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MM-11712 In the game of Bulgarian solitaire, n identical coins are dis-
tributed into two piles, and a move takes one coin from each existing
pile to form a new pile. Beginning with a single pile of size n, how many
moves are needed to reach a position on a cycle (a position that will
eventually repeat)? For example, 5 7→ 41 7→ 32 7→ 221 7→ 311 7→ 32,
so the answer is 2 when n = 5.

MM-11713 Let x1, . . . , xn be nonnegative real numbers. Let S =
∑n

k=1 xk.
Prove that
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MM-11714 Let ABCD be a cyclic quadrilateral (the four vertices lie on a
circle). Let e = |AC| and f = |BD|. Let ra be the inradius of BCD,
and define rb, rc, rd similarly. Prove that erarc = frbrd.

MM-11715 Prove that
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MM-11716 Let α = (
√

5 − 1)/2. Let pn and qn be the numerator and
denominator of the nth continued fraction convergent to α. (Thus, pn
is the nth Fibonacci number and qn = pn+1.) Show that
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where Ck denotes the kth Catalan number, given by Ck = (2k)!
k!(k+1)! .

MM-11717 Given a circle c and a line segment AB tangent to c at a
point E that lies strictly between A and B, provide a compass and
straightedge construction of the circle through A and B to which c is
internally tangent.

MM-11718 Given positive real numbers a1, . . . , an with n ≥ 2, minimize∑n
i=1 xi subject to the conditions that x1, . . . , xn are positive and that∏n
i=1 xi =

∑n
i=1 aixi.


