $b=a$.

Answer: Let

$$
f(x)=\cos (\cos x)
$$

Then

$$
f(a)=a \text { and } f(b)=b
$$

Since $-1 \leq \cos x \leq 1, \cos (-x)=\cos (x)$, and $\cos x$ is decreasing from 1 to $\cos (1)$ asxrunsfrom0to1, it follows that

$$
\cos (\cos (1))=f(1) \leq f(x) \leq \cos 1
$$

Thus we need only consider x in the range

$$
[f(1), \cos 1] \subset(0, \pi / 2) .
$$

Since $\cos x$ is decreasing in this range, $f(x)=\cos (\cos x)$ is also decreasing. Hence there is at most one point where $f(x)=x$. It follows that

$$
a=b .
$$

5. Show that there are an infinite number of positive integers n such that $4 n$ consists of the same digits in reverse order.

Answer: Suppose

$$
\begin{aligned}
n & =a b \ldots c d \\
4 n & =d c \ldots b a .
\end{aligned}
$$

Then $a=1$ or 2 , since otherwise $4 n$ would have more digits than n.

On the other hand $4 n$ must end with an even digit. Hence $a=2$.

Since $4 a=8$ we must have $d=8$ or 9 . But if $d=9$ as last digit of n, then $a=6$ as the last digit of $4 n$. Hence $d=8$. Although it is not necessary in this case, let us try to formalize the situation.

Suppose we have determined the first $r-1$ digits of n and $4 n$, and so the last $r-1$ digits also. We are trying to find the rth digits (u, U) of $n, 4 n$.
From the first $r-1$ digits, we know the number e which must be carried over from the rth digit; and similarly from the last $r-1$ digits, we know the number f which is carried over to the new digit. Let us also denote by E the number (unknown at present) which is carried over to the $(r+1)$ th digit; and by F the number on the right that will be carried over. We know that e, $E, f, F \in\{0,1,2,3\}$.
Now

$$
4 u+E=10 e+U
$$

on the left, while

$$
4 U+f=10 F+u
$$

on the right.
Let us write this

$$
[e, E] \rightarrow(u, U) \rightarrow[f, F] .
$$

At the first (and last) digits, we have

$$
[0,0] \rightarrow(2,8) \rightarrow[0,3] .
$$

At the second digit, $[e, f]=[0,3]$, and so

$$
4 u+E=U, 4 U+3=10 F+u .
$$

From the first equation, $4 u \leq 9$ and so $u \in\{0,1,2\}$.
From the second equation u is odd. Hence

$$
u=1 .
$$

Now from the first equation, $U \in\{4,5,6,7\}$; while from the second equation,

$$
4 U+3 \equiv 1 \bmod 10 .
$$

Hence $U \in\{2,7\}$.
Thus

$$
[0,3] \rightarrow(1,7) \rightarrow[3,3] .
$$

Next we start with $[e, f]=[3,3]$. We have

$$
4 u+E=30+U, 4 U+3=10 F+u .
$$

From the first equation, $u \in\{7,8,9\}$; while from the second equation, u is odd. Thus $u \in\{7,9\}$.
If $u=7$, then from the first equation $U \in\{0,1\}$, while from the second equation

$$
4 U+3 \equiv 7 \bmod 10,
$$

and so $U \in\{1,6\}$. Thus in this case,

$$
[3,3] \rightarrow(7,1) \rightarrow[3,0] .
$$

On the other hand, if $u=9$, then from the first equation $U \in\{6,7,8,9\}$, while from the second equation

$$
4 U+3 \equiv 9 \bmod 10,
$$

and so $U \in\{4,9\}$. Thus in this case,

$$
[3,3] \rightarrow(9,9) \rightarrow[3,3] .
$$

Next we start with $[e, f]=[3,0]$. We have

$$
4 u+E=30+U, 4 U=10 F+u .
$$

From the first equation, $u \in\{7,8,9\}$; while from the second equation, u is even. Thus $u=8$.
Now from the first equation $U \in\{2,3,4,5\}$, while from the second equation

$$
4 U \equiv 8 \bmod 10,
$$

and so $U \in\{2,7\}$. Thus in this case,

$$
[3,0] \rightarrow(8,7) \rightarrow[2,0] .
$$

6. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the identity $f(f(x))=x$ holds for all real x.
7. Prove that

$$
x^{y}+y^{x}>1
$$

for all positive real x, y.

Answer: Let

$$
f(x, y)=x^{y}+y^{x} .
$$

If $x \geq 1$ then $x^{y} \geq 1$. Similarly, if $y \geq 1$ then $y^{x} \geq 1$. So we can limit ourselves to the region $0<x<1,0<y<1$.
Suppose $f(x, y)<1$ at some point in this region.
At a minimum,

$$
\frac{\delta f}{\delta x}=0 \text { and } \frac{\delta f}{\delta y}=0 .
$$

But

$$
\begin{aligned}
& \frac{\delta f}{\delta x}=x^{y-1}+x y^{x}, \\
& \frac{\delta f}{\delta y}=y x^{y}+y^{x-1} .
\end{aligned}
$$

Thus

$$
x^{y}+x^{2} y^{x}=9, y^{2} x^{y}+y^{x}=0 .
$$

Hence

$$
1-x^{2} y^{2}=0 .
$$

But $x^{2} y^{2}<1$ in the region. Hence the function does not have a minimum, and so

$$
f(x, y)>1
$$

for all $x, y>0$
8. The rectangle $A B C D$ has sides $A B=1, B C=2$. What is the minimum of $A E+B E+E F+C F+D F$ for any two points E, F in $A B C D$?
Answer: Since $A E+B E+E F+C F+D F$ is a continuous function of E and F, 2e know that the minimum is attained at some points E, F in the square.
Keeping F fixed, it follows that

$$
A E+B E+F E
$$

is a minimum at this point.
9. The 8 numbers $x_{1}, x_{2}, \ldots, x_{8}$ have the property that the sum of any three consecutive numbers is 16 . If $x_{2}=9$ and $x_{6}=2$, what are the values of the remaining numbers?
Answer: This is trivial.
Since $x_{2}=9$,

$$
9+x_{3}+x_{4}=16 .
$$

Hence

$$
x_{3}+x_{4}=7 .
$$

But

$$
x_{3}+x_{4}+x_{5}=16 .
$$

Hence

$$
x_{5}=9 .
$$

Since

$$
x_{4}+x_{5}+x_{6}=16
$$

it follows that

$$
x_{4}=16-(9+2)=5
$$

and so

$$
x_{3}=16-\left(x_{4}+x_{5}\right)=16-(5+9)=2
$$

Hence

$$
x_{1}=16-\left(x_{2}+x_{3}\right)=16-(9+2)=5
$$

Finally,

$$
x_{7}=16-\left(x_{5}+x_{6}\right)=16-(9+2)=5
$$

and

$$
x_{8}=16-\left(x_{6}+x_{7}\right)=16-(2+5)=9
$$

So the 8 numbers are: 5, 9, 2, 5, 9, 2, 6, 9.
10. Can you find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f^{\prime}(x)=f(x+1)
$$

such that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$?
Answer: There is no such function. For if $f(x) \rightarrow \infty$ then $f(x)>0$ for $x \geq c$. Hence $f^{\prime}(x)=f(x+1)>0$ for $x \geq c$. In particular $f(x)$ is increasing in this range.

Suppose $x \geq c$. By the Mean Value Theorem,

$$
f(x+1)-f(x)=f^{\prime}(x+\theta)=f(x+\theta+1)
$$

for some $\theta \in(0,1)$.
But then

$$
f(x+\theta+1)<f(x+1)
$$

contradicting the fact that $f(x)$ is increasing.
11. The set of pairs of positive reals (x, y) such that

$$
x^{y}=y^{x}
$$

form the straight line $y=x$ and a curve. Determine the point at which the curve cuts the line.

Answer:

12. Show that there is just one tetrahedron whose edges are consecutive positive integers and whose volume is a positive integer.

Answer: I haven't been able to answer this question, so the following remarks are comments rather than proofs. tetrahedron
(a) There is a formula for the volume of a tetrahedron in terms of the lengths of the sides. See <www. cs. berkeley. edu/~wkahan/VtetLang. pdf>.
Suppose the tetrahedron is $A B C D$. Let us denote the sides by
$a=B C, b=C A, c=A B, d=D A, e=D B, f=D C$.

Let d,e,f also denote (by 'abuse of notation' as the French say) the vectors $D A, D B, D C$. Then the volume

$$
V=\frac{1}{6} \operatorname{det} X,
$$

where $X=(d, e, f)$, ie X is the matrix with columns d, e, f.
Thus

$$
\begin{aligned}
36 V^{2} & =\operatorname{det} X^{\prime} X \\
& =\operatorname{det}\left(\begin{array}{lll}
\text { d.d } & \text { d.e } & \text { d.f } \\
\text { e.d } & \text { e.e } & \text { e.f } \\
\text { f.d } & \text { f.e } & \text { f.f }
\end{array}\right)
\end{aligned}
$$

Consider the triangle $D A B$. By the 'cosine rule' for triangles,

$$
\begin{aligned}
\text { d.e } & =|d||e| \cos (A \hat{D} B) \\
& =\left(d^{2}+e^{2}-c^{2}\right) / 2,
\end{aligned}
$$

Thus we have expressed V^{2} in terms of the lengths of the sides:

$$
288 V^{2}=\operatorname{det}\left(\begin{array}{ccc}
2 d^{2} & d^{2}+e^{2}-c^{2} & d^{2}+f^{2}-b^{2} \\
d^{2}+e^{2}-c^{2} & 2 e^{2} & e^{2}+f^{2}-a^{2} \\
d^{2}+f^{2}-b^{2} & e^{2}+f^{2}-a^{2} & 2 f^{2}
\end{array}\right)
$$

(b) Masha pointed out that there are 'trivial' tetrahedron with zero volume, whose edges are consecutive positive integers, eg

$$
a=1, b=3, c=4, d=2, e=5, f=6 .
$$

In fact in this case all four 'faces' have zero area.
(c) To find the volume of a regular tetrahedron with unit side, consider the cube with vertices $(\pm 1, \pm 1, \pm 1)$. The 4 points $(1,1,1),(1,-1,-1),(-1,1,-1),(-1,-1,1)$ are distance $2 \sqrt{2}$ apart, and so form a regular tetrahedron with side $2 \sqrt{2}$ and volume

$$
\frac{1}{6} \operatorname{det}\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right)=\frac{8}{3}
$$

It follows that a regular tetrahedron with side 1 has volume

$$
\frac{8}{3(2 \sqrt{2})^{3}}=\frac{\sqrt{2}}{12}
$$

(d) There is another version of the formula for the volume, based on the 3 pairs $(a, d),(b, e),(c, f)$ of opposite edges:

$$
\begin{aligned}
(12 V)^{2}= & \left(a^{2}+d^{2}\right)\left(-a^{2} d^{2}+b^{2} e^{2}+c^{2} f^{2}\right) \\
& +\left(b^{2}+e^{2}\right)\left(a^{2} d^{2}-b^{2} e^{2}+c^{2} f^{2}\right) \\
& +\left(c^{2}+f^{2}\right)\left(a^{2} d^{2}+b^{2} e^{2}-c^{2} f^{2}\right) \\
& -a^{2} b^{2} c^{2}-a^{2} e^{2} f^{2}-b^{2} d^{2} f^{2}-c^{2} d^{2} e^{2}
\end{aligned}
$$

where the 4 terms in the last line correspond to the faces of the tetrahedron. (<http://math. arizona. edu/ ~eacosta/pdfs/docs/Master. pdf>)
We can permute the 6 edges in 6! ways, of which 4! arise from permutation of the 4 vertices. It follows that there are just $6!/ 4!=30$ different ways of assigning 6 different lengths to the 6 edges, if we regard 2 ways as the same whenever one can be derived from the other by re-naming the vertices.

Evidently any of the $3!=6$ permutations of the 3 edgepairs can be brought about by a permutation of the 4
vertices. It follows that $4!/ 3!=4$ permutations of the vertices must send each edge-pair into itself. One of these is the identity; and it is easy to see that each of the others will send the edges in one edge-pair into themselves, and will swap the edges in each of the two other edge-pairs. (For example, the permutation $(A D)(B C)$ of the vertices sends each of the edges a,d into themselves, but swaps the edges b, e and the edges c, f.)
We know that

$$
a, b, c, d, e, f=0,1,2,3,4,5 \bmod 6
$$

in some order.
Let's consider the equation modulo 3 first. Two of the lengths are congruent to $0,3 \bmod 6$. Suppose they are in different arm-pairs. We may suppose without loss of generality that

$$
b \equiv c \equiv 0 \bmod 3,
$$

while

$$
a^{2}, d^{2}, e^{2}, f^{2} \equiv 1 \bmod 3
$$

This gives

$$
(12 V)^{2} \equiv 2 \cdot-1+1 \cdot 1+1 \cdot 1-1=-1 \bmod 3,
$$

which is impossible. It follows that that the 2 lengths $\equiv 0,3 \bmod 6$ must belong to the same arm-pair. We may assume that these are

$$
a \equiv 0 \bmod 6, d \equiv 3 \bmod 6 .
$$

Now consider the equation modulo 4. Just two of b, c, e, f are even. Suppose they belong to the same arm-pair. We may assume that

$$
b, e \equiv 0 \bmod 2 .
$$

Then

$$
a^{2}, b^{2}, e^{2} \equiv 0 \bmod 4 \text { while } d^{2}, c^{2}, f^{2} \equiv 1 \bmod 4 .
$$

This gives

$$
(12 V)^{2} \equiv 1 \cdot 1+2 \cdot-1-1=2 \bmod 4,
$$

which is impossible. It follows that each arm-pair contains one arm of even length and one of odd length. The six edges have lengths
$6 n+r, 6 n+r+1,6 n+r+2,6 n+r+3,6 n+r+4,6 n+r+5$,
where r is one of $0,1,2,3,4,5$.
Suppose first that $r=0$, ie the shortest edge has length divisible by 6 . Then

$$
a=6 n \cdot d=6 n+3 .
$$

We may assume that

$$
b=6 n+1, e=6 n+4 .
$$

This leaves 2 choices:

$$
(c, f)=(6 n+2,6 n+5) \text { or }(6 n+5,6 n+2) .
$$

13. Every point of the circle is colored using one of two colors - black or white. Show that there exists some isosceles triangle that has vertices on that circle and which has all its vertices the same color).

Answer:

14. Given 11 integers x_{1}, \ldots, x_{11} show that there must exist some non-zero finite sequence a_{1}, \ldots, a_{11} of elements from $\{-1,0,1\}$ such that the sum $a_{1} x_{1}+\cdots+a_{11} x_{11}$ is divisible by 2011 .

Answer: Another application of the Pigeon Hole Principle.
Consider the $2^{11}=2048$ numbers

$$
a_{1} x_{1}+\cdots+a_{11} x_{11}
$$

where $a_{i}=0$ or 1 .
15. I have two children, one of whom is a boy born on a Tuesday. What is the probability that my other child is a boy?

Challenge Problem ${ }^{1}$

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
f(x+y) \leq y f(x)+f(f(x))
$$

for all $x, y \in \mathbb{R}$. Show that $f(x)=0$ for all $x \leq 0$.

[^0]
[^0]: ${ }^{1}$ Each week one very difficult problem will be posed. This one took me 8 days to solve!

