Chapter 1

The Fundamental Theorem of
Arithmetic

1.1 Prime numbers

If a,b € Z we say that: dividesb (or is a divisor ofb) and we writea | b, if

b=ac

for somec € Z.
Thus—2 | 0 but0 1 2.

Definition 1.1 The numbep € N is said to beprimeif p has just 2 divisors ilN,
namely 1 and itself.

Note that our definition excludes 0 (which has an infinity of divisor&jrand
1 (which has just one).
Writing out the prime numbers in increasing order, we obtairstgrgpuence of
primes
2,3,5,7,11,13,17,19, ...

which has fascinated mathematicians since the ancient Greeks, and which is the
main object of our study.

Definition 1.2 We denote theth prime byp,.

Thu5p5 =11, pigo = 541.
It is convenient to introduce a kind of inverse functiomio

Definition 1.3 If x € R we denote byt (x) the number of primes. z:
m(z) = [{p < : p prime}||.

Thus
m(1.3) =0, n(3.7) = 2.

Evidently = (x) is monotone increasing, but discontinuous with jumps at each
primez = p.

1-1
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Theorem 1.1 (Euclid’s First Theorem)The number of primes is infinite.

Proof » Suppose there were only a finite number of primes, say

P1,D2,- -, Pn-
Let
N =pipa---pn+ 1.
Evidently none of the primeg, . . ., p, dividesN.

Lemma 1.1 Every natural numben > 1 has at least one prime divisor.

Proof of Lemma- The smallest divisoti > 1 of n must be prime. For otherwise

d would have a divisoe with 1 < e < d; ande would be a divisor of,» smaller
thand. <«

By the lemmaN has a prime factop, which differs fromp,...,p,. <«

Our argument not only shows that there are an infinity of primes; it shows that

27L
Dn <27

a very feeble bound, but our own. To see this, we argue by induction. Our proof
shows that

Pny1 S pip2---pn+ L
But now, by our inductive hypothesis,

<2, pe <2, py <2
It follows that
Pnt1 < 92 2% 442"
But
21+22++2n:2n+1_1 <27l+1
Hence
n+1
Dn+1 < 22"
It follows by induction that
pn < 2%,

for all n > 1, the result being trivial fon, = 1.
This is not a very strong result, as we said. It shows, for example, that the 5th
prime, in fact 11, is
< 2% = 2%% = 4294967296.

In general, any bound far, gives a bound forr(x) in the opposite direction,
and vice versa,; for
pn < x <= 7(x) > n.
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In the present case, for example, we deduce that
m(27) > [yl >y —1
and so, setting = 22,
m(x) > logylogyx — 1 > loglogz — 1.

for x > 1. (We follow the usual convention that if no base is given thgu
denotes the logarithm of to basee.)
ThePrime Number Theorefuahich we shall make no attempt to prove) asserts
that
Pn ~ nlogn,

or, equivalently,
xXr

m(@) ~ logx’

This states, roughly speaking, that the probabilityzdfeing prime is about
1/log n. Note that this includes even numbers; the probability obétnumber
n being prime is abow/ log n. Thus roughly 1 in 6 odd numbers arour@f are
prime; while roughly 1 in 12 arounth'? are prime.

(The Prime Number Theorem is the central resulaiélytic number theory
since its proof involves complex function theory. Our concerns, by contrast, lie
within algebraic number theory

There are several alternative proofs of Euclid’s Theorem. We shall give one
below. But first we must establish the Fundamental Theorem of Arithmetic (the
Unigue Factorisation Theorem) which gives prime numbers their cediein
number theory; and for that we need Euclid’s Algorithm.

1.2 Euclid’s Algorithm

Proposition 1.1 Supposen,n € N, m # 0. Then there exist uniquer € N
such that
n=qgqm+r, 0<r<m.

Proof » For uniqueness, suppose
n=qgm-+r=q¢m-+r,

wherer < 7/, say. Then
(¢ —qgm=r"—r
The number of the right isc m, while the number on the left has absolute value
> m, unlessy’ = ¢, and so alse’ = r.
We prove existence by induction ean The result is trivial ifn < m, with
g =0, r = n. Suppose: > m. By our inductive hypothesis, sinece— m < n,

n—m=q¢m-+r,
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where0 < r < m. But then
n=qm-+r,

withg=¢ +1. <«

Remark:One might ask why we feel the need to justify division with remainder
(as above), while accepting, for example, proof by induction. This is not an easy
question to answer.

Kronecker said, God gave the integers. The rest is Math'/irtually all
number theorists agree with Kronecker in practice, even if they do not accept his
theology. In other words, they believe that the integers exist, and have certain
obvious properties.

Certainly, if pressed, one might go back to Peano’s Axioms, which are a stan-
dard formalisation of the natural numbers. (These axioms include, incidentally,
proof by induction.) Certainly any properties of the integers that we assume could
easily be derived from Peano’s Axioms.

However, as | heard an eminent mathematician (Louis Mordell) once say, “If
you deduced from Peano’s Axioms tHat 1 = 3, which would you consider most
likely, that Peano’s Axioms were wrong, or that you were mistaken in believing
thatl +1 = 27"

Proposition 1.2 Supposen,n € N. Then there exists a unique numbee N
such that
d|m, d|n,

and furthermore, it € N then
elm,e|ln=c¢e|d.

Definition 1.4 We call this numbet the greatest common divisaf m and n,
and we write
d = ged(m,n).

Proof » Euclid’s Algorithm is a simple technique for determining the greatest
common divisorged(m,n) of two natural numbersn,n € N. It proves inci-
dentally — as the Proposition asserts — that any two numti@sdeed have a
greatest common divisor (or highest common factor).

First we divide the larger, say n, by the smaller. Let the quotient, lzad let
the remainder (all we are really interested in)he

n=mqg +ri.
Now dividem by r; (which must be less thamn):

m = r1qz + T2.



374 1-5

We continue in this way until the remainder becomes 0:

n =mgq + ry,
m =Ti1qs + T2,

1 = T2qQ3 + T3,

i1 = Ti—2Gi—1 + T,
Tt = Tt—14qt.

The remainder must vanish after at meststeps, for each remainder is strictly
smaller than the previous one:

m>1ry>7rg > -

Now we claim that the last non-zero remaindér= r; say, has the required

property:
d = ged(m,n) = ry.

In the first place, working up from the bottom,
d=r | Tt—1,

d ‘ Tt andd ’ ri_1 —d ’ Ti—2,
d | Tt—1 andd | Ti_9 —> d | T3,

d|rsandd | ro = d |,
d|reandd | ry = d | m,
d|r andd | m = d | n.
Thus
d|m,n;

sod is certainlya divisor of m andn.

On the other hand, supposés a divisor ofm andn:
e | m,n.

Then, workingdownwardswe find successively that
e|mande | n = e |,
el riande | m = e | ro,
e|ryande | ry = e| rs,

elrioande|r,y = e|r.

Thus

e|r =d.
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We conclude that our last non-zero remaindas number we are looking for:
ged(m,n) = .

<
It is easy to overlook the power and subtlety of the Euclidean Algorithm. The
algorithm also gives us the following result.

Theorem 1.2 Supposen,n € N. Let
ged(m,n) = d.
Then there exist integers y € Z such that

mz +ny = d.

Proof » The Proposition asserts thatan be expressed as a linear combination
(with integer coefficients) ofn andn. We shall prove the result by working
backwards from the end of the algorithm, showing successivelyitisaa linear
combination ofr, andr,;, and so, since, is a linear combination af,_; and
rs, d is also a linear combination of_, andr,.
To start with,
d=r;.

From the previous line in the Algorithm,
Ti—g = QtTt—1 + Tt

Thus
d=71 =" — qT-1.

But now, from the previous line,
Ti—3 = qt—1T¢—2 + T't—1.

Thus

Ti—1 =7t —3 — q—1T1—2.

Hence

d=ri_o—qrt—1
=Tt—2 — Qt(rth - Qt717t72)

= —qr—3 + (1 + @q-1)r1-2.
Continuing in this way, suppose we have shown that
d=asrs+ bsrsyq.

Since
T's—1 = Qqs+17s + Ts+1,
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it follows that

d = asrs+ bs(rs—1 — qs417s)
- bsTs—l + (as - bst-{-l)rs-
Thus
d= As_1Ts—1 + bs—lrsa
with
Qs—1 = b37 bsfl = Qs — bsqurl-

Finally, at the top of the algorithm,

d = agro + bor1
= agro + bo(m — q170)
= bom + (ap — bogq1 )70
= bom + (ao — boq1)(n — qom)
= (bo — aoqo + bogoq1)m + (ag — bogo)n,

which is of the required form. «

Example:Supposen = 39, n = 99. Following Euclid’s Algorithm,

99 =2-39 + 21,
39=1-21+18,
21 =118+ 3,
18=6-3.
Thus
gcd(39,99) = 3.
Also
3=21-18
=21 — (39 — 21)
=-39+2-21
= —39+2(99 —2-39)
=2-99—-5-39.

Thus theDiophantine equation
992 + 39y =3

has the solution
T =2, y=—95.

(By a Diophantine equation we simply mean a polynomial equation to which we
are seeking integer solutions.)
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This solution is not unique; we could, for example, add 39 tnd subtract
99 fromy. We can find the general solution by subtracting the particular solution
we have just found to give lBomogeneoulinear equation. Thus if’,y' € Z also
satisfies the equation thexs = 2/ — z, Y = ¢/ — y satisfies the homogeneous
equation

99X +39Y =0,

33X +13Y =0,
the general solution to which is
X =13t, Y = —33t
for t € Z. The general solution to this diophantine equation is therefore

r=2+13t, y=-5-33 (t€Z).

Itis clear that the Euclidean Algorithm gives a complete solution to the general
linear diophantine equation
ax + by = c.

This equation has no solution unless
ged(a,0) | ¢,

in which case it has an infinity of solutions. For(if,y) is a solution to the
equation
ax + by = d,

andc = dc then(d'z, dy) satisfies
ar + by = c,
and we can find the general solution as before.
Corollary 1.1 Supposen,n € Z. Then the equation
mx +ny =1
has a solutione, y € Z if and only ifged(m,n) = 1.

It is worth noting that we can improve the efficiency of Euclid’s Algorithm by
allowing negative remainders. For then we can divide with remairder/2 in
absolute value, ie

n=qm-+r,
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with —m/2 < r < m/2. The Algorithm proceeds as before; but now we have
m > |rg/2| > |r1 /2% > ...,

so the Algorithm concludes after at masg, m steps.

This shows that the algorithm is class P ie it can be completed in polyno-
mial (in fact linear) time in terms of the lengths of the input numbers — the
lengthof n, ie the number of bits required to expresm binary form, being

[logy n] + 1.

Algorithms in class P (opolynomial timealgorithms) are considerexhsyor
tractable while problems which cannot be solved in polynomial time are consid-
eredhard orintractable RSA encryption — the standard technighe for encrypting
confidential information — rests on the belief — and it should be emphasized that
this is a belief and not a proof — that factorisation of a large number is intractable.

Example:Takingm = 39, n = 99, as before, the Algorithm now goes

99 =339 — 18,
39 =218+ 3,
18 =6-3,

giving (of course)
ged(39,99) = 3,

as before.

1.3 lIdeals

We used the Euclidean Algorithm above to show thagif(a, b) = 1 then there
we can findu, v € Z such that

au + bv = 1.

There is a much quicker way of proving that such exist, without explicitly
computing them.

Recall that arideal in a commutative ring4 is a non-empty subset C A
such that

l.abca=a+becaq

2.a€a, ce A= ac€ .

As an example, the multiples of an elemer¢ A form an ideal
(a) ={ac:ce A}.

Such an ideal is said to lpgincipal.
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Proposition 1.3 Every ideala C Z is principal.

Proof » If a = 0 (by convention we denote the idefdl} by 0) the result is trivial:
a = (0). We may suppose therefor that 0.

Thena must contain integers > 0 (since—n € a = n € a). Letd be the
least such integer. Then

a=(d).
For suppose € a. Dividing a by d,
a=qd+r,
where
0<r<d.
But

r=a+(—q)d € a.
Hencer = 0; for otherwiser would contradict the minimality of. Thus

a = qd,

ie every element € ais a multiple ofd. <«
Now suppose, b € Z. Consider the set of integers

I ={au+bv:uveZ}

It is readily verified that is an ideal.
According to the Proposition above, this ideal is principal, say

I=(d).

But now
ac€l=d|a, bel=d|b.

On the other hand,

ela, e|b=e¢|au+bv
= e|d.

It follows that
d = ged(a, b);

and we have shown that the diophantine equation
au+bv =d

always has a solution.
In particular, ifged(a, b) = 1 we canu, v € Z such that

au + bv = 1.
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This proof is much shorter than the one using the Euclidean Algorithm; but it
suffers from the disadvantage that it provides no way of computing

d = ged(a, b),
and no way of solving the equation
au+ bv = d.

In effect, we have takei as the least of an infinite set of positive integers, using
the fact that the natural numbe¥sarewell-ordered ie every subse$ C N has a
least element.

1.4 The Fundamental Theorem of Arithmetic

Proposition 1.4 (Euclid’'s Lemma) Suppogec N is a prime number; and sup-
posea, b € Z. Then
plab=plaorp|b.

Proof » Suppose | ab, p { a. We must show that | b. Evidently
ged(p,a) = 1.
Hence, by Corollary 111, there existy € Z such that
pxr+ay = 1.
Multiplying this equation by,
pxb+ aby = D.
Butp | pzb andp | aby (Sincep | ab). Hence
plb.
<

Theorem 1.3 Suppose: € N, n > 0. Themn is expressible as a product of prime
numbers,

n=pip2- - Pr,
and this expression is unique up to order.

Remark:We follow the convention that an empty product has value 1, just as an
empty sum has value 0. Thus the theorem holds:fer 1 as the product ofho
primes.
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Proof » We prove existence by induction on the result begin trivial (by the
remark above) when = 1. We know that: has at least one prime factpy by

Lemma[Ill], say
n =pm.

Sincem = n/p < n, we may apply our inductive hypothesisrig
m = qiq2 - qs-

Hence
n=pqiq2 - (qs-
Now suppose
n=pipz2---Pr=m= 142" " qs.
Sincep, | n, it follows by repeated application of Euclid’s Lemma that
Pl g

for somej. But then it follows from the definition of a prime number that

pP1 = gj.

Again, we argue by induction am Since

~

n/pl:p2"'prZQ1"'Qj"'QS

(where the ‘hat’ indicates that the factor is omitted), and sin¢e, < n, we

deduce that the factofs, . . ., p, are the same ag, . . ., gj, . . ., ¢s, In some order.
Hencer = s, and the primeg,,--- ,p, andqy, . . ., g, are the same in some order.
<

We can base another proof of Euclid’s Theorem (that there exist an infinity of
primes) on the fact that if there were only a finite number of primes there would
not be enough products to “go round”.

Thus suppose there were justprimes

P1y--- 3 Pm-

Let N € N. By the Fundamental Theorem, eack< N would be expressible in
the form
n o pil DR pf;{/n
(Actually, we are only using the existence part of the Fundamental Theorem; we

do not need the uniqueness part.)
Foreach (1 <i <m),

n=—p; <n
= p;i' <N
— 29 <N
— ¢; < log, N.

€;
b;
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Thus there are at mokig, N + 1 choices for each exponesit and so the number
of numbers: < N expressible in this form is

< (logs N + 1)™.
So our hypothesis implies that
(loga N +1)™ > N

for all V.
But in fact, to the contrary,

log X "
X > (logy, X +1)™ = <0g +1)

log 2

for all sufficiently largeX . To see this, seX = ¢*. We have to show that

s (24 :
e — :
log 2

Since
1<2
log 2 * .
if x > 3, itis sufficient to show that
e’ > (2x)™
for sufficiently larger. But
xm—i—l
X > e
‘ (m+1)!

if x > 0, since the expression on the right is one of the terms in the power-series

expansion ot*. Thus the inequality holds if
$m+1

m+ 1) > (22)™,
ie if
z>2"(m+ 1)l
. We have shown therefore that primes are insufficient to express all< N
if N > 2 m)

Thus our hypothesis is untenable; and Euclid’s theorem is proved.
Our proof gives the bound

DPn < €2m(m+1)! .
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which is even worse than the bound we derived from Euclid’s proof. (For it is
easy to see by induction that

(m+1)!>e™

for m > 2. Thus our bound is worse thafi’, compared witi2?" by Euclid’s
method.)
We can improve the bound considerably by taking out the square factor in
Thus each number € N (n > 0) is uniquely expressible in the form
n=dp;...p,

where the primeg, ..., p, are distinct. In particular, if there are only primes
then eachn is expressible in the form

—_ J2..e1 em
n_dpl ...pm7

where now each exponestis either O or 1.
Consider the numbers < N. Since

d<+/n<VN,
the number of numbers of the above form is
< V/N2™,

Thus we shall reach a contradiction when

VN2™ > N,

N < 22m,

This gives us the bound
pn < 277,

better thar2?”, but still a long way from the truth.

1.5 The Fundamental Theorem, recast

We suppose throughout this section tHais an integral domain. (Recall that an
integral domain is a commutative ring with 1 having no zero divisors,dehife A
then

ab=0=a=0 or b=0.)

We want to examine whether or not the Fundamental Theorem holds-n
we shall find that it holds in some commutative rings and not in others. But to
make sense of the question we need to re-cast our definition of a prime.
Looking back atZ, we see that we could have defined primality in two ways
(excludingp = 1 in both cases):
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1. pis prime if it has no proper factors, ie

p=ab=—a=1o0or b=1.

2. pis prime if
plab=pl|a orp|b.

The two definitions are of course equivalent in the ritig However, in a
general ring the second definition is stronger: that is, an element satisfying it must
satisfy the first definition, but the converse is not necessarily true. We shall take
the second definition as our starting-point.

But first we must deal with one other point. In defining primality4Anwe
actually restricted ourselves to the semi-rigdefined by therderin Z:

N={ne€Z:n>0}

However, a general ring has no natural order, and no such semi-ring, So we must
consider all elements € A.

In the case ofZ this would mean consideringp as a prime on the same
footing asp. But now, for the Fundamental Theorem to make sense, we would
have to regard the primeisp as essentially the same.

The solution in the general ring is that to regard two primesgsvalentif
each is a multiple of the other, the two multiples necessarily beiits

Definition 1.5 An element € A is said to be ainitif it is invertible, ie if there is
an element) € A such that
en = 1.

We denote the set of units.ihby A*.

For example,
7* = {+£1}.

Proposition 1.5 The units inA form a multiplicative groupA*.

Proof » This is immediate. Multiplication is associative, from the definition of a
ring; andn = ¢! is a unit, since it has inverse <«
Now we can define primality.

Definition 1.6 Suppose € A is not a unit, anc # 0. Then

1. ais said to bdarreducibleif

a = bc = borcis aunit

2. ais said to beprimeif

a|bc=al|borp|b.
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Proposition 1.6 If a € A is prime then it is irreducible.

Proof » Suppose
a = bc.

Then
albora]ec.

We may suppose without loss of generality thath. Then
alb, b|a= a=be,

wheree is a unit; and
a=bc=be = c=c¢e.

<

Definition 1.7 The elements, b € A are said to beequivalentwritten

for some unik.

In effect, the group of unitsl* acts onA and two elements are equivalent if
each is a transform of the other under this action.

Now we can re-state the Fundamental Theorem in terms which make sense in
any integral domain.

Definition 1.8 The integral domaim is said to be ainique factorisation domain
if each non-uni € A, a # 0 is expressible in the form

a=p1--Pr;

wherepy, ..., p, are prime, and if this expression is unique up to order and equiv-
alence of primes.

In other words, if
a=qi - qs
is another expression of the same form, thea s and we can find a permutation
mof {1,2,...,r} and unitsy, e, . . . , €, such that

qi = €Pr(i)

fori=1,2,...,r.
Thus a unique factorisation domain (UFD) is an integral domain in which the
Fundamental Theorem of Arithmetic is valid.
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1.6 Principal ideals domains

Definition 1.9 The integral domainA is said to be agprincipal ideal domainf
every ideak € A is principal ie

a={(a) ={ac:ce A}
for somen € A.
Example:By Propositior TJ3Z is a principal ideal domain.

Our proof of the Fundamental Theorem can be divided into two steps — this
is clearer in the alternative version outlined in Secfianh 1.3 — first we showed that
thatZ is a principal ideal domain, and then we deduced from thisZhgat unique
factorisation domain.

As our next result shows this argument is generally available; it is the tech-

nigue we shall apply to show that the Fundamental Theorem holds in a variety of
integral domains.

Proposition 1.7 A principal ideal domain is a unique factorisation domain.

Proof » Supposed is a principal ideal domain.
Lemma 1.2 A non-unita € A, a # 0 is prime if and only if it is irreducible, ie
a =bc = aisaunitorbis a unit
Proof of Lemma- By Propositior{ 1]6, a prime is always irreducible.
The converse is in effect Euclid’'s Lemma. Thus suppose

plab but pfa.

Consider the idedlp, a) generated by anda. By hypothesis this is principal, say
(p,a) = {d).

Sincep is irreducible,
d|p=d=ecord = pe,

wheree is a unit. But
d=pe, d|a=p|a,

contrary to hypothesis. Thukis a unit, ie

(p,a) = A.
In particular we can find, v € A such that

pu+av =1.
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Multiplying by b,

pub + abv = b.
But now

plab=p]|b.

<
Now suppose is neither a unit nor 0; and suppose thas not expressible as
a product of primes. Themis reducible, by the Lemma above: say

a = aby,

whereay, b; are non-units. One at least @f, b; is not expressible as a product of
primes; we may assume without loss of generality that this is trueg.of
It follows by the same argument that

ay = CLQbQ,

whereay, b, are non-units, and, is not expressible as a product of primes.
Continuing in this way,

a = albl, a; = (ZQbQ, a9 = agbg, e
Now consider the ideal
a = <a1,a2,a3, R >
By hypothesis this ideal is principal, say
a=(d).
Sinced € a,
de{a,...,a.) = {a,)
for somer. But then
Ary1 € <d> = <CLT>.
Thus
ar | Gy, Qi1 | @p = ap = @y => byy =€,

wheree is a unit, contrary to construction.
Thus the assumption thatis not expressible as a product of primes is unten-
able;
a=prpr
To prove uniqueness, we argue by induction-pwherer the smallest number
such that is expressible as a productoprimes.
Suppose
a=pi-Pr=0q1 " qs
Then
pLlqi-qs=p1]| g
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for somej. Sincey; is irreducible, by Proposition 1.6, it follows that

q; = pP1€,

wheree is a unit.
We may suppose, after re-ordering tfethat; = 1. Thus

P~ qi.
If » =1 then
a=pr=€pqe---qs = 1 =¢€q--- 5.
If s > 1 this implies thatp, . .., g, are all units, which is absurd. Henge= 1,
and we are done.
If » > 1then

¢ = €p1 = pap3 - pr = (€q2)q3 - - - g5

(absorbing the unit into ¢»). The result now follows by our inductive hypothesis.
<

1.7 Polynomial rings
If Aisacommutative ring (with 1) then we denote bjy| the ring of polynomials
p(z) =anz" +---+ag (ag,...,a, €A).

Note that these polynomials should be regarded as formal expressions rather
than map® : A — A; forif Ais finite two different polynomials may well define
the same map.

We identify ain A with the constantpolynomial f(x) = a. Thus

A C Alz].

Proposition 1.8 If A is an integral domain then so id|x].

Proof » Suppose
flz) =apma™ +---+ag, g(x)="0byx"+ -+ by,
wherea,, # 0, b, # 0. Then
f(@)g(x) = (amby)a™ ™ + -+ + aobo;

and the leading coefficiemt,, b, # 0. =



374 1-20

Proposition 1.9 The units inA|[x] are just the units ofi:

(Af])™ = A%

Proof » It is clear thatu € A is a unit (ie invertible) inA[z] if and only if it is a
unitin A.

On the other hand, no non-constant polynondiat) € A[z] can be invertible,
since

deg F(2)G(z) > deg F(x)

if G(z) #0. <«

If A is afield then we can divide one polynomial by another, obtaining a
remainder with lowedegreethan the divisor. Thus degree plays tléerin &[]
played by size ir¥.

Proposition 1.10 Supposek is a field; and supposé€ (z), g(z) € k[z], with
g(x) # 0. Then there exist unique polynomials), r(x) € k[x] such that

f(x) = g(x)q(x) + r(z),
where

degr(z) < degg(x).

Proof » We prove the existence gfz), »(z) by induction ondeg f(x).
Suppose

f(f):am$m+~-+ao, g(aj’):bnxn++b0’

wherea,, # 0, b, # 0.
If m < nthenwe cantake(z) =0, r(z) = f(x). We may suppose therefore
thatm > n. In that case, let

filw) = f(x) = (am/bn)a™ "g(x).

Then
deg fi(z) < deg f(x).

Hence, by the inductive hypothesis,

filz) = g(z)q(z) +7r(z),

where
degr(z) < degg(z);
and then
f(x) = g(x)q(x) + r(z),
with

q(m) = (am/bn)xm_n +q1 (l’)
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For unigueness, suppose

f(x) = g(@)q(x) + r1(x) = g(x)ga(x) + ra(2).
On subtraction,

where
4(z) = ¢2(z) — qu(z), r(z)=ri(z) —r2(2).
But now, if¢(z) # 0,
deg(g(x)g(x)) > degg(x), degr(z) < degg(x).
This is a contradiction. Hence

0(7) = ¢:0),  n(x) =7ra().
<

Proposition 1.11 If £ is a field therk[z] is a principal ideal domain.

Proof » As with Z we can prove this result in two ways: constructively, using the
Euclidean Algorithm; or non-constructively, using ideals. This time we take the
second approach.
Suppose
a C klz]
is an ideal. Ifa = 0 the result is trivial; so we may assume that 0.
Let
d(z) €a
be a polynomial int of minimal degree. Then
a = (d(x)).
For supposé (z) € a. Divide f(x) by d(z):
f(x) = d(z)q(z) +
wheredeg r(z) < degd(z). Then
r(z) = f(x) —d(x)q(z) € a
sincef(z),d(x) € a. Hence, by the minimality ofleg d(x),
r(z) =0,

r(z),

<
By Propositiorf I]7 this gives the result we really want.
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Corollary 1.2 If k is a field therk[z| is a unique factorisation domain.

Every non-zero polynomigf(x) € k[z] is equivalent to a unique monic poly-
nomial, namely that obtained by dividing by its leading term. Thus each prime,
or irreducible, polynomiap(z) € k[z| has a unique monic representative; and we
can restate the above Corollary in a simpler form.

Corollary 1.3 Each monic polynomial
fx)=a"+ap 12" '+ +ag

can be uniquely expressed (up to order) as a product of irreducible monic polyno-
mials:

f(x) =pi(2) - pr().

1.8 Postscript

We end this Chapter with a result that we don’t really need, but which we have
come so close to it would be a pity to omit.

Supposed is an integral domain. Lek be thefield of fractionsof A. (Recall
that K consists of the formal expressions

b?
with a,b € A, b # 0; where we set
a &
—=— |if = bc.
b= if ad=bc
The map
at—>%:A—>K

is injective, allowing us to identifyl with a subring ofK’.)
The canonical injection
ACK

evidently extends to an injection
Alz] C Klz].
Thus we can regarfi(z) € A[z]| as a polynomial ovek'.

Proposition 1.12 If A is a unique factorisation domain then soA$r].

Proof » First we must determine the primestz].

Lemma 1.3 The elemenp € A is prime inA|z] if and only if it is prime inA.



374 1-23

Proof of Lemma- It is evident that

p prime in A[z] = p prime in A.

Conversely, supposeis prime inA; We must show that if'(z), G(z) € Ax]
then

p| F(z)G(z) = p| F(z)orp | G(x).
In other words,
ptF(x), pt Glx) = pt F(2)G(x).
Suppose
F(z) =apz™ +---4+ay, G(z)=0bya"+ -+ by;

and suppose
ptF(), ptG(z).
Leta,., b, be the highest coefficients ¢fx), g(z) notdivisible byp. Then the
coefficient ofz" ™ in f(z)g(z) is

aobris + arbyps—1+ -+ arbs + -+ - + ary5bo = aybs mod p,
since all the terms exceptb, are divisible byp. Hence
p | a.bs = p mod a, or p mod by,

contrary to hypothesis. In other words,

ptF(z)G(z).
<

Lemma 1.4 Supposef(z) € K[z]|. Thenf(x) is expressible in the form

f(@) = aF(2),

wherea € K and
F(x) = apa" + -+ + ag € Alz]

with
ged(ag, ..., a,) = 1;

and the expression is unique up to multiplication by a unit, ie if
f(z) = aF(z) = pG(x),

whereG(z) has the same property then
G(z) =€eF(z), a=¢€0

for some unit € A.
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Proof of Lemma- Suppose

f(z) = apx™ 4+ -+ + ay.

Let

wherea;, b; € A; and let

Then
bf(x) =bpa" +---+ by € Alx].
Now let
d = ged(bg, ..., by).
Then

f(z) = (b/d)(cpz™ + -+ + co)
is of the required form, since

ged(eg,y ..o yen) = 1.

To prove uniqueness, suppose

Then
G(z) =vF(x),
wherey = «/f.
In a unique factorisation domaif we can express any < K in the form
a
Y= b’

with ged(a, b) = 1, since we can divide andb by any common factor.
Thus
aF(z) = bG(x).

Let p be a prime factor ob. Then
plaF(x) = p| F(z),

contrary to our hypothesis on the coefficientd@¢f:). Thusb has no prime factors,
ie b is a unit; and similarly: is a unit, and sy is a unit. <

Lemma 1.5 A non-constant polynomial
F(z) = apyx™+ -+ ap € Alz]

is prime inA[z] if and only if
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1. F(x) is prime (ie irreducible) inK (x); and
2. ged(ag, ..., a,) = 1.

Proof of Lemma- Supposé’(z) is prime inA[z]. Then certainly

ged(ag, ..., a,) =1,

otherwiseF'(x) would be reducible.
Supposé-(x) factors inK[z|; say

By Propositiorf T4,
g(x) = aG(x), h(x) = GH(x),
whereG(x), H(x) have no factors inl. Thus
F(z) = 1G(2)H(x),
wherey € K. Lety = a/b, wherea, b € A andgcd(a,b) = 1. Then
bF (z) = aG(x)H (z).
Suppose is a prime factor ob. Then
p|G(z) or p|H(z),
neither of which is tenable. Henééas no prime factors, ieis a unit. But now
F(z) = ab™'G(x)H(z);

and soF'(z) factors inAlz].

Conversely, supposE(x) has the two given properties. We have to show that
F(x)is prime inAlz].

Suppose

F(x) | G(x)H(x)

in Alz].

If F(x)is constant then

Fz)=a~1

by the second property, so
F(z)| G(z) and F(x)| H(x).

We may suppose therefore thiaf F'(x) > 1. SinceK|[z] is a unique factori-
sation domain (Corollary to Propositipn 1.11),

F(z) | G(z) or F(x)| H(z)
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in K[x]. We may suppose without loss of generality that
F(z) | G(z)
in Kz|, say

whereh(z) € K|z].
By Lemma[ 1.4 we can expressz) in the form

h(z) = aH(z),
where the coefficients dff (x) are factor-free. Writing

o =

X
with ged(a, b) = 1, we have
bG(x) = aF(x)H(x).
Suppose is a prime factor ob. Then
pla or p|[F(z) or p|H(),
none of which is tenable. Henédhas no prime factors, ieis a unit. Thus
F(x) | G(z)

in Alz]. <
Now suppose
F(z) = apyx™ + -+ ag € Alx]

is not a unit inA[z].

If F(z)is constant, say'(x) = a, then the factorisation of into primes inA
is a factorisation into primes id[x], by Lemma 1]3. Thus we may assume that
deg F(z) > 1.

Since K [z] is a unique factorisation domain (Corollary to Proposifion]1.11),
F(z) can be factorised itk [z]:

F(z) = anpi(z) - - ps(2),

wherep;(z),...,ps(x) are irreducible monic polynomials i&’[z]. By Lem-
mas[1.h and 1.5 eagh(z) is expressible in the form

pz(fﬂ) = OéiPi(CC)a

whereP;(z) is prime inA[z].
Thus
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where
a=a,o -0 € K.

Let

whereged(a, b) = 1. Then
bF(x) = aPi(x)--- P(x).
Let p be a prime factor ob. Then

p| Pi(x)

for somez, contrary to the definition of;(z). Henceb has no prime factors, ie
IS a unit.
If a is a unit then we can absotb= a/binto P (x):

F(z) = Q(z)Py(x) - - - P.(x),

whereQ(z) = (a/b) Py (x).
If ¢ is not a unit then
ab™t = pi - ps,

wherep, ..., ps are prime ind (and so inA[x| by Lemmg1]3); and
F(l’) =DP1-- 'pspl(x) T Pr<m>7

as required.

Finally, to prove uniqueness, we may suppose thgtF'(z) > 1, since the
result is immediate i#'(x) = a is constant.

Suppose

F(z)=pi- psPi(z) - Px) =q-- - qeQi(x) - - Qu ().

Each P(z), Q;(x) is prime in K[z] by Lemma[1}p. Sincé{|z] is a unique
factorisation domain (Corollary to Propositipn 1.11) it follows that " and
that after re-ordering,

Qi(r) = abi(x),

wherea € K*. Let
a=a/b

with ged(a, b) = 1. Then
aP;(x) = bQ;(x).

If pis a prime factor ob then

p | bQi(r) = p | Qi(z),
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contrary to the definition of);(x). Thusb has no prime factors, and is therefore a
unit. Similarly a is a unit. Hence

Qz(x) = EiPi<$)»

wheree; € A is a unit.
Setting

e=Tle
[

we have
pl...ps :qu...qs/'

SinceA is a unique factorisation domain= s’ and after re-ordering,
d; = 1N;Dj,

wheren; € Ais a unit.
We conclude that the prime factors Bfx) are unique up to order and equiv-
alence (multiplication by units), id[x] is a unique factorisation domain. «

Example:There is unique factorisation i x], sinceZ is a principal ideal domain
by Propositiorj I3 and so a unique factorisation domain by Propo§itipn 1.7.
Note thatZ[z] is nota principal ideal domain, since eg the ideal

a=(2,z),
consisting of all polynomials
F(z) = apz" +--- + ag
with ay even, is not principals:
a# (G(x)).

For if it were, its generatofi(x) would have to be constant, sineeontains
non-zero constants, and

deg G(z)H(z) > deg G(x)
if H(x) # 0. Butif G(z) = d then
aNZ=(2) = d=£2,

ie a consists of all polynomials witevencoefficients. Since: € a is not of this
form we conclude that is not principal.



Chapter 2

Number fields

2.1 Algebraic numbers

Definition 2.1 A numbera € C is said to bealgebraidf it satisfies a polynomial
equation
f(x)y=2"+a2" ' 4+ +a,=0

with rational coefficients,; € Q.

For example,/2 andi/2 are algebraic.

A complex number is said to leanscendentaif it is not algebraic. Bothe
and are transcendental. It is in general extremely difficult to prove a number
transcendental, and there are many open problems in this area, eg it is not known
if ¢ is transcendental.

Proposition 2.1 The algebraic numbers form a fie@ c C.

Proof » If o satisfies the equatiofix) = 0 then—« satisfiesf(—x) = 0, while
1/« satisfiest™ f(1/z) = 0 (wheren is the degree of (z)). It follows that —«
and1/« are both algebraic. Thus it is sufficient to show that.if; are algebraic
then so arex + 3, af5.

Supposey satisfies the equation

f@)y=a"+a2™ "+ +a, =0,
andg the equation

g@)=2" + " -+ b, =0.
Consider the vector space

V=0 0<i<m, 0<j<n)
overQ spanned by thewn elementsy3/. Evidently

a+B,af eV.

2-1
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But if 8 € V then themn + 1 elements
1,6,6%, ...

are necessarily linearly dependent (0@ sincedim V' < mn. In other words
0 satisfies a polynomial equation of degréemn. Thus each elememt<c V is
algebraic. In particulas 4+ 5 anda are algebraic. «

2.2 Minimal polynomials and conjugates

Recall that a polynomigh(z) is said to bemonicif its leading coefficient — the
coefficient of the highest power af— is 1:

p(z) = 2" +ax" '+ +a,.

Proposition 2.2 Each algebraic numbet € Q satisfies a unique monic polyno-
mial m(z) of minimal degree.

Proof » Supposex satisfies two monic polynomials:, (x), ms(z) of minimal
degreel. Thena also satisfies the polynomial

p(x) = ma(x) = ms(z)

of degree< d; and if p(z) # 0 then we can make it monic by dividing by its
leading coefficient. This would contradict the minimality:ef (). Hence

my(z) = me(z).

Definition 2.2 The monic polynomiah(z) satisfied byy € Q is called themin-
imal polynomialof . Thedegreeof the algebraic numbet is the degree of its
minimal polynomiain(z).

Proposition 2.3 The minimal polynomial(z) of o € Q is irreducible.

Proof » Suppose to the contrary

where f(z), g(z) are of lower degrees than(z). But thena must be a root of
one of f(z),g(z). <«

Definition 2.3 Two algebraic numbers, 3 are said to beconjugatef they have
the same minimal polynomial.

Proposition 2.4 An algebraic number of degrekhas justd conjugates.



374 2-3

Proof » If the minimal poynomial ot is
m(z) = 2%+ a2 4 - 4 ay,
then by definition the conjugates efare thed rootsa; = a, as, . .., ag of m(x):
m(z) = (r—a)(r —ag) - (z — ag).

These conjugates are distinct, since an irreducible polynom(ia) overQ is
necessaril\separableie it cannot have a repeated root. Fowifvere a repeated
root of m(z), ie

(z —a)* | m(z)

then
(z —a) | m'(z),
and so
(z — a) | d(z) = ged(m(z), m'(z)).
But
d(z) | m(x)
and

1 <deg(d(z)) <d-1,
contradicting the irreducibility ofn(x). <

2.3 Algebraic number fields

Proposition 2.5 Every subfield< C C contains the rational§):

Qc K cC.

Proof » By definition,1 € K. Hence
n=1+---+1eK

for each integen > 0.
By definition, K is an additive subgroup @. Hence—1 € K; and so

—n=(-1nek
for each integen > 0. Thus
Z C K.

Finally, sinceK is a field, each rational number

n
ek
"

wheren,d € Zwithd #0. <«
We can consider any subfield C C as a vector space ovéx.
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Definition 2.4 An number field(or more precisely, amlgebraic number fie)ds
a subfieldK” c C which is of finite dimension as a vector space d@eif

dim@ =d
then K is said to be a number field of degrée

Proposition 2.6 There is a smallest number field containing the algebraic
numbersyy, ..., a,.

Proof » Every intersection (finite or infinite) of subfields Gfis a subfield ofC;

so there is a smallest subfield containing the given algebraic numbers, namely
the intersection of all subfields containing these numbers. We have to show that
this field is a number field, ie of finite dimension ov@r

Lemma 2.1 Supposds C C is a finite-dimensional vector space ov@r Then
K is a number field if and only if it is closed under multiplication.

Proof of Lemma> If K is a number field then it is certainly closed under multi-

plication.
Conversely, if this is so thef is closed under addition and multiplication; so
we only have to show that it is closed under division by non-zero elements.
Supposer € V, « # 0. Consider the map

r—ar:V —=V.
This is a linear map ove; and it is injective since
ar=0= 2 =0.

SinceV is finite-dimensional it follows that the map is surjective; in particular,

ar =
for somezr € V, ie
r=1¢e¢V.
Moreover
ar =1

for somer € V, ie ais invertible. Hencé/ is a field. «
Now supposey; is of degreel; (ie satisfies a polynomial equation of degree
d; overQ). Consider the vector space (ov@)

V={("ar:0<i<dy, - ,0<i, <d).

It is readily verified that
ozz-V - Vv,
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and so
Vv cV,
ie V' is closed under multiplication.
It follows that V' is a field; and since any field containinrg, ..., «, must
contain these producty; is the smallest field containing,, . . ., «,.. MoreoverV

is a number field since
dimgV < d;---d,.

<
Definition 2.5 We denote the smallest field containing. . ., o, € CbyQ(ay, ..., ;).

Proposition 2.7 If « is an algebraic number of degrekthen each element €
Q(«) is uniquely expressible in the form

ap+ ara + -+ ag_ 0%t (ag,ay, ... a4, € Q).

Proof » It follows as in the proof of Proposition 2.6 that these elements do con-
stitute the fieldQ(«). And if two of the elements were equal therwould satisfy
an equation of degree d, which could be made monic by dividing by the leading
coefficient. =

A number field of the formKX = Q(«), ie generated by a single algebraic
numbera, is said to besimple Our next result shows that, surprisingly, every
number field is simple. The proof is more subtle than might appear at first sight.

Proposition 2.8 Every number fields can be generated by a single algebraic
number:

K =Q(a).

Proof » It is evident that
K= Q(alv s 7QT);
for if we successively adjoin algebraic numbers

iy € K\Q<Oél7"'7a7")

then
dim Q(a) < dim Q(ay, ) dim Q(avy, g, arg) <

and soK must be attained after at ma#ing K adjunctions.
Thus it is suffient to prove the result when= 2, ie to show that, for any two
algebraic numbers, 3,

Qe, 3) = Q(7)-

Let p(x) be the minimal polynomial of, andq(z) the minimal polynomial
of 5. Supposev; = «,...,«a,, are the conjugates ef andg; = g,..., 3, the
conjugates ofj. Let

v =a+ab,
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wherea € Q is chosen so that then numbers
(673 + aﬁj

are all distinct. This is certainly possible, since

Qi — Oy
a; +af; = ap +afy <= a=

Thusa has to avoid at mostin(mn — 1)/2 values.
Since

Q= — aﬁv
and
p(a) =0,
[ satisfies the equation
p(y —ax) = 0.

This is a polynomial equation over the figtd= Q(~).
But  also satisfies the equation

q(z) = 0.
It follows that 3 satisfies the equation
d(z) = ged(p(y — ax), g(z)) = 0.

Now
(z = p) | d(z)

since( is a root of both polynomials. Also, since

d(z) | q(z) = (z = 1) -+ (x = Bn),

B =By

d(z) must be the product of certain of the factérs— 3;). Supposdz — 3;) is

one such factor. The#i; is a root ofp(y — ax), ie

p(y —ap;) = 0.
Thus
Y —af; = o
for somei. Hence
v = o; +ab;.

But this implies thai = 1, ;7 = 1, since we chose so that the elements

o; + aﬁj

were all distinct.
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Thus
d(z) = (z — p).

But if u(x),v(z) € k[z] then we can computged(u(x),v(z)) by the eu-
clidean algorithm without leaving the field ie

u(z),v(z) € k[z] = ged(u(z),v(x)) € k[x].

In particular, in our case

r—pBek=Q(7).

But this means that
B €Q(v);

and so also

a=7v—af €Qv)

Thus
a, B € Q(y) = Qa,8) C Q(y) C Qo, B).
Hence
Q(e, B) = Q7).
<«

2.4 Algebraic integers

Definition 2.6 A numbera € C is said to be aralgebraic integeif it satisfies a
polynomial equation

f@)y=a"+a2" '+ +a,=0
with integral coefficients; € Z. We denote the set of algebraic integerszby
Proposition 2.9 The algebraic integers form a ring with
ZCZcCQ.

Proof » Evidently
7 CZ,

sincen € Z satisfies the equation
z—n=0.
We have to show that

a,B€l = a+B,ap €.
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Lemma 2.2 The numbery € C is an algebraic integer if and only if there exists
a finitely-generated (but non-zero) additive subgroug C such that

aS CS.
Proof of Lemma- Supposer € Z; and suppose the minimal polynomial @is

m(x) = 2% + a4+ +ag,
wherea,, .. .,aq € Z. Let S be the abelian group generatedly, ..., %!
S={1a,.. o).

Then it is readily verified that
aS CS.

Conversely, supposgis such a subgroup. «

If a is a root of the monic polynomiaf(x) then—« is a root of the monic
polynomial f(—zx). It follows that if o is an algebraic integer then so-gv. Thus
it is sufficient to show that iy, 3 are algebraic integers then so are- 3, a3.

Supposer satisfies the equation

f@y=a2"+a2x™ '+ +a,=0 (a1,...,an €7Z),
andg the equation
glr)=a"+ bz '+ 40, =0 (br,...,b, € Z).
Consider the abelian group (drmodule)
M={a'3:0<i<m,0<j<n)
generated by thewn elementsy37. Evidently
a+p,af eV.

As a finitely-generated torsion-free abelian grolpjs isomorphic tdz? for
somed. Moreover) is noetherianie every increasing sequence of subgroups of
M is stationary: if

S1C S CS;---CM
then for someV,
Sn = Sy41=Snyp =
Supposé € M. Consider the increasing sequence of subgroups

(1) C (1,0) € (1,0,6*) C --- .
This sequence must become stationary; that is to say, for 86me
N € (1,6,...,0N 1.
In other words{ satisfies an equation of the form
0N = a0V 4+ a0V 2 4

Thus every € M is an algebraic integer. In particular+ 5 anda are algebraic
integers. «
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Proposition 2.10 A rational number: € Q is an algebraic integer if and only if
it is a rational integer: B
ZNQ =Z.

Proof » Suppose: = m/n, whereged(m,n) = 1; and suppose satisfies the
equation
e tax™ o tag=0 (a; €7).

Then
m?+amtn4 -+ adnd =0.

Sincen divides every term after the first, it follows that | m?. But that is
incompatible withged(m,n) = 1, unlessn = 1,iec € Z. «

Proposition 2.11 Every algebraic numbet is expressible in the form

o = —,
n

where( is an algebraic integer, and € Z.

Proof » Let the minimal polynomial ofx be
m(z) = 2% + a2t 4+ +ag,
wherea,, ..., a,; € Q. Let thelem of the denominators of the ben. Then
bi=na; €Z (1<i<d).
Now « satisfies the equation
nx + bzt 4+ +b,=0.

It follows that
0 =na

satisfies the equation
2%+ byx® 4 (b)) 4 - 4 (0% by = 0.

Thusg is an integer, as required. «
The following result goes in the opposite direction.

Proposition 2.12 Supposer is an algebraic integer. Then we can find an alge-
braic integerg # 0 such that
af €.
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Proof » Let the minimal polynomial ofx be
m(z) = 2% + ax® 4+ -+ ag,
whereay, ..., a4 € Z. Recall that the conjugates af
o] =0Q,...,04

are the roots of the minimal equation.
Each of these conjugates is an algebraic integer, since its minimal equation
m(z) has integer coefficients. Hence

6 = OéQ PRI ad
is an algebraic integer; and

af = ajay - -ag = tag € 7.

2.5 Units

Definition 2.7 A numbera € C is said to be aunit if both « and 1/« are alge-
braic integers.

Any root of unity, ie any number satisfying' = 1 for somen, is a unit.
But these are not the only units; for exam_plé — lis aunit.
The units form a multiplicative subgroup Qf*.

2.6 The Integral Basis Theorem

Proposition 2.13 Supposed is a number ring. Then we can find, ...,y € A
such that eaclwx € A is uniquely expressible in the form

a =17+ Cdva
withey, ..., cqg € Z.
In other words, as an additive group
A=74,

We may say thaty, ..., v, is aZ-basisfor A.

Proof » SupposeA is the ring of integers in the number field. By Proposi-
tion 2.8,
K =Q(a).
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By Propositiorf Z.12,
B
o= —,
m
wherej3 € Z, m € Z. Since
Q(B) = Q(a),
we may suppose thatis an integer.

Let
m(r) = 2%+ et + - Fay

be the minimal polynomial ofi; and let
] =aqQ,...,04

be the roots of this polynomial, ie the conjugatestof
Note that these conjugates satisfy exactly the same set of polynomial®pver
for
p(a) =0 <= m(z) | p(r) < p(a;) = 0.

Now suppose’ € A. Then
ﬁ = b() + blOé + .- bdflOédil,

whereby, ..., by_1 € Q, say

B = fla)
with f(z) € Q|x].
Let
Bi = by + byoy; + - - - bd_laf‘l
fori=1,....d.

Eachg; satisfies the same set of polynomials offeas/. for

p(B) =0 <= p(f(a)) = 0 <= p(f(a;)) =0+ p(5;) = 0.

In particular, eaclw; has the same minimal polynomial &sand so eacly; is an
integer.

We may regard the formulae for thik as linear equations for the coefficients
bo, ey bg—1-

bo + by + - a® by = B,

bo + Oédbl + - Oéfil—lbd_l = ﬁd.
We can write this as a matrix equation
bO ﬁl

bdf 1 /Gd
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whereD is the matrix

1 o !
D= . :
1 a4 ag_l
By a familiar argument,
1 oay ... zf!
det [+ . 1 | =]l —ay).
1 ozg ... 297! i<

(The determinant vanishes whenewer = z; since then two rows are equal.
Hence(z; — z;) is a factor for each pait, j; from which the result follows on
comparing degrees and leading coefficients.)

Thus

det D = [](ei — o).
i<j

In particular,det D is an integer.

On solving the equations fég, . . ., by, by Cramer’s rule, we deduce that

Bi
bi - )
det D
where3; is a co-factor of the matriXD, and so a polynomial i, .. ., ay with

coefficients inZ, and therefore an algebraic integer.
By Propositiof 2.12, we can find an integesuch that

oddet D =n € Z,
where we may suppose that> 0. Thus eacl; is expressible in the form
bi - %7
n
where B

In other words, eachi € A is expressible in the form
B = cobp + *++ + Ca-10a-1,

where

and
c; € L (0 <i< d)
The elements
Colo 4+ + Ca-104-1 (Ci € Z)

form a finitely-generated and torsion-free abelian graypof rankd; and A is
a subgroup of” of finite index. We need the following standard result from the
theory of finitely-generated abelian groups.
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Lemma 2.3 If
S c 7t

is a subgroup of finite index then

S~ 74

Proof of Lemma- We have to construct A-basis forS. We argue by induction

ond.
Choose an element
e=(e1,...,eq) €S

with least positive last coordinatg. Suppose
s:(sl,...,sd) € s.

Then
Sq4 = (ge,

or we could find an element ¢f with smaller last coordinate. Thus

s—qe=(t1,...,tq_1,0).

Hence
S=ZedT,
where
T=S5nz"!
(identifying Z4~! with the subgroup of. formed by thed-tuples with last coor-
dinate0).

The result follows on applying the inductive hypothesigto <
The Proposition follows on applying the Lemma to

AcCx=zt

2.7 Unique factorisation in number rings

As we saw in Chapter 1, a principal ideal domain is a unique factorisation domain.
The converse is not true; there is unique factorisatio#[ir}, but the ideak2, x)

is not principal. Our main aim in this Section is to show that the conveéoss

hold for number ringsA:

A principal ideal domair—=- A unique factorisation domain

We suppose throughout the Section thats a number ring, ie the ring of
integers in a number field .
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Proposition 2.14 Suppose C A is a non-zero ideal. Then the quotient-ring
Ala

is finite.

Proof » Takea € a, a # 0. By Proposition 1.8, we can find € A, 3 # 0 such

that
a=af €Z.

We may suppose that> 0. Then
(a) C (o) C a.

Thus
a = moda=— o= moda.

By Proposition[2.113,A has an integral basig,,...,v,, ie eacha € A is
(uniquely) expressible in the form

Q=171+t CaVd
with ¢y, ..., ¢cs € Z. It follows thata is congrueninoda to one of the numbers

oyt rava (0<r <a).

Thus
1A/ ()]l = a”.
Hence
|A/a]l < a.
<

Proposition 2.15 The number ringd is a unique factorisation domain if and only
if it is a principal ideal domain.

Proof » We know from Chapter 1 that
A principal ideal domain—=- A unique factorisation domain

We have to proce the converse.
Let us suppose therefore that the number vhig a unique factorisation do-
main.

Lemma 2.4 Suppose

— €l e S i [
a=ent-oomr, B=emteooml.

Let
5 = ﬂ_iniﬂ(elvfl) . ﬂ_min(er,fr)

Then
§ = ged(a, 3)
in the sense that

§la, 6|8 and & |a, 6| 8=>4516.
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Proof of Lemma- This follows at once from unique factorisation.<

Lemma 2.5 If
61 = (B3 mod «

then
ng<Oé> 61) = ng(aa ﬁ2)

Proof of Lemma- It is readily verified that if

B = [a + ay

then
d|a, <=0 |a, o

<
We say thaty, 5 arecoprimeif

acd(a, B) = 1.

It follows from the Lemma that we may speak of a congruence ¢fassd o
being coprime ta.

Lemma 2.6 The congruence classesoda coprime toa form a multiplicative

group
(A/{a))™ .
Proof of Lemma- We have

ged(ay, B10) = 1 <= ged(a, £r) = 1, ged(a, o) = 1.

Thus(A/{«))* is closed under multiplication; and jf is coprime toa then the
map

7= B (Af()* — (Af{a))*
is injective, and so surjective sinck/(«) is finite. Hence(A/(a))* is a group.
<

Lemma 2.7 Suppose
ged(a, B) = 6.
Then we can find, v € A such that

au + Pv = 4.
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Proof of Lemma- We may suppose, on dividing by that

ged(a, B) = 1,
and so )
Be(A/{a)”.
Since this group is finite,
B =1

for somen > 0. In other words,

" =1mod a,

A" =1+ay,

au+ pPv =1

withu = —v, v ="t <«
We can extend the definition gtd to any set (finite or infinite) of numbers

a, €A (iel).

and by repeated application of the last Lemma we can fintall but a finite
number equal to 0) such that

Z ;i = ged(ay).

icl el

Applying this to the ideah, let

d = ged(a).
aca
Then
0= Z@Zﬁz ca
and so
a=(J).



Chapter 3

Quadratic Number Fields

3.1 The fieldsQ(y/m)

Definition 3.1 A quadratic fields a number field of degree 2.
Recall that this means the fieldhas dimension 2 as a vector space dyer
dimg k = 2.
Definition 3.2 The integern € Z is said to besquare-fredf
m=rls = r=+l.

Thus
+1, 42,43, £5, 46, £7, £10, 11, +13, . ..

are square-free.

Proposition 3.1 Each quadratic field is of the for@(,/m) for a unique square-
free integenn # 1.

Recall thatQ(,/m) consists of the numbers

r+yvm (z,y€Q).

Proof » Supposé is a quadratic field. Let: € &\ Q. Thena?, o, 1 are linearly
dependent ove@, sincedimg £ = 2. In other words,« satisfies a quadratic
equation

apa® + aja+as =0

with ag, aq, as € Q. We may assume tha, a1, ax € Z. Then

—ay + /a3 — dagas

2@0

o =

3-1
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Thus

\a? — dagas = 2apa + a; € k.

a? — dagay = r’*m

Let

wherem is square-free. Then

1
Vm = ;\/a% — 4dagay € k.

QCcQ(vm) Ck.

Thus

Sincedimg £ = 2,
k= Q(vm).

To see that different square-free integers m- give rise to different quadratic
fields, suppose

/M € Q(Vmg),
say
my =z +yymy (z,y € Q)
Squaring,

my = x® + moy® + 2xy/ma.
Thus eitherr =0 ory =0 or
Vms € Q,
all of which are absurd. «

When we speak of the quadratic fiel@{/m) it is understood thatn is a
square-free intege# 1.

Definition 3.3 The quadratic field)(,/m) is said to berealif m > 0, andimag-
inaryif m < 0.

This is a natural definition since it means tft,/m) is real if and only if

Q(vm) CR.

3.2 Conjugates and norms

Proposition 3.2 The map

z+yvm— x —yv/m

is an automorphism d®(,/m); and it is the only such automorphism apart from
the identity map.
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Proof » The map clearly preserves addition. It also preserves multiplication, since

(z + yvm)(u + vym = (zu + yvm) + (zv + yu)v/m,
and so

(x — yv/m)(u — v/m = (zu + yom) — (zv + yu)y/m.
Since the map is evidently bijective, it is an automorphism.

Conversely, ifj is an automorphism d®(,/m) thené preserves the elements
of Q; in fact if « € Q(y/m) then

fa) =a<= acQ.
Thus
0(vm)* = 0(m) = m = 0(v/m) = £v/m,
giving the identity automorphism and the automorphism abova.

Definition 3.4 If

a=z+yym (r,y€Q)
then we write

a=z—yym (r,y€Q)

and we calla the conjugateof a.

Note that ifQ(y/m) is imaginary (iem < 0) then the conjugaté coincides
with the usual complex conjugate.

Definition 3.5 We define the norii| of « € Q(y/m) by
||| = aar.
Thus if
a=z+yvym (z,y€Q)
then
ladl = (@ + yv/m)(z — yv/m) = 2* — my?”.
Proposition 3.3 1. ||| € Q;

2. ||(JJa=0<+= a=0;
3. [lagll = [ledllIBl;

4. If a € Qthen|ja|| = a?;
5. If m < 0 thenlja| > 0.

Proof » All is clear except perhaps the third part, where

laBll = (aB)(ef)
= (af)(ap)
= (aa)(80)
= [lallfia]l-
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3.3 Integers

Proposition 3.4 Supposé = Q(/m), wherem # 1 is square-free.

1. If m # 1 mod 4 then the integers it are the numbers

a+ byv/m,
wherea, b € Z.
2. If m = 1 mod 4 then the integers ik are the numbers
a b
2 T2V
wherea, b € Z and

a = bmod 2,

ie a, b are either both even or both odd.

Proof » Suppose
a=a+bym (beQ)
is an integer. Recall that an algebraic numbes an integer if and only if its
minimal polynomial has integer coefficients.yif= 0 the minimal polynomial of
aisr —a. Thusa = ais in integer if and only ifa € Z (as we know of course
sinceZ N Q = Z).
If y # 0 then the minimal polynomial ok is
(x —a)* — mb* = 2% — 2ax + (a* — mb?).
Thusa is an integer if and only if
20 €Z and o —mb® e Z.

Suppos€a = A, ie

A
CL:§.
Then
40> €7, a* —mb* € Z = 4mb* € Z
N =/
—2beZ

sincem is square-free. Thus

whereB € Z.
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Now

2 2
2 — = A =mB g

A2 — mB? = 0 mod 4.
If Ais eventhen
2| A= 4| A*=4|mB* = 2| B*=2|B;

and similarly
2|B=4|B*=4|A*=2]| A

ThusA, B are either both even, in which casg € Z, or both odd, in which case
A% B? =1 mod 4,
so that

1 —m = 0mod 4,

m = 1 mod 4.
Conversely ifm = 1 mod 4 then

A, Bodd = A% —mB? =0 mod 4
— a’ —mb* € Z.

<
It is sometimes convenient to express the result in the following form.

Corollary 3.1 Let

1+;/E if m = 1 mod 4.

w_{\/m if m #Z 1 mod 4,

Then the integers iQ(y/m) form the ringZ|w|.

Examples:

1. The integers in the gaussian fi€ld:) are the gaussian integers

a+ b (a,b€Z)
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2. The integers i)(1/2) are the numbers
a+bv2 (a,b € Z).

3. The integers iQ(\/—3) are the numbers
a+ bw (a,b € Z)

where
Y 1++v—-3
-—

Proposition 3.5 If a € Q(y/m) is an integer then
llo|| € Z.

Proof » If « is an integer then so is its conjugatgsincea, a satisfy the same
polynomial equations ovép). Hence

lal € ZNQ = Z.

<
3.4 Units
Proposition 3.6 An integere € Q(y/m) is a unit if and only if
lell = £1.
Proof » Suppose is a unit, say
en = 1.
Then
lellllnll = 1] = 1.
Hence
lell = £1.
Conversely, suppose
lell = £1,
ie
€€ = =+1.
Then
el =+e

is an integer, ie is a unit. <
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Proposition 3.7 An imaginary quadratic number field contains only a finite num-
ber of units.

1. The units inQ(:) are +1, +i;
2. The units iQ(y/—3) are +1, +w, +w?, wherew = (1 + /=3)/2.
3. In all other cases the imaginary quadratic number fi€d,/m) (where

m < 0) has just two units;:1.

Proof » We know of course that-1 are always units.

Suppose
€=a-+bym

is a unit. Then
N)e) =a*+ (—m)b* =1

by Propositiorj 3]6. In particular
(—m)b* < 1.

If m = 3 mod 4 thena,b € Z; and sob = 0 unlessm = —1 in which case
b = +1is a solution, giving: = 0, ie e = 4.
If m =1 mod 4 thenb may be a half-integer, ie= B/2, and

(—m)b* = (—m)B*/4 > 1

if B # 0, unlessn = —3 andB = +1, in which cased = +1. Thus we get four
additional units inQ(y/—3), namelytw, +w?. <

Proposition 3.8 Every real quadratic number fiel@(,/m) (wherem > 0) con-
tains an infinity of units. More precisely, there is a unique ynit 1 such that the
units are the numbers

+n" (neZ)

Proof » The following exercise in the pigeon-hole principle is due to Kronecker.
Lemma 3.1 Supposexr € R. There are an infinity of integers,, n with m > 0
such that

1
|ma —n| < —.
n

Proof of Lemma- Let {«} denote the fractional part of € R. Thus

fa} =2 [z],

where[z] is the integer part of.
SupposeV is a positive integer. Let us divide, 1) into N equal parts:

0,1/N), [1/N,2/N),....[(N —1)/N,1).
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Consider how théV + 1 fractional parts

{0}, {a},{2a},...,{Na}

fall into theseN divisions.
Two of the fractional parts — safra} and{sa}, wherer < s — must fall
into the same division. But then

[{sa} = {ra}| <1/N,

ie
|(sa — [sa]) — (ra — [ra])| < N.
Let
m=s—r, n=/[sal —[ral.
Then
lma —n| <1/N <1/m.
<

Lemma 3.2 There are an infinity ofi, b € Z such that

la® — b*m| < 2v/m + 1.

Proof of Lemma- We apply Kronecker's Lemma above with= \/m. There are
an infinity of integers:, b > 0 such that

la — by/m| < 1/b.

But then

a < bym+1,
and so

a+ bym < 2by/m + 1
Hence
|a® — b*m| = (a4 bv/m)|a — by/m]|
< (2by/m +1)/b
<2ym+1.
<

It follows from this lemma that there are an infinity of integer solutions of
a* —b*m=d

for some
d < 2v/m+ 1.

But then there must be an infinity of these soluti¢agh) with the same re-
maindersmodd.
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Lemma 3.3 Suppose

a1 = aq + bl\/ﬁ, Q9 = Qo + bz\/’fin,

where
a?—bl=d=a3— b3
and
a; = a; mod d, by = by mod d.
Then
g
%)

is an algebraic integer.
Proof of Lemma- Suppose

as = ay +mr, by = by + ms.
Then
ay = aq +dp,
where
B=r+sym.
Hence

Qaq Q10

Qg ol

=248
=1+,

which is an integer. <«
Now supposéay, b1), (az, by) are two such solutions. Then
o

€= —
(8%

is an integer, and

ol _d_ |
ool =

Hences is a unit, by Propositiof 3.6.

lell =
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Since there are an infinity of integetfissatisfying these conditions, we obtain
an infinity of units if we fixa; and leta, vary. In particular there must be a unit

€ # +1.

Just one of the four units
+e, +e !

must lie in the rangé1, co). (The others are distributes one each in the ranges
(—o0,—1),(—1,0) and(0,1).)

Suppose then that
e=a-+bym > 1.
Then
et <1,
and so

E=decte(~1,1),

—l<a—bym<1.
Adding these two inequalities,

0 < 2a,

a > 0.

On the other hand,
e>e=—=b>0.

It follows that there can only be a finite number of units in any range
l<e<ec
In particular, ife > 1 is a unit, then there is a smallest uniin the range
l<n<e
Evidentlyn is the least unit in the range
1 <n.

Now suppose is a unit# +1. As we observed, one of the four unitg, ¢!
must lie in the rangél, oo). We can take this in place efie we may assume that

e>1.
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Sincen™ — oo,
,’,IT’ S € < ,',]7‘-'1-1

for somer > 1. Hence
1<en™ <.

Sincen is the smallest unit- 1, this implies that

en ' =1,

3.5 Unique factorisation

Supposed is an integral domain. Recall thatf is aprincipal ideal domainie
each ideald C A can be generated by a single elemegnt

a=(a),

then A is aunique factorisation domajne eachu € A is uniquely expressible —
up to order, and equivalence of primes — in the form

Er

— €1
a=em' -7,

wheree is a unit, andry, . . ., 7, are inequivalent primes.
We also showed that ifl is the ring of integers in an algebraic number figld
then the converse is also true, ie

A principal ideal domain<= A unique factorisation domain

Proposition 3.9 The ring of integer&[w] in the quadratic field)(,/m is a prin-
cipal ideal domain (and so a unique factorisation domain) if

m=—11,-7,-3,-2,—1,2.3,5, 13.

Proof » We take
[ e[|

as a measure of the size@fc Z|w].

Lemma 3.4 Supposey, § € Z|w[, with 5 # 0. Then there exist, p € Z[w] such
that

a=[y+p
with
HellE < sl

In other words, we can divide by /3, and get a remaindes smaller thans.
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Proof of Lemma- Let
g:x+y¢m
wherex, y € Q.
Suppose first that: £ 1 mod 4. We can find integers, b such that

|z —al, [y =0 <

N —

Let
¥ =a+bym.
Then~y € Z[w]; and

«

B—'y:(ﬂc—aH(y—b)\/ﬁ

Thus

ng—vnzw—aﬁ—mw—M?

If now m < 0 then

a 1+m
0<||=— <
<l -l <=
yielding
1% =]l < 1
5}
if m=—2or — 1;while if m > 0 then
™) ) <2
4 —_ 6 P)/ —_ 47
yielding
(6%
— =<1
Mﬂ ]
if m = 2or3.

On the other hand, if» = 1 mod 4 then we can choose b to be integers or
half-integers. Thus we can chodsso that

1
ly = bl < 5;
and then we can choogeso that
o —afl <=
- 2

(Note thata must be an integer or half-integer accordingbas an integer or
half-integer; so we can only choogéo within an integer.)
If m < 0 this gives

(8}
OSHB—VHS



374 3-13

yielding
«
- — <1
IHﬁ elll
if m=—11,—7 or — 3; while if m > 0 then
~EIS-all<g
16 =g M=%
yielding
«
- — <1
IHﬁ elll
if m =5 or13.
Thus in all the cases listed we can find: Z|w] such that
«
— =<1
|||ﬂ i
Multiplying by 3,
Nl = Bl < [l
which gives the required result on setting
p=a— 677
ie
a=pBvy+p.
<

Now supposa # 0 is an ideal inZ[w]. Leta € a (o # 0) be an element
minimising |||«|||. (Such an element certainly exists, sirde||| is a positive
integer.)

Now suppose € a. By the lemma we can fingl, p € Z|w| such that

f=ay+p
with
el < el
But
p=p—ay€a.

Thus by the minimality of||«|||,

Jall =0 = p=0

= [ =ay
= f e (o).
Hence
a={(a).
<

Remarks:
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1. We do not claim that these are thiely cases in whicl@Q(/m) — or rather

the ring of integers in this field — is a unique factorisation domain. There
are certainly othem for which it is known to hold; and in fact is not known

if the number of suchn is finite or infinite. But the result is easily estab-
lished for them listed above.

. On the other hand, unique factorisation fails in many quadratic fields. For

example, ifm = —5 then
6=2-3=(1+v-5)(1—+v-5)
Now 2 is irreducible irZ[v/5], since
a’ +5b* =2
has no solution in integers. Thus if there were unique factorisation then
2[1++v=5 or 2|1—+/-5,

both of which are absurd.

As an example of a real quadratic field in which unique factorisation fails,
considerm = 10. We have

6=2-3=(4+V10)(4 - V10)
The prime 2 is again irreducible; for
a® — 10b* = £2

has no solution in integers, since neithe? is a quadratic residumod
10. (The quadratic residuasod10 are0,+1,+4,5.) Thus if there were
unique factorisation we would have

214410 or 2|4—+/10,

both of which are absurd.

3.6 The splitting of rational primes

Throughout n this section we shall assume thatinteger<Z|w] in Q(y/m) form
a principal ideal domair(and so a unique factorisation domain).

Proposition 3.10 Letp € N be a rational prime. Thep either remains a prime
in Z[w], or else

p = &7,

wherer is a prime inZ[w]. In other wordsp has either one or two prime factors;
and if it has two then these are conjugage.



374 3-15

Proof » Suppose
p = €My -+ Ty

Then
- Il = llpll = p.

Since||m;|| is an integek~ 1, it follows that either- = 1, ie p remains a prime, or
elser = 2 with
Imill = £p, [lme| = £p.

In this case, writingr for 7,
p = £||7|| = £r77.

<
We say thap splitsin Q(y/m) in the latter case, ie jf divides into two prime
factors inZ[w]. We say thap ramifiesif these two prime factors are equal, ie if

_ 2
p=c¢m,

Corollary 3.2 The rational primep € N splits if and only if there is an integer
a € Z[w] with
el = £p.

Proposition 3.11 Suppose € N is an odd prime wittp  m. Thenp splits in
Q(y/m) if and only ifm is a quadratic residuenodp, ie if and only if

2?2 =mmod p

for somer € Z.

Proof » Suppose

2:

x” = m mod p.

Then
(z — vm)(z + vm) = pq

for someg € Z.
If now p is prime inZ[w] (where it is assumed, we recall, that there is unique
factorisation). Then

p|x—\/ﬁ or p’x+\/ﬁ7

both of which are absurd, since for example

plz—vm= z—m=pla+bym)

= pb = —1,

whereb is (at worst) a half-integer. «
It remains to consider two cases| m andp = 2.
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Proposition 3.12 If the rational primep | m thenp ramifies inQ(y/m).

Proof » We have

(vm)? = m = pq,
for someq € Z. If p remains prime then
p | vVm=|pll | lvVm|
:>p2 | —m,

which is impossible, since: is square-free.

Hence
p==+nT,
and
Vm = ma
for somea € Z|w]. Note thata cannot contairt as a factor, since this would
imply that
p=Ea7 [ Vm,

which as we have seen is impossible.
Taking conjugates
—/m = 7a.

Thus
7| vm.

Since the factorisation of/m is (by assumption) unique,
T ~T,
ie p ramifies. <
Proposition 3.13 The rational prime 2 remains prime Ifjw| if and only if
m = 5 mod 8.

Moreover, 2 ramifies unless
m = 1 mod 4.

Proof » We have dealt with the case wheXeé m, so we may assume that is
odd.
Suppose first that
m = 3 mod 4.

In this case

1=vm)(1++vm)=1-m=2q.
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If 2 does not split then

2|1 —+m or 2|1+ /m,

both of which are absurd.
Thus
2 =47m,

where
T=a+b/m (a,b€Z),

say. But then
7 =a—by/m=m+ 2by/m.

Sincer | 2 is follows that

|7
and similarly

T
Thus

T = €T,

wheree is a unit; and so 2 ramifies.
Now suppose
m = 1 mod 4.

Suppose 2 splits, say
a? — mb* = £2,

wherea, b are integers or half-integers.dfb € Z then
a’ — mb* = 0,41 mod 4,

sincea?, b> = 0 or 1 mod 4.
Thusa, b must be half-integers, say= A/2, b = B/2, whereA, B are odd
integers. In this case,
A? —mB? = 48,

Hence

A2 —mB?=0mod 8
But

A? = B? =1 mod 8,
and so

A2 —mB?=1—m mod 8.

Thus the equation is insoluble if
m =5 mod 8,

ie 2 remains prime in this case.
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Finally, if
m =1 mod 8
then
I—ym 1+ym 1—m_2
2 2 4
If 2 does not split then
2 1—+/m or 2| 1+\/ﬁ7
2 2
both of which are absurd.
Suppose
2 =47,
where
A+ Bym
-—F
with A, B odd; and
__ A-Bym
T
=1 — Bym.

Thus

m|T= 7| Bym
— [l [ 1 Bv/m]|

— 42| B*m,
which is impossible sinc&, m are both odd. Hence 2 is unramified in this case.
<«
3.7 Quadratic residues

Definition 3.6 Suppose is an odd rational prime; and supposes Z. Then the
Legendre symbol is defined by

0 ifp|a
<2> =<1 if pta anda is a quadratic residuenodp
p - . .

—1 if ais a quadratic non-residueiodp

Proposition 3.14 Supposep is an odd rational prime; and supposeb € Z.

0
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Proof » The resul is trivial ifp | a or p | b; SO we may suppose that a, b.
Consider the group-homomorphism

0: (Z/p)* — (T)p)* : T~ T2

Since
ker = {£1}
it follows from the First Isomorphism Theorem that
—1
lim 6| = p—,
2

and so
(Z/p)™ /im0 = Cy = {£1}.

The result follows, since

a

imé ={a e (Z/p)": <p> =1}
<

Proposition 3.15 Suppose is an odd rational prime; and supposec Z. Then
aP=D/2 = (2) mod p.
p

Proof » The resul is trivial ifp | a; SO we may suppose that a.
By Lagrange’s Theorem (or Fermat’s Little Theorem)

a?~! =1 mod p.

Thus )
(a(p’l)ﬂ) = 1 mod p;

and so
a? D2 = +1 mod p.

Suppose: is a quadratic residue, say
a = b* mod p.

Then

Thus



374 3-20

As we saw in the proof of Propositign 3] 14, exactly halfZjé of the numbers
1,2,...,p— 1 are quadratic residues. On the other hand, the equation

p—1
rz —1=0
over the fieldF, = Z/(p) has at most;* roots. It follows that

a p—1
(—) =1<=a2? =1mod yp;

p
(a) = 4"7 mod D;
p

Corollary 3.3 If p € N is an odd rational prime then
-1\ J1ifp=1mod4,
P N —1if p =3 mod 4.
Proof » By the Proposition,

<_—1> (—1)" mod p.

p

and so

<

p =1 mod 4,
say

p=4m+1,
then

p;l = 2m;
while if

p = 3 mod 4,
say

p=4m+ 3,
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then

p—1
—_— =2 1.
2 me

<
It is sometimes convenient to take the remainder « mod p in the range

P P
——<r << -—.
75755

We may say that hasnegative remaindemodp if

p
—=<r<0.
5 <T

Thus13 has negative remaindetod7, since
13= —1mod 7.

Proposition 3.16 Suppose < N is an odd rational prime; and suppogef a.

Then
<2_9> = (=",

wherey is the number of numbers among

p—1

1,2a,...,
2

a
with negative remainders.

Suppose, for example,= 11, « = 7. Then

7=-4,14=3, 21=—1, 28= —5, 35=2mod 11.

Thus
p=3
Proof » Suppose
p—1
1<r<——
2
Then just one of the numbers
—1
a,?a,... p a
2
has remaindett-r.
For suppose
ta =r mod p, ja=—r mod p.

Then
(i+j)a=0modp=-p|i+J
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which is impossible since
l1<i+jyj<p-—-1
It follows (by the Pigeon-Hole Principle) that just one of the congruences
-1
1<i<ho)

ta = £r mod p 5

is soluble for eachr.
Multiplying together these congruences,

—1 —1
a-2a---2 aE(—l)“l-Q--'p—modp,
2 2
ie
p=1 p—1 —
a7 12T s = ()12 S mod p,
and so
i (—1)* mod p.
Since

<2> =T mod p
p

by Propositiorf 3.15, we conclude that

(9) = (~1)" mod p.

p

<

Proposition 3.17 If p € N is an odd rational prime then
2\  J1lifp=41modS§,
P N —1if p=+3 mod 8.
Proof » Consider the numbers
2.4,...,p—1.

The numbeei will have negative remainder if

p .
— < 2t <p,
5 D

p .
—<r < —=.
4

NS
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Thus theu in Propositiorf 3.16 is given by

- [3- B

We considep mod 8. If

p=1mod 8,
say

p=8m-+1,
then

5] =am [{] =2m
and so
W =2m

If

p = 3 mod 8§,
say

p=8m+ 3,
then

- [ o

and so

@w=2m+ 1.
If

p =5 mod 8§,
say

p=8m+ 5,
then

p p
Pl gmgo, [P =2m 11
M mE s M m+d
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and so

@w=2m+ 1.
If

p =7 mod 8,
say

p=8m—+7,
then

E}:4m+3,V}:2m+L

and so

1w=2m+ 2.

<

Corollary 3.4 If p € Nis an odd rational prime then

-2\ _ lifp=1o0r3modS,

p) |-1lifp=>5o0r7modSs.
Proof » This follows from the Proposition and the Corollary to Proposifion]3.15,
since

5)-G)6)
P p)\p)’

Proposition 3.18 If p € N is an odd rational prime then

3\ _ 1if p=+1mod 12,
p) | —1if p=+5mod 12.

by Propositiorf 3:14. «

Proof » If
O<e< =

then
0< 3t < —.
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Thus3i has negative remainder if

p

§<3i<p,
ie
. Db
— << =
'3
Thus
-[5-12
3 6
If
p =1 mod 6,
say
p=6m+1,
then
5 =2m (5] =m
3 6
and so
p=m
If
p = 5 mod 6,
say
p=06m+ 5,
then
p p
Zl=2m+1, |5 =
M +h [6] s
and so

w=m-+1.

The result follows. =
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Corollary 3.5 If p € Nis an odd rational prime then

=3\ _ 1if p=1mod 6,

[ N —1if p =5 mod 6.
Proof » This follows from the Proposition and the Corollary to Proposifion]3.15,
since

5)-G)G)
P p)\p)

Proposition 3.19 If p € N is an odd rational prime then

5\ 1if p = £1 mod 10,
p) | -1if p=+£3 mod 10.

by Propositiorf 3.14. «

Proof » If
. P
0<i<=
'S
then .
. D
0< b < —.
L
Thusb5i has negative remainder if
3
Pesicp or 2oicoy
2 2
ie
P . D 3 . 2p
i< oo — << —.
10 'S5 10575
Thus
- 8- [6)+ [F] - [
=15 10 5 10])
If
p=1mod 12,
say
p=10m+1,
then
2
2] =om. [gg] = m. [£] = om. [35] = 5m.
5 10 5 10
and so

w=2m.

The other cases are left to the readers



374 3-27

3.8 Gauss’ Law of Quadratic Reciprocity

Proposition[ 3116 provides an algorithm for computing the Legendre symbol, as
illustrated in Propositions 3.1F=3]19, perfectly adequate for our purposes. How-
ever, Euler discovered and Gauss proved a remarkable result which makes com-
putation of the symbol childishly simple. This result — The Law of Quadratic
Reciprocity — has been called the most beautiful result in Number Theory, so it
would be a pity not to mention it, even though — as we said — we do not really
need it.

Proposition 3.20 Suppose, ¢ € N are two distinct odd rational primes. Then

q\(p\ )-1lifp=qg=3mod4,
p)\¢) |1 otherwise

Another way of putting this is to say that

()-r=e

-1 -1
5:{1,2,...,%}, T:{1,2,...,qT}.

Proof » Let

We shall choose remaindetisodp from the set

{—g <¢<§}:-Su{0}u5,
and remaindersmodq from the set

{—g <i< %} = -TU{0}UT.

By Gauss’ Lemma (Propositign 3]16),
q p
=] = (-1 “7 -] =(-1 V:
(5) - ()=

p=1{ieS:qgimodpe —S}|, v=|{t €T :pimodqe —T}|

where

By ‘qi mod p € —S” we mean that there existsjalnecessarily unique) such
that

qi—pj € =S,
But now we observe that, in this last formula,
O<i<§:>0<j<g.
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Figure3.1p =11, ¢ =7

The basic idea of the proof is to associate to each such contributiorthe
‘point’ (i,5) € S x T. Thus

p=|{@,j)eSxT: -5 < qi—pj <0}
and similarly
o _ . q
v=|{(i,j) e SxT:0<qi—pj< 5}”’

where we have reversed the order of the inequality on the right so that both for-
mulae are expressed in terms(gf — pj).
Let us write[ R] for the number of integer points in the regi@c R?. Then

H = [Rl]v V= [RQ]v
where

Ry ={(z,y) ER:—% <qr—py <0}, Ro={(z,y) ER:0< qr—py < %},

and R denotes the rectangle
R:{(x,y):0<x<g, 0<y<g}.

The line
qv —py =0
is a diagonal of the rectangle, andR;, R, are strips above and below the diago-

nal (Fig[3-8).

This leaves two triangular regions iy
Ry={(z.y) € R:qe —py < =}, Ri={(a,y) € R:qr —py > 7},

We shall show that, surprisingly perhaps, reflection in a central point sends the
integer points in these two regions into each other, so that

[R3] = [Ra.

Since
R=R;URyUR3U Ry,

it will follow that

[Ra] + [Ro] + [Rs] + [R4] = [R] = ————5—,
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—1g—-1
pt v+ [Ry) + [Ry = P =T

But if now [R3] = [R4] then it will follow that

—1qg—1
2 + v = quT mOd 2,

which is exactly what we have to prove.

It remains to define our central reflection. Note that reflection in the centre
(£, %) of the rectangle will not serve, since this does not send integer points into
integer points. For that, we must reflect in a point whose coordinates are integers
or half-integers.

We choose this point by “shrinking” the rectangketo a rectangle bounded
by integer points, ie the rectangle
p—1 q—1

RS

R={l<zg<™ — 1<y<
{1<z< 5 lSys

Now we takeP to be the centre of this rectangle, ie

ptl g+l

The reflection is then given by
+1 +1
(z,9) = (X,Y) = (P, T52y),

Itis clear that reflection i will send the integer points ak into themselves.
But it is not clear that it will send the integer points ity into those inR,, and
vice versa. To see that, let us shrink these triangles as we shrank the rectangle. If
x,y € Z then

qwmwegziw—wﬁ—%y;
and similarly
qx—py>%:>qx—py2%.
Now reflection inP doessend the two lines
w—MZ—%ymwﬂWZﬁf

into each other; for

X —pY =qlp+1—2)—plg+1—-y)=(¢—p) — (¢z — py),
and so

p+1 p+1 qg+1
r-py=-—"p5 =X - pY =(¢-p)+ ="
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We conclude that

[R3] = [Ra).
Hence
[R] = [R1] + [Ra] + [R3] + [Ra] = p + v mod 2,
and so b lg-1
M-I—VE[R}:TT.

Example:Takep = 37, ¢ = 47. Then

(9
Xe

E—_— (%) since37 = —3 mod 8

=— (%) since5 = 1 mod 4
6
=—(-1)=1

Thus 37is a quadratic residusod47.

. . 2
We could have avoided using the result <G¥> :
p

3.9 Some quadratic fields

We end by applying the results we have established to a small number of quadratic
fields.
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3.9.1 The gaussian field)(7)

Proposition 3.21 1. The integers if(i) are the gaussian integers

a+bi (a,beZ)

2. The units irZ[:] are the numbers

+1, 4.

3. The ring of integer&|:] is a principal ideal domain (and so a unique fac-
torisation domain).

4. The prime 2 ramifies if[i]:
2= —i(1+1)%
The odd prime splits inZ[i] if and only if
p = 1 mod 4,
in which case it splits into two conjugate but inequivalent primes:

p = E7T.

Proof » This follows from Propositions 3.4, 3.[7, B[Y, 3.IT=8.13, and the Corollary
to Propositiorf 3.15. «

Factorisation in the gaussian fie(@(:) gives interesting information on the
expression of a number as a sum of two squares.

Proposition 3.22 An integern > 0 is expressible as a sum of two squares,
n=a+b (a,b€eZ)

if and only if each prime = 3 mod 4 occurs to an even power i

Proof » Suppose
n = a®>+b* = (a + bi)(a — bi).
Let

Er

a+bi=en---mr.

Taking norms,
n = |la+bil| = [l [ - - [l |-

Suppose
p =3 mod 4.

Thenp remains prime ir%[i], by Propositiori 3.21.
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Suppose
p° || @+ b,
ie
p°la+ib but pt'ta+ib.
Then
p° || a—b,
since

a+1b=p‘a = a—1ib=pa,
on taking conjugates. Hence
p* || n = (a+ib)(a—ib),

ie p appears im with even exponent.
We have shown, incidentally, thatjpf= 3 mod 4 then

p*||n=ad+b = p°|a, p°|b.
In other words, each expressionsofs a sum of two squares
n=a’+0b?
is of the form
n = (pea/)2 4 <peb/)2’
where n
T = CL,2 + b,2.
p €
We have shown that each primppe= 3 mod 4 must occur with even exponent
in n. Conversely, suppose that this is so.
Each primep = 1 mod 4 splits inZ]:], by Propositiorj 3.21, say

D = TpTp.

Also, 2 ramifies inzi:
2 = —i(1+1i)>

Now suppose
n=293%5% ...

wherees, e;,e11, €19, ... are all even, say

p=3mod 4= e, =2f,.
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Let
= QaQi3Cey - - -,

where

(1+49)2 ifp=2,

p = TP if p=1mod 4,

plv if p= 3 mod 4.

Then
el = p™

in all cases, and so

ladl = TTllewll = [T = n.
p p

Thus if
a=a+b
then
n=a’+ b>.
<

It's worth noting that this argument actually gives tmemberof ways of ex-
pressing: as a sum of two squares, ie the number of solutions of

n=a+b (a,be7).
For the number of solutions is the number of integers Z[i| such that
n = [|(la) = aa.

Observe that whep = 1 mod 3 in the argument above we could equally well
have taken
=77’

Qp

foranyr, s > 0 with
r+4 s =€
There are just
ep+ 1

ways of choosingy, in this way.
It follows from unique factorisation that the choice of thgfor p = 1 mod 4
determinesy up to a unit, ie the general solution is

a=cl+9? [ o I »*

p=1 mod 4 p=3 mod 4

Since there are four units;1, +¢, we conclude that the number of ways of ex-
pressing: as a sum of two sqares is

4 I (e, +1).

p=1 mod 4
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Note that in this calculation, each solution
n=a’+b

with
O<a<b

gives rise to 8 solutions:
n = (£a)’> + (£b)?* n=(£b)*+ (£a)*

To these must be added solutions with- 0 or with ¢« = b. The former occurs
only if n = m?, giving 4 additional solutions:

n =0+ (+m)* = (£m)* + 0%
while the latter occurs only ifi = 2m?, again giving 4 additional solutions:
n = (£m)* + (+m)>.
We conclude that the number of solutions witld > 0 is

5 1p=1 moa a(€p + 1) if n #m?2 2m?
3 (szl mod 4(€p + 1) + 1) if n. = m?or2m?.

This is of course assuming that
p=3mod4d=2|e,

without which there are no solutions.
In particular, each primg = 1 mod 4 is uniquely expressible as a sum of two
squares
n=a+b (0<a<b),

eg
53 =224+ 7%

As another example,
108 = 2233

cannot be expressed as a sum of two squares, sinees is odd.

3.9.2 The fieldQ(v/3)
Proposition 3.23 1. The integers ifQ(1/3) are the numbers

a+b/3 (a,b€Z)
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2. The units irZ[/3] are the numbers
+n" (n€Z),

where
n=2+ V3.

3. The ring of integer<[\/3] is a principal ideal domain (and so a unique
factorisation domain).

4. The primes 2 and 3 ramify @[v/3):
2=n""(1++3)?, 3= (V3)%
The odd prime # 3 splits inZ[+/3] if and only if
p = =+1 mod 12,
in which case it splits into two conjugate but inequivalent primes:
p = E7T.

Proof » This follows from Proposition§ 3.4, 3.8, B.9, 3.I1-38.13, and Proposi-
tion318. «

3.9.3 The fieldQ(v/5)
Proposition 3.24 1. The integers if(/5) are the numbers
a+bw (a,beZ),

where
14+ /5
TR
2. The units irZ[/5] are the numbers
tw" (n€Z).

3. The ring of integer&|w] is a principal ideal domain (and so a unique fac-
torisation domain).

4. The prime 5 ramifies il|w]:

5= (V5)%
The primep # 5 splits inZ|w] if and only if
p = =£1 mod 10,

in which case it splits into two conjugate but inequivalent primes:
p = 7.

Proof » This follows from Proposition§ 3.4, 3.8, B.9, 3.I1=38.13, and Proposi-
tion319. <
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Mersenne and Fermat numbers

4.1 Mersenne numbers

Proposition 4.1 If
n=a"—-1 (a,m>1)

is prime then
1. a=2;

2. mis prime.

Proof » In the first place,
(a—=1) | (@™ —=1);

so ifa > 2 thenn is certainly not prime.
Supposen = rs, wherer, s > 1. Evidently

(z—1) [ (z*—1)
in Z[x]; explicitly
' —1=(x—1) (" a2 ).
Subsititutingr = a”,

(@ =1)] (@ —=1)=a™ - 1.

Thus ifa™ — 1 is prime thenn has no proper factors, te is prime.

Definition 4.1 The numbers
M, =2F —1,

wherep is prime, are calledMersenne numbers

<
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The numbers
MQIS, M3:7, M5:31, M7:127

are all prime. However,

(It should be emphasized that Mersenne never claimed the Mersenne numbers
were all prime. He listed the numbetg, for p < 257, indicating which were
prime, in his view. His list contained several errors.)

The following heuristic argument suggests that there are probably an infinity
of Mersenne primes. (Webster’s Dictionary defines *heuristic’m@sviding aid
or direction in the solution of a problem but otherwise unjustified or incapable of
justification)

By the Prime Number Theorem, the probability that a large numb&prime
is )

logn’
In this estimate we are including even numbers. Thus the probability thaddn
numbern is prime is

~
~

N 2
T logn’
Thus the probability thatZ, is prime is

2
plog2’

So the expected number of Mersenne primes is

2 1
2

log 2

~
~

wherep,, is thenth prime.
But — again by the Prime Number Theorem —

Pn ~ nlogn.

Thus the expected number of Mersenne primes is

2 1

~ logQZ

= OO’
nlogn

since
1

nlogn

>

diverges, eg by comparison with

X
/ — loglog X + C.

xlogx
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4.1.1 The Lucas-Lehmer test

Mersenne numbers are important because there is a simple test, announced by
Lucas and proved rigorously by Lehmer, for determining whether orMipts
prime. (There are manyecessaryests for primality, eg ip is prime then

2P = 2 mod p.

What is rare is to find a necessary auficienttest for the primality of numbers
in a given class, and one which is moreover relatively easy to implement.) For this
reason, all recent “record” primes have been Mersenne primes.

We shall give two slightly different versions of the Lucas-Lehmer test. The
first is only valid if p = 3 mod 4, while the second applies to all Mersenne num-
bers. The two tests are very similar, and equally easy to implement. We are giving
the first only because the proof of its validity is rather simpler. So it should be
viewed as an introduction to the second, and true, Lucas-Lehmer test.

Both proofs are based on arithmetic in quadratic fields: the firg(i{5), and
the second if)(+/3); and both are based on the following result.

Proposition 4.2 Supposey is an integer in the field)(,/m); and suppose’ is
an odd prime withP t m. Then

P
a ifl—| =1,
o=y
a If|{—|=-1.
m
Proof » Suppose
a=a+ bym,

wherea, b are integers ifn # 1 mod 4, and half-integers ifn = 1 mod 4.
In fact these cases do not really differ; for 2 is invertibled P, so we may
consider as an integemod P if 2a € Z. Thus

P
aPEaP+(1

P _
)ap_lb\/ﬁ—f— <2>ap_2bm+---+bpm%\/% mod P.

()

af =a® +bPm = \/m mod P

Now

if1<r <P —1.Hence

By Fermat’s Little Theorem,

a” = amod P, b = bmod P.
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Also

by Propositiorj 3.15. Thus

P
o =a+ b<—> vm mod P,
m

<
Corollary 4.1 For all integersa in Q(y/m,
o = amod P.
We may regard this as the analogue of Fermat’s Little Theorem
a” = amod P

for quadratic fields.
There is another way of establishing this result, which we shall sketch briefly.
It depends on considering the ring

A= Z[w]/(P).

formed by the remainders
a mod P

of integersa in Q(y/m).
There areP? elements in this ring, since eache Z[w] is congruentnod P
to just one of the numbers
a+bym

wherea, b € Z and
0<a,b<P.

There are no nilpotent elements in the riAgf P  m; for if o« = a + by/m
then

P|a* = P|2ab, P|a®+b*m
= P a,b.

Thus
a’*=0mod P = a = 0 mod P,
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from which it follows that, ifn > 0,
" =0mod P= a=0mod P,

A ring without non-zero nilpotent elements is said todeeni-simplelt is not
hard to show thaa finite semi-simple commutative ring is a direct sum of fields

Now there is just one field (up to isomorphism) containgfigelements for
each prime powep®, namely the galois fiel@xF(p°). It follows that either

1. Z[w]/(P) =2 GF(P?); or
2. Zw]/(P) =2 GF(P) & GF(P).
The non-zero elements &F (p¢) form a multiplicative groupGF (p©)* with
p¢ — 1 elements. It follows from Legendre’s Theorem that
a#0=a"""'=1

in GF(p°). Hence

€

a =a

for all a € GF(p°).
Thus in the first case,

2
aPEa

for all « € Z|w]/(P); while in the second case we even have

OJP

«

for all « € Z|w]/(P), since this holds in each of the constituent fields.
In the first case we can go further. The galois fi&l#'(p°) is of characteristic

p, ie
pa=a+---a=0,

for all ainGF(p°). Also, the map
a+— a?

is an automorphism of=F(p©). (This follows by essentially the same argument
that we used above to show thef = « or & above.)
In particular, the map
a — of mod P

is an automorphism of our field

On the other hand, the map
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is also an automorphism @fw]/(P), since
Pla= P]|a.

Moreover, this is the only automorphism®fu]/( P) apart from the identity map,
since any automorphism must send

vm mod P — ++/m mod P.

The automorphism

a— af mod P

is not the identity map, since the equation
r —x=0

has at mos” solutions in the field|w]/(P). We conclude that
P

o = amod P.

If Z|w] is a principal ideal domain the second case arises if and oflglits,
which by Propositio 3.14 occurs when

(5)-

P = T2,

Explicitly, if

then

Zlw]/(P) = Zlw]/(m) ® Z[w]/(72)
~ GF(P) & GF(P).

Proposition 4.3 Suppose = 3 mod 4. Let the sequence, be defined by
=3, Tpil=r12—2.
Then, is prime if and only if

Mp ‘ Tpfl.

Proof » We work in the fieldQ(+/5). By Propositior] 314, the integers in this field
are the numbers
a+bw (a,beZ)

where

1++5

W = .

2
By Propositior] 3]9, there is unique factorisation in the ring of integ&rs.
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Lemma 4.1 If r,, is the sequence defined in the Proposition then

2

n —_on
r, =w" +w

for eachn > 1.

Proof of Lemma- Let us set

2

n _9on
S, =w" +w

forn > 0. Then

2
n _on
5121 (2 2)

_ w2n+1 + 2 + w72n+1
= Sp+1 + 2a
ie
2
Spy1 = S, — 2.
Also
o —1
So =W+ w
=w—Ww
= /5,
and so

s1=s5—2=3.

We conclude that

2

n —_on
T =8, =w" +w

foralln>1. <«
Let us suppose first that/, is prime. Let us writeP? = M,

Lemma 4.2 We have

Proof of Lemma- Since
2*=1mod 5
it follows that

2P = 23 mod 5
= 3 mod 5.
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Hence
P =2V —1=2mod5;

and so, by Proposition 319,

<

o’ =amod P
for all & € Z[w]. In particular,
wf’ =@ mod P
Hence
Wit = ww mod P
= ||w|| mod P = —1 mod P.

In other words,
w?” = —1mod P.

Thus
w¥ +1=0mod P.

Dividing by w?" ™',

w4+ w ™ =0mod P,

rp—1 = 0 mod P.
Conversely, suppose is a prime factor of\/,,. Then

M, |rp-1 =>rp—1 =0mod P
— 4w =0mod P
— v +1=0mod P
— ¥ = —1mod P.

But this implies that the order af mod P is 27!, For
77— (W) =1mod P,
so if the order ofv mod P is d then

d| 2Pt = d =2°
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forsomee < p + 1; and ife < p then
w? =1 mod P.
On the other hand, by the Corollary to Proposition 4.2,
w” =wmod P = w” ' =1mod P.

Hence
Pt | P2 1= (P+1)(P—1).

Now
ged(P+1,P—1)=2.

It follows that
2| P+1 or 27| P—1.

The latter is impossible since
22> M,>P>P—1;
while
| P+1=2<P+1=>M,=2"-1<P= P =M,

<
Now for the ‘true’ Lucas-Lehmer test. As we shall see, the proof is a little
harder, which is why we gave the earlier version.

Proposition 4.4 Let the sequence, be defined by
ri=4, Tpi = rfL — 2.
Then), is prime if and only if

Mp ‘ Tpfl.

Proof » We work in the fieldQ(1/3). By Propositior] 3/4, the integers in this field
are the numbers
a+b/3 (a,be7).

By Propositior] 319, there is unique factorisation in the ring of inte@é(s3].

We set
77:1+\/§, €e=2++3.
Lemma 4.3 The units inZ[/3] are the numbers

+" (neN).
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Proof of Lemma- It is sufficient, by Propositiof 3.8, to show thas the smallest

unit > 1. And from the proof of that Proposition, we need only consider units of

the form
a—+bv3

with a,b > 0.
Thus the only possible units in the randec) arev/3 and1 ++/3 = n, neither
of which is in fact a unit, since

V3] = =3, Inll = -2,
whereas a unit must have noesi, by Propositiorf 3]16. <«

Lemma 4.4 If r, is the sequence defined in the Proposition then

n—1 _on—1
Ty = e 4

for eachn > 1.

Proof of Lemma- Let us set

Sp = € + €

forn > 1. Then

=" 24
= Sp+t1 + 27
ie
2
Spy1 = S, — 2.
Also
S =€+ e !
=€e+e€
=4.
We conclude that
n—1 n—1
T =5n =€  +e°2

foralln >1. <«
Suppose first thabP = M, is prime.

Lemma 4.5 We have
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Proof of Lemma- We have

M, =2 —1
= (—1) — 1 mod 3
=—-1—1mod3
= 1 mod 3;
while
M, = —1 mod 4.

By the Chinese Remainder Theorem there is just one remaindéi2 with
these remaindemsiod3 andmod4; and that is7 = —5 mod 12. For any odd
primep,

M, =7 mod 12

Hence

by Propositiorf 3.18, «
It follows from this Lemma and Propositign 4.2 that

o’ =amod P
for all o« € Z[v/3]. In particular,
e’ = emod P.

Hence

et = eemod P

= ||¢|]| mod P = 1 mod P.

In other words,
¢’ =1 mod P.

It follows that
=+ mod P.

We want to show that in fact
' = _1mod P.

This is where things get a little trickier than in the first version of the Lucas-
Lehmer test. In effect, we need a number with negative norm. To this end we

introduce
n=1+ V3.

Lemma4.6 1. |n|=-2.
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2. n? = 2e.
Proof of Lemma- This is a matter of simple verification:

Inlf =1-3=-2,

while
= (1+V3)
=4+2V3
= 2e.
<

By Proposition /refMersenneLemma,
n” = 7 mod P,
and so

"™ = nnp — 2 mod P,

n* = —2 mod P.
By the Lemma, this can be written

(2¢)* = —2mod P,

22 = _2mod P,

But by Propositionn 3.14,

1 p— 2
9% — 92 -1 = (P) mod P
= 1 mod P,
by Propositiorf 3.17, since
P=2"—1=—1mod 8.

Thus
22" =92 mod P
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and so

2¢¥ " = —2mod P.
Hence

2 = _1mod P.

Thus

e +1=0mod P.

Dividing by 2",
& + e =0mod P,

ie

rp—1 = 0 mod P.
Conversely, suppose is a prime factor of\/,. Then

M, | rp-1 => rp—1 = 0 mod P
— @ 1?7 =0mod P
— @' 4+ 1=0mod P
— @' = 1 mod P.
But (by the argument we used in the proof of the first Lucas-Lehmer test) this
implies that the order of mod P is 2.
On the other hand, by the Corollary to Proposition 4.2,

e =emod P— ¢! =1 mod P.

Hence
2| PP —1=(P+1)(P-1).
Now
ged(P+1,P—1) =2.
It follows that
21| P41 or 2071 |P—1.
In either case,

M, —1
wl<cprl=pP>ol_1= p2
—~rz
:>Mp<3
5 .

SinceM,, is odd, this implies that
P =M,,

ie M, is prime. <
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4.1.2 Perfect numbers

Mersenne numbers are also of interest because of their intimate connection with
perfectnumbers.

Definition 4.2 For n € N, n > 0 we denote the number of divisorsoby d(n),
and the sum of these divisors byn).

Example:Sincel2 has divisord, 2, 3, 4,6, 12,

d(12) = 6, o(12) = 28.

Definition 4.3 The number € N is said to beperfectif
o(n) = 2n,

ie if n is the sum of its proper divisors.

Example:The number 6 is perfect, since

6=1+2+3.
Proposition 4.5 If
M,=2° —1
is a Mersenne prime then
2P=1(2P — 1)

is perfect.
Conversely, evergvenperfect number is of this form.

Proof » In number theory, a functiofi(n) defined on{n € N : n > 0} is said to
bemultiplicativeif

ged(m,n) =1 = f(mn) = f(m)f(n).

If the function f(n) is multiplicative, and

n=pi-p
then
f(n) = f(p1*) - fpy).

Thus the functionf(n) is completely determined by its valugp®) for prime
powers.
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Lemma 4.7 The functionsi(n) ando(n) are both multiplicative.
Proof of Lemma- Supposexcd(m,n) = 1; and suppose

d | mn.
Thend is uniquely expressible in the form
d = d1d2 (d1 | m, dg | ’fl)

In fact
dy = ged(d,m), dy = ged(d, n).

It follows that
d(mn) = d(m)d(n);

and
o(mn)= > d
dlmn
=2 ) d
dilm dz2|n
=o(m)o(n).
<
Now suppose
n= 2p_1Mp

wherel, is prime. Sincel/, is odd,
ged(2P71 M) = 1.

Hence
o(n) = (22" Mo (M,).

If Pis prime then evidently
o(P)=1+P.
On the other hand,

Pe+1_1
U(Pe):1+P+P2++Pe:ﬁ

In particular,
o(2°) = 271 — 1.

Thus
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while
o(M,) =M,+1=2".

We conclude that
o(n) =2"M, = 2n.

Conversely, supposeis an even perfect number. We can writ€uniquely)
in the form
n=2°m

wherem is odd. Since¢ andm are coprime,
o(n) = o(2%a(m) = (2°7 — D)o (m).
On the other hand, if is perfect then
o(n) =2n = 2"m.
Thus
2e+1 -1 B m
2¢t1 T g(m)’

The numerator and denominator on the left are coprime. Hence

m=d(2° — 1), a(m) = d2°",

for somed € N.
If d > 1thenm has at least the factotsd, m. Thus

o(m)>1+d+m=1+d2°",

contradicting the value far(m) we derived earlier.
It follows thatd = 1. But then

olm)=2"=m+1.
Thus the only factors of: are 1 andn, ie
m=2""—1=M._,
is prime. Setting + 1 = p, we conclude that
n= 2p_1Mp,

wherel, is prime. <
It is an unsolved problem whether or not there are @hyperfect numbers.
The first 4 even perfect numbers are

2'M, =6, 22 M3 = 28, 2*M; = 496, 2°M; = 8128.

(In fact these are the first 4 perfect numbers, since it is known that any odd perfect
number must have at least 300 digits!)
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4.2 Fermat numbers

Proposition 4.6 If
n=a"+1 (a,m>1)

is prime then
1. a2is even;
2. m=2°.
Proof » If a is odd them is even and> 2, and so not prime.
Supposen has an odd factor, say
m =rs,

wherer is odd. Sincer” +1 = 0 whenz = —1, it follows by the Remainder
Theorem that
(x+1)] (z" +1).

Explicitly,
"4 1l=(r+ 1)@t ="~ ).

Substitutingr = 3°,
W +1) [ " +1)
in Z[x]. Settingy = a,

(@®+1)| (@™ +1)=(a"+1).

In particular,a™ + 1 is not prime.
Thus ifa™ + 1 is prime thenm cannot have any odd factors. In other words,

m = 2°.
<
Definition 4.4 The numbers
F,=2"4+1 (n=0,1,2,...)
are calledFermat numbers
Fermat hypothesized — he didn’t claim to have a proof — that all the numbers
Fy,F\,Fy,. ..
are prime. In fact this is true for

Fy=3, Fy, =5, Fy=17, Fy = 257, F, = 65537.
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However, Euler showed in 1747 that
Fy = 232 4 1 = 4294967297

is composite. In fact, no Fermat prime beyaFidhas been found.

The heuristic argument we used above to suggest that the number of Mersenne
primes is probably infinite now suggests that the number of Fermat primes is
probably finite.

For by the Prime Number Theorem, the probability‘gfbeing prime is

~ 2/log F,
~2-27"

Thus the expected number of Fermat primes is
2/ ) 27" =4 < oo

This argument assumes that the Fermat numbers are “independent”, as far as
primality is concerned. It might be argued that our next result shows that this is
not so. However, the Fermat numbers are so sparse that this does not really affect
our heuristic argument.

Proposition 4.7 The Fermat numbers are coprime, ie
ged(F,, F) =1

if m # n.

Proof » Suppose
ged(F,, Fr) > 1.

Then we can find a prime (which must be odd) such that

pl| Fn, vl Fn.

Now the numberg1,2,...,p— 1} form a group(Z/p)* under multiplication
modp. Sincep | F,,,,
22" = —1 mod p.

It follows that the order o2 mod p (ie the order of 2 iNZ/p)*) is exactly2™+1.
For certainly
22" = (22")? = 1 mod p;

and so the order of 2 divides**!, ie it is 2¢ for somee < m + 1. Butife < m
then
22" =1 mod p,

whereas we just saw that the left hand side was- 1 mod p. We conclude that
the order must be™*1,
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But by the same token, the order is al8g!. This is a contradiction, unless
m = n. <

We can use this result to give a second proof of Euclid’s Theorem that there
are an infinity of primes.

Proof » Each Fermat numbdr, has at least one prime divisor, sgy But by the
last Proposition, the primes

qo, 41,92, - - -
are all distinct. «

We end with a kind of pale imitation of the Lucas-Lehmer test, but now applied
to Fermat numbers.

Proposition 4.8 The Fermat number
F,=2"+1

is prime if and only if

372 = —1modF,.

Proof » SupposeP = F,, is prime.

Lemma 4.8 We have
F, = 5 mod 12.

Proof of Lemma- Evidently

F, =1 mod 4;
while

F,=(-1)* +1mod 3
= 2 mod 3.

By the Chinese Remainder Theorem these two congruences detefnined
12; and observation shows that

F, =5 mod 12.

<
It follows from this Lemma, and Proposition 3]18, that

Hence
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by Propositiorj 3.14.
Conversely, suppose

Fp—1

372 = —1mod F};

and supposé is a prime factor of;,. Then

Fp—1

372 = —1mod P,

322n_1 = —1 mod P.
It follows (as in the proof of the Lucas-Lehmer theorems) that the ordémesd
Pis
22",
But by Fermat’s Little Theorem,

371 =1 mod P.

Hence
27" | P -1,
ie
F,—1|P—1.
SinceP | F, this implies that
F, =P,

ie F,, is prime. <

This test is more-or-less useless, even for quite smadince it will take an
inordinate time to compute the power, even working modyJoHowever, it does
give a short proof — which we leave to the reader — thats composite.

It may be worth noting why this test is simpler than its Mersenne analogue.

In the case of Mersenne primés = M, we had to introduce quadratic fields
because the analogue of Fermat's Little Theorem,

o' =1mod P,

then allowed us to find elements of ordes- 1 = 2. In the case of Fermat primes
P = F,, Fermat’s Little Theorem

_ 2n
aF '=a¢* =1modP

suffices.



Chapter 5

Primality

5.1 The Fermat test

Suppose is an odd prime; and suppoged(a,p) = 1,iepta. Then
a’ ' =1modp

by Fermat’s Little Theorem.

Definition 5.1 Suppose: is an odd number- 1. Then we say that is a pseudo-
prime to base (or an a-pseudoprimgif

a" ' =1 modn.
Fermat’s Little Theorem can be restated as

Proposition 5.1 If n is an odd prime then it is a pseudoprime to all bageso-
prime ton.

This provides a necessary test for primality, which we may callRéenat
test

Itis reasonable to suppose that if we perform the test repeatedly with coprime
bases then the results will be independent; so each success will increase the prob-
ability thatn is prime — while a failure of course will prove thatis composite.

Unfortunately, there is a flaw in this argument. The test may succeed for all
bases coprime ta even ifn is composite.

5.2 Carmichael numbers

Definition 5.2 Suppose is an odd number 1. Then we say thatis aCarmichael
numberif n is not a prime, but is a pseudoprime to all basesoprime ton, ie

n—1 _

ged(a,n) =1 = a""" =1 mod n.

-1
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Recall the definition of Euler’s functiop(n): for n > 1,
¢(n) = [{1 <7 <n:ged(i,n) = 11,

ie ¢(n) is the number of congruence classesdn coprime ton:
Thus

(1) =1, ¢(2) =1, 6(3) =2, ¢(4) =2, ¢(5) =4, ¢(6) =2, ....
Euler’s function ismultiplicative in the number-theoretic sense
ged(m, n) =1 == ¢(mn) = ¢(m)¢(n).

For according to the Chinese Remainder Theorem, each pair of remainaers
m, b mod n determines a unique remaindemod mn; and it is easy to see that

ged(e,mn) =1 <= ged(a,m) = 1 and ged(b,n) = 1.

If pis a prime then
o) =pHp—1).
Fori is coprime top® unlessp | i. Thus all the numberse [1, p¢| are coprime to
p¢ except for thep®~! multiples ofp. Hence

o) =p" —p T =pT (p 1)
Putting together these results, we see that if
n = pil . pff

then
o(n) =p{Hpr — 1) porH(pr — 1).

The congruence classesod n form aringZ/(n) with n element$, 1,...,n — 1.
The invertible elements (or units) in this ring form a multiplicative group

(Z/n)*.
The importance of Euler’s function for us is that this group contais)

elements:
(Z/n)*|| = ¢(n).

This follows from the fact that is invertiblemodn if and only if ged(a,n) = 1.
For certainlya cannot be invertible igcd(a,n) = d > 1: if

ab=1modn

then
d|a,d|n=d]|1.
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Conversely, supposgd(a,n) = 1. Consider the map
T azx:Z/(n) — Z/(n).
This map is injective, since
aT=0=n|lar=n|z=2=0.

It is therefore surjective; and in particular

ar=ar =1

for somez, ie a is invertible.
But now it follows from Lagrange’s Theorem on the order of elements in finite
groups that
a®™ =1mod n

for all a coprime ton. (We may regard this as an extension of Fermat’s Little
Theorem to composite moduli.)

Proposition 5.2 The integem > 1 is a Carmichael number if and only if

1. nis square-free, ie

n=picpy
wherep, ..., p, are distinct primes; and
2. Foreachi (1 <i<r),
pi— 1n—1.

Proof » Suppose first that has these properties; and suppose ghédta, n) = 1.
Thengcd(a, p;) = 1 for eachi, and so

a’~!' =1 mod p;,
by Fermat’s Little Theorem. Hence
a" ! =1 mod p;
sincep; — 1|n — 1.
Since this holds for ali,
a" ' =1 mod n.

Thusn is a Carmichael number.
Suppose conversely thatis a Carmichael number. First we show thais
square-free.

Lemma 5.1 Supposed is an abelian group; and suppoge| || A||, wherep is a
prime. ThenA contains an element of order
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Proof of Lemma> We argue by induction ofjA||. The result follows by La-

grange’s Theorem if A|| = p.
If ||A]| > p, take any element € A, a # 0. Suppose: is of ordere. If p | e,
say
e =npr

thena” is of orderp.
If pte,let B be the quotient-group

B = A/{a).

Since
p|IBl = [|All/e

it follows from the inductive hypothesis that has an element, say, of ordemp.
Then the order of is a multiple ofp, saypr, anda” has ordep, as before. <«

Remark:In fact this result holds for any finite groug: if p | |G
an element of order. This follows from Sylow’s Theorem.

In the abelian case the result also follows immediately from the Structure The-
orem for Finite Abelian Groups, which states that such a gréugpa product of
cyclic groups of prime-power order:

| thenG contains

A=Z/pM) @& DL/ (pr).

If p|||A| thenp = p; for somei; andp~ ! is an element of orderin Z/(p°).
Returning to the proof of the Proposition, if a prime, $ay p;, occurs as a
square or higher power im, then

plo(n).
Hence, by the Lemma, there is an elemenf orderp in (Z/n)*. Since

n—1 _—

a 1 mod n,

it follows that
p | n— 1a

which cannot be true singe| n.
Thus
n=mpi-pPr
wherepy, ..., p, are distinct primes.
Recall that theexponent of a finite groupG is the smallest number > 0
such that
g° =1

forall g € G. By Lagrange’s Theorem,

e |G-
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Lemma 5.2 If p is a prime then the exponent of the grafyp)* isp — 1.

Proof of Lemma- Suppose~ = (Z/p)* has exponent. Then thep — 1 elements
a € G are all roots of the polynomial equation

r*—1=0
over the field
Fp= Z/(p).
But a polynomial equation of degréehas at most roots. hence
p—1<e.
Sinceel|p — 1 it follows that
e=p—1.

<

Remark:It is not hard to show that an abelian group of exporeemust contain
an element of ordet. It follows that the grougZ/p)* is cyclic. (The generators
of this group are callegrimitive rootsmodp.) However, the Lemma above is
sufficient for our purposes.

Returning to the proof of the Proposition, suppese coprime top;. By the
Chinese Remainder Theorem we can firglich that

b=amodp;, b=1modp; (j#1i).
Thenb is coprime ton. Hence
" ! =1 mod n,
sincen is a Carmichael number. Thus
a" =" =1mod p,

so if e is the exponent of the groug/p)* then

eln—1.
Hence, by the Lemma,
pi—1|n—1

<

Example:Let
n=3-11-17 = 561.
Then
n—1=560=2"5-7.

Since

3—1,11—1,17—1|n— 1= 560,
n = 561 is a Carmichael number.
It was generally believed that there were only a finite number of Carmichael

numbers, until Pomerana al proved in 1993 that there are in fact an infinite
number.
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5.3 The Miller-Rabin test

Proposition 5.3 Suppose is an odd prime. Let
p—1=2m,

wherem is odd. Supposgcd(a,n) = 1. Then either
a™ =1modn

or else

2im

a —1 modn

for some with0 < i <e — 1.

Proof » By Fermat’s Little Theorem,
a? ! =1 mod p.
Thus
—1\ 2
(aT) = 1 mod p.

Hence »
a7 = +1 mod p.

We know how to distinguish these two cases:
a'T = <ﬁ> mod p,
p

p—

a 2151modp,

by Propositiorf 3.15.
But now suppose

which as we have seen is the case i a quadratic residusodp; and suppose
p =1 mod 4. Then
p=1\2
(aT) = 1 mod p;
and so »
a'T = £1 mod p.

Repeating this argument, we either reach a point where we cannot divide the
exponent by 2, ie the exponent has been reducedaod

a™ = 1 mod n;

or else

2im

a —1 mod n

forsomei € [0,e —1]. =
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Definition 5.3 Suppose: is an odd integer- 1. Let
n—1=2m,

wherem is odd. Supposecd(a,n) = 1. Thenn is said to bea strong pseudoprime
to baseu if either
a™ =1modn

or else _
a*™ = —1modn
for somei with0 < i <e— 1.
We can re-state the last Proposition as

Proposition 5.4 An odd primep is a strong pseudoprime to each baseavith
ged(a,p) = 1.

Proposition 5.5 Suppose: is an odd integer- 1. If n is a strong pseudoprime to
each base with gcd(a,n) = 1 thenn is prime.

Proof » Suppose: is composite. Then eitheris a prime-power,
n=p° (e>1),

or elsen has two distinct prime factorg,andg.
Let us deal with the second case first. Suppgska,n) = 1. Let the orders
of a modulop, ¢, n ber, s, t, respectively. Then

sincep | n, q | n.
We are actually interested only in the powers of 2 dividing these orders. Let
us set
vo(u) =e
2° || u,
ie 2¢ is the highest power of 2 dividing. Then
va(r) S va(t),  wa(s) < va(t),
sincer | t, s | t.
Lemma 5.3 Suppose: is a pseudoprime to base ie
a" ' =1 mod n.

Then
va(t) < wve(n —1).



374 5-8

Proof of Lemma- We have
A" '=1modn=t|n—1
= v9(t) < we(n —1).
<

Lemma 5.4 Suppose is an odd prime; and suppoged(a, p) = 1. Let the order
of a mod p ber. Then

<vg(p—1)if g =1,
v () D
=w(p-1)if (=] =-1.
va(p— 1)1 a
Proof of Lemma- By Propositior 3:14,
o'F = (B) mod p.
a
Thus if
()=
a
then ] .
| p?:>’l)2(7’) < vy (pT) =wva(p—1)—1

then B
@ '=1modp, az #1modp.

Thus

p—1
r4 5

r ‘ b — 17
It follows that
vo(r) = ve(p — 1).

<
By the Chinese Remainder Theorem we can fircprime ton such that

() ()

ie a is a quadratic residumiodq, and a quadratic non-residuedp.
By the last Lemma,

0 < wy(s) < va(r) =wva(p—1) < wa(t).
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Now suppose: is a strong pseudoprime to basel et
n—1=2m,

wherem is odd. If
a”=1modn

thena has odd ordemodn, ie

ve(t) = 0.
Hencea has odd ordemodp, ie

ve(r) = 0.
But that is impossible, since

vo(r) = va(p — 1) > 0.

Thus _
a*™ = —1modn
for somei € [0,¢). Hence
a?™ = —1 mod D, a2™ = —1 mod q.
Lemma 5.5 Suppose _
a?™ = —1 mod n,

wherem is odd. Let the order af mod n bet. Then

’Ug(t) = 2 + 1.
Proof of Lemma- We have

i+1 i 2
a?’m = (a2m) = 1 mod n.

Hence ' '
t] 2% m, tf2'm.

It follows that

<
Applying this Lemma with modulp, ¢, n,

va(1) = va(s) = va(t) =1+ 1.
But that is a contradiction, since
v9(s) < va(p — 1) = va(r).

We conclude that is nota strong pseudoprime to base
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5.4 The Jacobi symbol

If pis an odd prime andcd(a, p) = 1 then then

o'T = <2> mod p,
p
by Propositiorf 3.15.
We cannot use this as a test of primality as it stands, since the Legendre symbol
has only been defined whens prime. Jacobi’s extension of the Legendre symbol
overcomes this problem.

Definition 5.4 Suppose: € N is odd. Let

’n/:pl...pr’

wherepy, ..., p. are primes (not necessarily distinct). Then we set
n p1 Pr .

1. Note that Jacobi’s symbol does extends the Legendre symhois iprime
the two coincide.

Remarks:

2. Note too that

if a,n are not coprime.
3. Suppose

Thena is a quadratic residumiodn if and only if it is a quadratic residue

modp; fori=1,... 7.

This implies that: is a quadratic residumodp; for eachi; and so

(-

But the converse does not hold;

does not imply that is a quadratic residusiodn.
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For example,

while 8 is not a quadratic residugaod 15 since it is not a quadratic residue
mod3.

Many of the basic properties of the Legendre symbol carry over to the Jacobi
symbol, as the next few Propositions show.

Proposition 5.6 1. If m,n € N are both odd then
N Y L N
mn)  \m)\n)’
ab) _ () (b
n) \n)\n)

Proof » The first result follows at once from the definition. The second follows
from the corresponding result for the Legendre symbok

2. Foralla,b,

Proposition 5.7 If
a=bmodn

then

Proof » This follows from the corresponding result for the Legendre symbol,

since
a=bmodn = a=>bmod p;

foreachp;, | n. <«

Proposition 5.8 Supposen,n € N are odd. Then

<T) if m =1 mod4orn=1mod 4,

(011

-<@> if m =n =3 mod 4.
n
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Proof » If m,n are not coprime then both sides are 0; so we may assume that
ged(m,n) = 1. We have to show that

(3) )=

M=procPr M= gs

(where the primes in each case are not necessarily distinct). By Prop@sition 5.6,

()G -1 6)E)

i—1 ;1

= H(_l)pT z

by the Quadratic Reciprocity Theorem (Proposifion3.20).
Thus we have to prove that

Suppose

m—1n-—1

2 2

= 1g —1
Ezp 4 mod 2,
Ty 2

(m—1)(n-1)= Z(pz —1)(g; — 1) mod 8.

irj
Lemma 5.6 If a,b € Z are odd then

ab—1=(a—1)+ (b—1) mod 4.
Proof of Lemma- Sincea, b are odd,

(a—1)(b—1) = mod4,

ab+1=a+bmod 4,

from which the result follows. «
It follows by repeated application of the Lemma that

ap---ap—1=> (a; — 1) mod 4.

%
In particular,

m—1=({p—1)+ -+ (p, — 1) mod 4.
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Sincen — 1 is even, this implies that
(m—1)(n—1)=(p — D(n—1)+ -+ (p — 1)(n — 1) mod &.
Again, by the Lemma,
n—1=(q—1)+--+ (g — 1) mod 4;
and therefore, since — 1 is even,
pi—n=-1)=@E—-—(@—-1)+ -+ (p;—1)(¢gs — 1) mod 8.
Putting these results together,

(m—1)(n—1)=> (pi—1)(g; — 1) mod 8,

i’j
as required. «

Proposition 5.9 Suppose: € N is odd. Then
-1\ _J1 if n =1 mod 4,
n) |-1ifn=3mod4

n=p1-Pr41-- (s,

Proof » Suppose

where
pi =1mod4, ¢ =3mod4.
Then
—1 —1
) )
Di q;
and so

On the other hand,

n=1"3°mod 4

1 mod 4 if s is even
3 mod 4 if sis odd

<

Proposition 5.10 Suppose: € N is odd. Then

2\ J1ifn=41modS§,
n) | —1ifn=+3modS.
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Proof » Suppose
n=precoPegic s

where
pi = *lmod8, ¢; ==+3modS.
Then
2 2
() ()
i q;
and so

On the other hand,
n = (£1)"(£3)° mod 8
{il mod 8 if s is even

43 mod 8 if sis odd

55 A weaker test

Recall that ifp is prime then

a3-D = (P
a

We are now in a position to convert this into a test for primality.

Proposition 5.11 Suppose: € N is odd. Them is prime if and only if

qz(n=1) = <E> mod n
a

for all a coprime ton.

Proof » If n is prime then it certainly has the given property.
Suppose conversely thathas this property. We show first thatmust be
square-free. For suppose

p° | n,

wherep is an odd prime.
Let the exponent ofZ/n)* bee. Then

p | o(n);

and so
ple
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by Lemmag5 1 to Propositign $.2. On the other hand,
eln—1

since .

av = (aT)2 = 1 mod n.

Thusp | n — 1 andp | n, which is absurd.
Thusn is square-free, say

n=pi-DPr

wherep, ..., p, are distinct odd primes.
Our argument runs along the same lines as the proof of Propogition 5.4. Let

n—1=2m, p;,—1=2%m;;
and let us re-arrange the so that

e; = max(ep, ..., e),

va(pr — 1) > va(p; — 1)

forl1 <i<r.
By the Chinese Remainder Theorem, we can firndprime ton. such that

(%)Z—L (;):1 <_> -1

Thus
()=:)) =
n p DPr

and so B

a7 = —1modn.
Hence .

"z = —1mod p
forl <i<r.

Let the order ot: mod n bed; and let the orders af mod p; bed;. Then
Ug(d) == UQ(dl) == Ug(dr) = UQ(?”L — 1),

by Lemma5.b to Propositign %.4.
On the other hand,

<£> =—-1= ’Ug(dl) = €1,

P1
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by Lemma 5.4 to Propositign $.4; while by the same Lemma,

<a> =1= Ug(dz‘) < e;
Di
for2 <i<r.

But this is a contradiction, since eg

e1 > ey — Uz(dl) > 'UQ(dQ).

<
At first sight this seems to offer an additional test for primality, which could
be incorporated into the Miller-Rabin test at the first stage; having determined
whether .
a2z = =£1modn,

@
n
and see if this gives the same value.

However, the following result shows that this would be a waste of time; the
two values are certain to coincide.

we could compute

Proposition 5.12 Suppose: is an odd integer- 1. If n is a strong pseudoprime

to basea then
a%(n—l) _ g )
n

n—1=2mn,

Proof » Let

wherem is odd.
Suppose first that
a™ = 1 mod n.

Then

n—1) _ 2¢~1m _ (am)26_1

amzlmodn:>a%( a = 1 mod n.

On the other hand; has odd ordemodn. Hencea has odd ordemodp for
each primep | n. It follows from Lemmg 54 to Propositidn 5.4 that

(-

Since that is true for ap | n,
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Now suppose that

2im

a —1 mod n,

where) < i <e— 1. Then

a[%(n_l) _ azeflm = 1 IfZ <e— 1
—lifi=e—1.

Now
2im

2™ =—-1modn=>a —1 mod p

for eachp | n. Let the order of: mod p ber. Then
ve(r) =i+1

by Lemmg5.b to Propositidn $.4.
Suppose first that< e — 1. In that case

vo(r)=i+1<e=uvy(p—1).

a
(-
p
by Lemmg 5.4 to Propositign 5.4. Since this holds fopdlln,
(“) ~1.
n

Thus the result holds in this case.
Finally, supposé = ¢ — 1. Then

Hence

%(n—l) — a2€*1m 2im =

a =a —1 mod n.

(-

then by Lemma5}4 to Proposition .4

va(p—1)=i+1=e= p=1mod?2° p#1mod 2"
— p=1+2°mod 2¢"".

(-

vo(p—1)>i+1=e=>p=1mod 2"

On the other hand, if

then by the same Lemma
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Suppose: hasr prime factorsp with

-

Then
n = (142" mod 2™
~ ] 1 mod 2¢*! if ris even
| 1+ 2¢ mod 2¢t1if ris odd
But
2° || n—1,
and so

n # 1 mod 2¢7.

Thusr is odd, and so

So the result holds also in this last case«
However, although the weaker test is of no practical value, it does have some
theoretical significance because of the following result.

Proposition 5.13 Suppose: is an odd integer- 1. Then the congruence classes
{ae (Z/n)": QT = <g>}
form a subgroup ofZ/n)*.

Proof » This follows at once from the multiplicative property of the Jacobi sym-
bol, as spelled out in Propositign b.6(ii). «
By Propositiorf5.71, this subgroup is proper if and only i§ composite. But
it has been shown (by E. Bach) that if the Extended Riemann Hypothesis (ERH)
holds, and
S C(Z/n)*

is a proper subgroup then there isag S with
0 < a < 2(logn)*.

This implies that if the ERH holds then our weaker test, and sartiori the
Miller-Rabin test, must complete in polynomial time; for we need only determine
whethern is a strongu-pseudoprime fou in the above range.
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