AMM problems August-September 2013 due before 31 October, 2013

TCDmath Problem Group
Trinity College, Dublin, Ireland *

October 2013

MM-11712 In the game of Bulgarian solitaire, n identical coins are distributed into two piles, and a move takes one coin from each existing pile to form a new pile. Beginning with a single pile of size n, how many moves are needed to reach a position on a cycle (a position that will eventually repeat)? For example, $5 \mapsto 41 \mapsto 32 \mapsto 221 \mapsto 311 \mapsto 32$, so the answer is 2 when $n=5$.

MM-11713 Let x_{1}, \ldots, x_{n} be nonnegative real numbers. Let $S=\sum_{k=1}^{n} x_{k}$. Prove that

$$
\prod_{k=1}^{n}\left(1+x_{k}\right) \leq 1+\sum_{k=1}^{n}\left(1-\frac{k}{2 n}\right)^{k-1} \frac{S^{k}}{k!}
$$

MM-11714 Let $A B C D$ be a cyclic quadrilateral (the four vertices lie on a circle). Let $e=|A C|$ and $f=|B D|$. Let r_{a} be the inradius of $B C D$, and define r_{b}, r_{c}, r_{d} similarly. Prove that $e r_{a} r_{c}=f r_{b} r_{d}$.

MM-11715 Prove that

$$
\sum_{k=0}^{\infty} \frac{1}{(6 k+1)^{5}}=\frac{1}{2}\left(\frac{2^{5}-1}{2^{5}} \cdot \frac{3^{5}-1}{3^{5}} \zeta(5)+\frac{11}{8}\left(\frac{\pi}{3}\right)^{5} \cdot \frac{1}{\sqrt{3}}\right) .
$$

[^0]MM-11716 Let $\alpha=(\sqrt{5}-1) / 2$. Let p_{n} and q_{n} be the numerator and denominator of the nth continued fraction convergent to α. (Thus, p_{n} is the nth Fibonacci number and $q_{n}=p_{n+1}$.) Show that

$$
\sqrt{5}\left(\alpha-\frac{p_{n}}{q_{n}}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{(n+1)(k+1)} C_{k}}{q_{n}^{2 k+2} 5^{k}},
$$

where C_{k} denotes the k th Catalan number, given by $C_{k}=\frac{(2 k)!}{k!(k+1)!}$.
MM-11717 Given a circle c and a line segment $A B$ tangent to c at a point E that lies strictly between A and B, provide a compass and straightedge construction of the circle through A and B to which c is internally tangent.

MM-11718 Given positive real numbers a_{1}, \ldots, a_{n} with $n \geq 2$, minimize $\sum_{i=1}^{n} x_{i}$ subject to the conditions that x_{1}, \ldots, x_{n} are positive and that $\prod_{i=1}^{n} x_{i}=\sum_{i=1}^{n} a_{i} x_{i}$.

[^0]: *This group involves students and staff of the School of Mathematics at Trinity College Dublin. Please address correspondence either to Timothy Murphy (tim@maths.tcd.ie) or Colm O Dunlaing (odunlain@maths.tcd.ie).

