Problem Solving (MA2201)

Reading Week Micro-Project

Timothy Murphy

November 4, 2011

If you are taking this course, you should choose ONE of the projects/problems below (taken mainly from V I Arnold's "Trivium" document), and complete a short - one- or two-page - report, hopefully solving the problem, but also outlining the ideas or theory behind your answer.

Add a short list of online or other references that helped you with the project.

1. Find the Betti numbers of the following surfaces in 3-dimensional projective space:
(a) $x^{2}+y^{2}=1+z^{2}$,
(b) $z=x y$,
(c) $z=x^{2}$,
(d) $z^{2}=x^{2}+y^{2}$.
2. Find the critical values and critical points of the map $z \mapsto z^{2}+\bar{z}$. (Illustrate your reply.)
3. Find the flux of the vector field \vec{r} / r^{3} across the surface

$$
(x-1)^{2}+y^{2}+z^{2}=2 .
$$

4. Find the sum of the indices of the singular points of the vector field $z \bar{z}^{2}+z^{4}+\bar{z}^{4}$.
5. Find the index of the singular point at the origin of the vector field

$$
\left(x^{4}+y^{4}+z^{4}, x^{3} y-y x^{3}, x y z^{2}\right)
$$

6. Find the index of the singular point at the origin of the vector field

$$
\operatorname{grad}(x y+y z+z x)
$$

7. Calculate the integral of the gauss curvature of the surface

$$
x^{4}+\left(x^{2}+y^{2}-1\right)\left(2 x^{2}+3 y^{2}-1\right)=0 .
$$

8. Find the self-intersection index of the surface $x^{4}+y^{4}$ in the projective plane $\mathbb{C P}^{2}$.
9. Study the topology of the Riemann surface of the function

$$
w=\arctan z
$$

10. How many handles does the Riemann surface

$$
w=\sqrt{1+z^{n}}
$$

possess?
11. Find the number of positive and negative squares in the canonical forms of the quadratic forms

$$
\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}
$$

and

$$
\sum_{i<j} x_{i} x_{j} .
$$

12. Decompose the space of homogeneous polynomials of degree 5 in x, y, z as a sum of irreducible subspaces invariant under the rotation groups $\mathrm{SO}(3)$.
13. Alice secretly holds a $€ 10$ or $€ 20$ note in her hand, and Bob guesses what she is holding. If Bob is right he takes the money, but if he is wrong he pays Alice $€ 15$. Is the game fair? And what is the best strategy for each player?
14. Find the average of the solid angle of the disk $x^{2}+y^{2}$ in the plane $z=0$ as seen from the points of the sphere $x^{2}+y^{2}+(z-2)^{2}=1$.
15. Do the medians of a triangle in the Lobatchevsky plane meet? Do the altitudes meet?
16. Find the Betti numbers of the surface

$$
x_{1}^{2}+\cdots+x_{k}^{2}-y_{1}^{2}-\cdots-y_{l}^{2}=1
$$

and of the set

$$
x_{1}^{2}+\cdots+x_{k}^{2} \leq 1+y_{1}^{2}+\cdots+y_{l}^{2}
$$

in a vector space of dimension $k+l$.
17. Find the eigenvalues (with multiplicities) of the Laplacian on a sphere of radius R in n-dimensional euclidean space.
18. Find a conformal transformation of the unit disk into the first quadrant.
19. Find the Green's function of the operator $d^{2} / d x^{2}-1$ and solve the equation

$$
\int_{-\infty}^{\infty} e^{-|x-y|} u(y) d y=e^{-x^{2}}
$$

20. Determine the subgroups $S \subset S_{4}$ up to conjugacy, and for each conjugacy class of subgroups find a polynomial $p(x) \in \mathbb{Z}[x]$ having S as galois group. [You may find the program GAP useful.]
21. An infinite wire lattice is formed by joining each pair of neighbouring vertices in the integer lattice (m, n) with a resistance of 1 ohm . What is the resistance of the lattice between neighbouring vertices?
