
Chapter 1

The Fundamental Theorem of
Arithmetic

1.1 Prime numbers

If a, b ∈ Z we say thata dividesb (or is a divisor ofb) and we writea | b, if

b = ac

for somec ∈ Z.
Thus−2 | 0 but 0 - 2.

Definition 1.1 The numberp ∈ N is said to beprime if p has just 2 divisors inN,
namely 1 and itself.

Note that our definition excludes 0 (which has an infinity of divisors inN) and
1 (which has just one).

Writing out the prime numbers in increasing order, we obtain thesequence of
primes

2, 3, 5, 7, 11, 13, 17, 19, . . .

which has fascinated mathematicians since the ancient Greeks, and which is the
main object of our study.

Definition 1.2 We denote thenth prime bypn.

Thusp5 = 11, p100 = 541.
It is convenient to introduce a kind of inverse function topn.

Definition 1.3 If x ∈ R we denote byπ(x) the number of primes≤ x:

π(x) = ‖{p ≤ x : p prime}‖.

Thus
π(1.3) = 0, π(3.7) = 2.

Evidentlyπ(x) is monotone increasing, but discontinuous with jumps at each
primex = p.

1–1
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Theorem 1.1 (Euclid’s First Theorem)The number of primes is infinite.

Proof I Suppose there were only a finite number of primes, say

p1, p2, . . . , pn.

Let
N = p1p2 · · · pn + 1.

Evidently none of the primesp1, . . . , pn dividesN .

Lemma 1.1 Every natural numbern > 1 has at least one prime divisor.

Proof of LemmaB The smallest divisord > 1 of n must be prime. For otherwise

d would have a divisore with 1 < e < d; ande would be a divisor ofn smaller
thand. C

By the lemma,N has a prime factorp, which differs fromp1, . . . , pn. J

Our argument not only shows that there are an infinity of primes; it shows that

pn < 22n ;

a very feeble bound, but our own. To see this, we argue by induction. Our proof
shows that

pn+1 ≤ p1p2 · · · pn + 1.

But now, by our inductive hypothesis,

p1 < 221

, p2 < 222

, . . . , pn < 22n .

It follows that
pn+1 ≤ 221+22+···+2n

But
21 + 22 + · · ·+ 2n = 2n+1 − 1 < 2n+1.

Hence
pn+1 < 22n+1

.

It follows by induction that

pn < 22n ,

for all n ≥ 1, the result being trivial forn = 1.
This is not a very strong result, as we said. It shows, for example, that the 5th

prime, in fact 11, is
< 225

= 232 = 4294967296.

In general, any bound forpn gives a bound forπ(x) in the opposite direction,
and vice versa; for

pn ≤ x⇐⇒ π(x) ≥ n.
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In the present case, for example, we deduce that

π(22y) ≥ [y] > y − 1

and so, settingx = 22y ,

π(x) ≥ log2 log2 x− 1 > log log x− 1.

for x > 1. (We follow the usual convention that if no base is given thenlog x
denotes the logarithm ofx to basee.)

ThePrime Number Theorem(which we shall make no attempt to prove) asserts
that

pn ∼ n log n,

or, equivalently,

π(x) ∼ x

log x
.

This states, roughly speaking, that the probability ofn being prime is about
1/ log n. Note that this includes even numbers; the probability of anoddnumber
n being prime is about2/ log n. Thus roughly 1 in 6 odd numbers around106 are
prime; while roughly 1 in 12 around1012 are prime.

(The Prime Number Theorem is the central result ofanalytic number theory
since its proof involves complex function theory. Our concerns, by contrast, lie
within algebraic number theory.)

There are several alternative proofs of Euclid’s Theorem. We shall give one
below. But first we must establish the Fundamental Theorem of Arithmetic (the
Unique Factorisation Theorem) which gives prime numbers their central rôle in
number theory; and for that we need Euclid’s Algorithm.

1.2 Euclid’s Algorithm

Proposition 1.1 Supposem,n ∈ N, m 6= 0. Then there exist uniqueq.r ∈ N
such that

n = qm+ r, 0 ≤ r < m.

Proof I For uniqueness, suppose

n = qm+ r = q′m+ r′,

wherer < r′, say. Then
(q′ − q)m = r′ − r.

The number of the right is< m, while the number on the left has absolute value
≥ m, unlessq′ = q, and so alsor′ = r.

We prove existence by induction onn. The result is trivial ifn < m, with
q = 0, r = n. Supposen ≥ m. By our inductive hypothesis, sincen−m < n,

n−m = q′m+ r,
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where0 ≤ r < m. But then
n = qm+ r,

with q = q′ + 1. J

Remark:One might ask why we feel the need to justify division with remainder
(as above), while accepting, for example, proof by induction. This is not an easy
question to answer.

Kronecker said, “God gave the integers. The rest is Man’s.” Virtually all
number theorists agree with Kronecker in practice, even if they do not accept his
theology. In other words, they believe that the integers exist, and have certain
obvious properties.

Certainly, if pressed, one might go back to Peano’s Axioms, which are a stan-
dard formalisation of the natural numbers. (These axioms include, incidentally,
proof by induction.) Certainly any properties of the integers that we assume could
easily be derived from Peano’s Axioms.

However, as I heard an eminent mathematician (Louis Mordell) once say, “If
you deduced from Peano’s Axioms that1+1 = 3, which would you consider most
likely, that Peano’s Axioms were wrong, or that you were mistaken in believing
that1 + 1 = 2?”

Proposition 1.2 Supposem,n ∈ N. Then there exists a unique numberd ∈ N
such that

d | m, d | n,

and furthermore, ife ∈ N then

e | m, e | n =⇒ e | d.

Definition 1.4 We call this numberd the greatest common divisorof m andn,
and we write

d = gcd(m,n).

Proof I Euclid’s Algorithm is a simple technique for determining the greatest
common divisorgcd(m,n) of two natural numbersm,n ∈ N. It proves inci-
dentally — as the Proposition asserts — that any two numbersdo indeed have a
greatest common divisor (or highest common factor).

First we divide the larger, say n, by the smaller. Let the quotient beq1 and let
the remainder (all we are really interested in) ber1:

n = mq1 + r1.

Now dividem by r1 (which must be less thanm):

m = r1q2 + r2.
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We continue in this way until the remainder becomes 0:

n = mq1 + r1,

m = r1q2 + r2,

r1 = r2q3 + r3,

. . .

rt−1 = rt−2qt−1 + rt,

rt = rt−1qt.

The remainder must vanish after at mostm steps, for each remainder is strictly
smaller than the previous one:

m > r1 > r2 > · · ·

Now we claim that the last non-zero remainder,d = rt say, has the required
property:

d = gcd(m,n) = rt.

In the first place, working up from the bottom,

d = rt | rt−1,

d | rt andd | rt−1 =⇒ d | rt−2,

d | rt−1 andd | rt−2 =⇒ d | rt−3,

. . .

d | r3 andd | r2 =⇒ d | r1,

d | r2 andd | r1 =⇒ d | m,
d | r1 andd | m =⇒ d | n.

Thus
d | m,n;

sod is certainlya divisor ofm andn.
On the other hand, supposee is a divisor ofm andn:

e | m,n.

Then, workingdownwards, we find successively that

e | m ande | n =⇒ e | r1,

e | r1 ande | m =⇒ e | r2,

e | r2 ande | r1 =⇒ e | r3,

. . .

e | rt−2 ande | rt−1 =⇒ e | rt.

Thus
e | rt = d.
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We conclude that our last non-zero remainderrt is number we are looking for:

gcd(m,n) = rt.

J

It is easy to overlook the power and subtlety of the Euclidean Algorithm. The
algorithm also gives us the following result.

Theorem 1.2 Supposem,n ∈ N. Let

gcd(m,n) = d.

Then there exist integersx, y ∈ Z such that

mx+ ny = d.

Proof I The Proposition asserts thatd can be expressed as a linear combination
(with integer coefficients) ofm andn. We shall prove the result by working
backwards from the end of the algorithm, showing successively thatd is a linear
combination ofrs andrs+1, and so, sincers+1 is a linear combination ofrs−1 and
rs, d is also a linear combination ofrs−1 andrs.

To start with,
d = rt.

From the previous line in the Algorithm,

rt−2 = qtrt−1 + rt.

Thus
d = rt = rt−2 − qtrt−1.

But now, from the previous line,

rt−3 = qt−1rt−2 + rt−1.

Thus
rt−1 = rt− 3− qt−1rt−2.

Hence

d = rt−2 − qtrt− 1

= rt−2 − qt(rt−3 − qt−1rt−2)

= −qtrt−3 + (1 + qtqt−1)rt−2.

Continuing in this way, suppose we have shown that

d = asrs + bsrs+1.

Since
rs−1 = qs+1rs + rs+1,



374 1–7

it follows that

d = asrs + bs(rs−1 − qs+1rs)

= bsrs−1 + (as − bsqs+1)rs.

Thus
d = as−1rs−1 + bs−1rs,

with
as−1 = bs, bs−1 = as − bsqs+1.

Finally, at the top of the algorithm,

d = a0r0 + b0r1

= a0r0 + b0(m− q1r0)

= b0m+ (a0 − b0q1)r0

= b0m+ (a0 − b0q1)(n− q0m)

= (b0 − a0q0 + b0q0q1)m+ (a0 − b0q0)n,

which is of the required form. J

Example:Supposem = 39, n = 99. Following Euclid’s Algorithm,

99 = 2 · 39 + 21,

39 = 1 · 21 + 18,

21 = 1 · 18 + 3,

18 = 6 · 3.

Thus
gcd(39, 99) = 3.

Also

3 = 21− 18

= 21− (39− 21)

= −39 + 2 · 21

= −39 + 2(99− 2 · 39)

= 2 · 99− 5 · 39.

Thus theDiophantine equation

99x+ 39y = 3

has the solution
x = 2, y = −5.

(By a Diophantine equation we simply mean a polynomial equation to which we
are seeking integer solutions.)
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This solution is not unique; we could, for example, add 39 tox and subtract
99 fromy. We can find the general solution by subtracting the particular solution
we have just found to give ahomogeneouslinear equation. Thus ifx′, y′ ∈ Z also
satisfies the equation thenX = x′ − x, Y = y′ − y satisfies the homogeneous
equation

99X + 39Y = 0,

ie

33X + 13Y = 0,

the general solution to which is

X = 13t, Y = −33t

for t ∈ Z. The general solution to this diophantine equation is therefore

x = 2 + 13t, y = −5− 33t (t ∈ Z).

It is clear that the Euclidean Algorithm gives a complete solution to the general
linear diophantine equation

ax+ by = c.

This equation has no solution unless

gcd(a, b) | c,

in which case it has an infinity of solutions. For if(x, y) is a solution to the
equation

ax+ by = d,

andc = dc′ then(c′x, c′y) satisfies

ax+ by = c,

and we can find the general solution as before.

Corollary 1.1 Supposem,n ∈ Z. Then the equation

mx+ ny = 1

has a solutionx, y ∈ Z if and only ifgcd(m,n) = 1.

It is worth noting that we can improve the efficiency of Euclid’s Algorithm by
allowing negative remainders. For then we can divide with remainder≤ m/2 in
absolute value, ie

n = qm+ r,
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with −m/2 ≤ r < m/2. The Algorithm proceeds as before; but now we have

m ≥ |r0/2| ≥ |r1/2
2| ≥ . . . ,

so the Algorithm concludes after at mostlog2 m steps.
This shows that the algorithm isin class P, ie it can be completed in polyno-

mial (in fact linear) time in terms of the lengths of the input numbersm,n — the
lengthof n, ie the number of bits required to expressn in binary form, being

[log2 n] + 1.

Algorithms in class P (orpolynomial timealgorithms) are consideredeasyor
tractable, while problems which cannot be solved in polynomial time are consid-
eredhardor intractable. RSA encryption — the standard techniqhe for encrypting
confidential information — rests on the belief — and it should be emphasized that
this is a belief and not a proof — that factorisation of a large number is intractable.

Example:Takingm = 39, n = 99, as before, the Algorithm now goes

99 = 3 · 39− 18,

39 = 2 · 18 + 3,

18 = 6 · 3,

giving (of course)
gcd(39, 99) = 3,

as before.

1.3 Ideals

We used the Euclidean Algorithm above to show that ifgcd(a, b) = 1 then there
we can findu, v ∈ Z such that

au+ bv = 1.

There is a much quicker way of proving that suchu, v exist, without explicitly
computing them.

Recall that anideal in a commutative ringA is a non-empty subseta ⊂ A
such that

1. a, b ∈ a =⇒ a+ b ∈ a;

2. a ∈ a, c ∈ A =⇒ ac ∈ a.

As an example, the multiples of an elementa ∈ A form an ideal

〈a〉 = {ac : c ∈ A}.

Such an ideal is said to beprincipal.
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Proposition 1.3 Every ideala ⊂ Z is principal.

Proof I If a = 0 (by convention we denote the ideal{0} by 0) the result is trivial:
a = 〈0〉. We may suppose therefor thata 6= 0.

Thena must contain integersn > 0 (since−n ∈ a =⇒ n ∈ a). Let d be the
least such integer. Then

a = 〈d〉.

For supposea ∈ a. Dividing a by d,

a = qd+ r,

where
0 ≤ r < d.

But
r = a+ (−q)d ∈ a.

Hencer = 0; for otherwiser would contradict the minimality ofd. Thus

a = qd,

ie every elementa ∈ a is a multiple ofd. J

Now supposea, b ∈ Z. Consider the set of integers

I = {au+ bv : u, v ∈ Z}.

It is readily verified thatI is an ideal.
According to the Proposition above, this ideal is principal, say

I = 〈d〉.

But now
a ∈ I =⇒ d | a, b ∈ I =⇒ d | b.

On the other hand,

e | a, e | b =⇒ e | au+ bv

=⇒ e | d.

It follows that
d = gcd(a, b);

and we have shown that the diophantine equation

au+ bv = d

always has a solution.
In particular, ifgcd(a, b) = 1 we canu, v ∈ Z such that

au+ bv = 1.
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This proof is much shorter than the one using the Euclidean Algorithm; but it
suffers from the disadvantage that it provides no way of computing

d = gcd(a, b),

and no way of solving the equation

au+ bv = d.

In effect, we have takend as the least of an infinite set of positive integers, using
the fact that the natural numbersN arewell-ordered, ie every subsetS ⊂ N has a
least element.

1.4 The Fundamental Theorem of Arithmetic

Proposition 1.4 (Euclid’s Lemma) Supposep ∈ N is a prime number; and sup-
posea, b ∈ Z. Then

p | ab =⇒ p | a or p | b.

Proof I Supposep | ab, p - a. We must show thatp | b. Evidently

gcd(p, a) = 1.

Hence, by Corollary 1.1, there existx, y ∈ Z such that

px+ ay = 1.

Multiplying this equation byb,

pxb+ aby = b.

But p | pxb andp | aby (sincep | ab). Hence

p | b.

J

Theorem 1.3 Supposen ∈ N, n > 0. Thenn is expressible as a product of prime
numbers,

n = p1p2 · · · pr,

and this expression is unique up to order.

Remark:We follow the convention that an empty product has value 1, just as an
empty sum has value 0. Thus the theorem holds forn = 1 as the product ofno
primes.
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Proof I We prove existence by induction onn, the result begin trivial (by the
remark above) whenn = 1. We know thatn has at least one prime factorp, by
Lemma 1.1, say

n = pm.

Sincem = n/p < n, we may apply our inductive hypothesis tom,

m = q1q2 · · · qs.

Hence
n = pq1q2 · · · qs.

Now suppose
n = p1p2 · · · pr = m = q1q2 · · · qs.

Sincep1 | n, it follows by repeated application of Euclid’s Lemma that

p1 | qj

for somej. But then it follows from the definition of a prime number that

p1 = qj.

Again, we argue by induction onn. Since

n/p1 = p2 · · · pr = q1 · · · q̂j · · · qs

(where the ‘hat’ indicates that the factor is omitted), and sincen/p1 < n, we
deduce that the factorsp2, . . . , pr are the same asq1, . . . , q̂j, . . . , qs, in some order.
Hencer = s, and the primesp1, · · · , pr andq1, . . . , qs are the same in some order.
J

We can base another proof of Euclid’s Theorem (that there exist an infinity of
primes) on the fact that if there were only a finite number of primes there would
not be enough products to “go round”.

Thus suppose there were justm primes

p1, . . . , pm.

LetN ∈ N. By the Fundamental Theorem, eachn ≤ N would be expressible in
the form

n = pe11 · · · pemm .

(Actually, we are only using the existence part of the Fundamental Theorem; we
do not need the uniqueness part.)

For eachi (1 ≤ i ≤ m),

peii | n =⇒ peii ≤ n

=⇒ peii ≤ N

=⇒ 2ei ≤ N

=⇒ ei ≤ log2 N.
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Thus there are at mostlog2 N +1 choices for each exponentei, and so the number
of numbersn ≤ N expressible in this form is

≤ (log2 N + 1)m.

So our hypothesis implies that

(log2 N + 1)m ≥ N

for all N .
But in fact, to the contrary,

X > (log2 X + 1)m =

(
logX

log 2
+ 1

)m

for all sufficiently largeX. To see this, setX = ex. We have to show that

ex >

(
x

log 2
+ 1

)m
.

Since
x

log 2
+ 1 < 2x

if x ≥ 3, it is sufficient to show that

ex > (2x)m

for sufficiently largex. But

ex >
xm+1

(m+ 1)!

if x > 0, since the expression on the right is one of the terms in the power-series
expansion ofex. Thus the inequality holds if

xm+1

(m+ 1)!
> (2x)m,

ie if

x > 2m(m+ 1)!.

We have shown therefore thatm primes are insufficient to express alln ≤ N
if

N ≥ e2m(m+1)!.

Thus our hypothesis is untenable; and Euclid’s theorem is proved.
Our proof gives the bound

pn ≤ e2m(m+1)!.
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which is even worse than the bound we derived from Euclid’s proof. (For it is
easy to see by induction that

(m+ 1)! > em

for m ≥ 2. Thus our bound is worse thanee
n
, compared with22n by Euclid’s

method.)
We can improve the bound considerably by taking out the square factor inn.

Thus each numbern ∈ N (n > 0) is uniquely expressible in the form

n = d2p1 . . . pr,

where the primesp1, . . . , pr are distinct. In particular, if there are onlym primes
then eachn is expressible in the form

n = d2pe11 · · · pemm ,

where now each exponentei is either 0 or 1.
Consider the numbersn ≤ N . Since

d ≤
√
n ≤
√
N,

the number of numbers of the above form is

≤
√
N2m.

Thus we shall reach a contradiction when
√
N2m ≥ N,

ie

N ≤ 22m.

This gives us the bound
pn ≤ 22n,

better than22n, but still a long way from the truth.

1.5 The Fundamental Theorem, recast

We suppose throughout this section thatA is an integral domain. (Recall that an
integral domain is a commutative ring with 1 having no zero divisors, ie ifa, b ∈ A
then

ab = 0 =⇒ a = 0 or b = 0.)

We want to examine whether or not the Fundamental Theorem holds inA —
we shall find that it holds in some commutative rings and not in others. But to
make sense of the question we need to re-cast our definition of a prime.

Looking back atZ, we see that we could have defined primality in two ways
(excludingp = 1 in both cases):
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1. p is prime if it has no proper factors, ie

p = ab =⇒ a = 1 or b = 1.

2. p is prime if
p | ab =⇒ p | a or p | b.

The two definitions are of course equivalent in the ringZ. However, in a
general ring the second definition is stronger: that is, an element satisfying it must
satisfy the first definition, but the converse is not necessarily true. We shall take
the second definition as our starting-point.

But first we must deal with one other point. In defining primality inZ we
actually restricted ourselves to the semi-ringN, defined by theorder in Z:

N = {n ∈ Z : n ≥ 0}.

However, a general ringA has no natural order, and no such semi-ring, so we must
consider all elementsa ∈ A.

In the case ofZ this would mean considering−p as a prime on the same
footing asp. But now, for the Fundamental Theorem to make sense, we would
have to regard the primes±p as essentially the same.

The solution in the general ring is that to regard two primes asequivalentif
each is a multiple of the other, the two multiples necessarily beingunits.

Definition 1.5 An elementε ∈ A is said to be aunit if it is invertible, ie if there is
an elementη ∈ A such that

εη = 1.

We denote the set of units inA byA×.

For example,
Z
× = {±1}.

Proposition 1.5 The units inA form a multiplicative groupA×.

Proof I This is immediate. Multiplication is associative, from the definition of a
ring; andη = ε−1 is a unit, since it has inverseε. J

Now we can define primality.

Definition 1.6 Supposea ∈ A is not a unit, anda 6= 0. Then

1. a is said to beirreducibleif

a = bc =⇒ b or c is a unit.

2. a is said to beprime if

a | bc =⇒ a | b or p | b.
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Proposition 1.6 If a ∈ A is prime then it is irreducible.

Proof I Suppose
a = bc.

Then
a | b or a | c.

We may suppose without loss of generality thata | b. Then

a | b, b | a =⇒ a = bε,

whereε is a unit; and
a = bc = bε =⇒ c = ε.

J

Definition 1.7 The elementsa, b ∈ A are said to beequivalent, written

a ∼ b,

if
b = εa

for some unitε.

In effect, the group of unitsA× acts onA and two elements are equivalent if
each is a transform of the other under this action.

Now we can re-state the Fundamental Theorem in terms which make sense in
any integral domain.

Definition 1.8 The integral domainA is said to be aunique factorisation domain
if each non-unita ∈ A, a 6= 0 is expressible in the form

a = p1 · · · pr,

wherep1, . . . , pr are prime, and if this expression is unique up to order and equiv-
alence of primes.

In other words, if
a = q1 · · · qs

is another expression of the same form, thenr = s and we can find a permutation
π of {1, 2, . . . , r} and unitsε1, ε2, . . . , εr such that

qi = εipπ(i)

for i = 1, 2, . . . , r.
Thus a unique factorisation domain (UFD) is an integral domain in which the

Fundamental Theorem of Arithmetic is valid.
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1.6 Principal ideals domains

Definition 1.9 The integral domainA is said to be aprincipal ideal domainif
every ideala ∈ A is principal, ie

a = 〈a〉 = {ac : c ∈ A}

for somea ∈ A.

Example:By Proposition 1.3,Z is a principal ideal domain.
Our proof of the Fundamental Theorem can be divided into two steps — this

is clearer in the alternative version outlined in Section 1.3 — first we showed that
thatZ is a principal ideal domain, and then we deduced from this thatZ is a unique
factorisation domain.

As our next result shows this argument is generally available; it is the tech-
nique we shall apply to show that the Fundamental Theorem holds in a variety of
integral domains.

Proposition 1.7 A principal ideal domain is a unique factorisation domain.

Proof I SupposeA is a principal ideal domain.

Lemma 1.2 A non-unita ∈ A, a 6= 0 is prime if and only if it is irreducible, ie

a = bc =⇒ a is a unit orb is a unit.

Proof of LemmaB By Proposition 1.6, a prime is always irreducible.

The converse is in effect Euclid’s Lemma. Thus suppose

p | ab but p - a.

Consider the ideal〈p, a〉 generated byp anda. By hypothesis this is principal, say

〈p, a〉 = 〈d〉.

Sincep is irreducible,
d | p =⇒ d = ε or d = pε,

whereε is a unit. But
d = pε, d | a =⇒ p | a,

contrary to hypothesis. Thusd is a unit, ie

〈p, a〉 = A.

In particular we can findu, v ∈ A such that

pu+ av = 1.
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Multiplying by b,
pub+ abv = b.

But now
p | ab =⇒ p | b.

C

Now supposea is neither a unit nor 0; and suppose thata is not expressible as
a product of primes. Thena is reducible, by the Lemma above: say

a = a1b1,

wherea1, b1 are non-units. One at least ofa1, b1 is not expressible as a product of
primes; we may assume without loss of generality that this is true ofa1.

It follows by the same argument that

a1 = a2b2,

wherea2, b2 are non-units, anda2 is not expressible as a product of primes.
Continuing in this way,

a = a1b1, a1 = a2b2, a2 = a3b3, . . . .

Now consider the ideal

a = 〈a1, a2, a3, . . . 〉.

By hypothesis this ideal is principal, say

a = 〈d〉.

Sinced ∈ a,
d ∈ 〈a1, . . . , ar〉 = 〈ar〉

for somer. But then
ar+1 ∈ 〈d〉 = 〈ar〉.

Thus
ar | ar+1, ar+1 | ar =⇒ ar = ar+1ε =⇒ br+1 = ε,

whereε is a unit, contrary to construction.
Thus the assumption thata is not expressible as a product of primes is unten-

able;
a = p1 · · · pr.

To prove uniqueness, we argue by induction onr, wherer the smallest number
such thata is expressible as a product ofr primes.

Suppose
a = p1 · · · pr = q1 · · · qs.

Then
p1 | q1 · · · qs =⇒ p1 | qj
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for somej. Sinceqj is irreducible, by Proposition 1.6, it follows that

qj = p1ε,

whereε is a unit.
We may suppose, after re-ordering theq’s thatj = 1. Thus

p1 ∼ q1.

If r = 1 then

a = p1 = εp1q2 · · · qs =⇒ 1 = εq2 · · · qs.

If s > 1 this implies thatq2, . . . , qs are all units, which is absurd. Hences = 1,
and we are done.

If r > 1 then

q1 = εp1 =⇒ p2p3 · · · pr = (εq2)q3 · · · qs

(absorbing the unitε into q2). The result now follows by our inductive hypothesis.
J

1.7 Polynomial rings

If A is a commutative ring (with 1) then we denote byA[x] the ring of polynomials

p(x) = anx
n + · · ·+ a0 (a0, . . . , an ∈ A).

Note that these polynomials should be regarded as formal expressions rather
than mapsp : A→ A; for if A is finite two different polynomials may well define
the same map.

We identifyainA with theconstantpolynomialf(x) = a. Thus

A ⊂ A[x].

Proposition 1.8 If A is an integral domain then so isA[x].

Proof I Suppose

f(x) = amx
m + · · ·+ a0, g(x) = bnx

n + · · ·+ b0,

wheream 6= 0, bn 6= 0. Then

f(x)g(x) = (ambn)xm+n + · · ·+ a0b0;

and the leading coefficientambn 6= 0. J
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Proposition 1.9 The units inA[x] are just the units ofA:

(A[x])× = A×.

Proof I It is clear thata ∈ A is a unit (ie invertible) inA[x] if and only if it is a
unit inA.

On the other hand, no non-constant polynomialF (x) ∈ A[x] can be invertible,
since

degF (x)G(x) ≥ degF (x)

if G(x) 6= 0. J

If A is a field then we can divide one polynomial by another, obtaining a
remainder with lowerdegreethan the divisor. Thus degree plays the rôle in k[x]
played by size inZ.

Proposition 1.10 Supposek is a field; and supposef(x), g(x) ∈ k[x], with
g(x) 6= 0. Then there exist unique polynomialsq(x), r(x) ∈ k[x] such that

f(x) = g(x)q(x) + r(x),

where
deg r(x) < deg g(x).

Proof IWe prove the existence ofq(x), r(x) by induction ondeg f(x).
Suppose

f(x) = amx
m + · · ·+ a0, g(x) = bnx

n + · · ·+ b0,

wheream 6= 0, bn 6= 0.
If m < n then we can takeq(x) = 0, r(x) = f(x). We may suppose therefore

thatm ≥ n. In that case, let

f1(x) = f(x)− (am/bn)xm−ng(x).

Then
deg f1(x) < deg f(x).

Hence, by the inductive hypothesis,

f1(x) = g(x)q1(x) + r(x),

where
deg r(x) < deg g(x);

and then
f(x) = g(x)q(x) + r(x),

with
q(x) = (am/bn)xm−n + q1(x).
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For uniqueness, suppose

f(x) = g(x)q1(x) + r1(x) = g(x)q2(x) + r2(x).

On subtraction,
g(x)q(x) = r(x),

where
q(x) = q2(x)− q1(x), r(x) = r1(x)− r2(x).

But now, if q(x) 6= 0,

deg(g(x)q(x)) ≥ deg g(x), deg r(x) < deg g(x).

This is a contradiction. Hence

q(x) = 0,

ie

q1(x) = q2(), r1(x) = r2().

J

Proposition 1.11 If k is a field thenk[x] is a principal ideal domain.

Proof I As withZ we can prove this result in two ways: constructively, using the
Euclidean Algorithm; or non-constructively, using ideals. This time we take the
second approach.

Suppose
a ⊂ k[x]

is an ideal. Ifa = 0 the result is trivial; so we may assume thata 6= 0.
Let

d(x) ∈ a

be a polynomial ina of minimal degree. Then

a = 〈d(x)〉.

For supposef(x) ∈ a. Divide f(x) by d(x):

f(x) = d(x)q(x) + r(x),

wheredeg r(x) < deg d(x). Then

r(x) = f(x)− d(x)q(x) ∈ a

sincef(x), d(x) ∈ a. Hence, by the minimality ofdeg d(x),

r(x) = 0,

ie

f(x) = d(x)q(x).

J

By Proposition 1.7 this gives the result we really want.
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Corollary 1.2 If k is a field thenk[x] is a unique factorisation domain.

Every non-zero polynomialf(x) ∈ k[x] is equivalent to a unique monic poly-
nomial, namely that obtained by dividing by its leading term. Thus each prime,
or irreducible, polynomialp(x) ∈ k[x] has a unique monic representative; and we
can restate the above Corollary in a simpler form.

Corollary 1.3 Each monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a0

can be uniquely expressed (up to order) as a product of irreducible monic polyno-
mials:

f(x) = p1(x) · · · pr(x).

1.8 Postscript

We end this Chapter with a result that we don’t really need, but which we have
come so close to it would be a pity to omit.

SupposeA is an integral domain. LetK be thefield of fractionsof A. (Recall
thatK consists of the formal expressions

a

b
,

with a, b ∈ A, b 6= 0; where we set

a

b
=
c

d
if ad = bc.

The map

a 7→ a

1
: A→ K

is injective, allowing us to identifyA with a subring ofK.)
The canonical injection

A ⊂ K

evidently extends to an injection

A[x] ⊂ K[x].

Thus we can regardf(x) ∈ A[x] as a polynomial overK.

Proposition 1.12 If A is a unique factorisation domain then so isA[x].

Proof I First we must determine the primes inA[x].

Lemma 1.3 The elementp ∈ A is prime inA[x] if and only if it is prime inA.
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Proof of LemmaB It is evident that

p prime inA[x] =⇒ p prime inA.

Conversely, supposep is prime inA; We must show that ifF (x), G(x) ∈ A[x]
then

p | F (x)G(x) =⇒ p | F (x) or p | G(x).

In other words,

p - F (x), p - G(x) =⇒ p - F (x)G(x).

Suppose

F (x) = amx
m + · · ·+ a0, G(x) = bnx

n + · · ·+ b0;

and suppose
p - F (x), p - G(x).

Let ar, bs be the highest coefficients off(x), g(x) not divisible byp. Then the
coefficient ofxr+s in f(x)g(x) is

a0br+s + a1br+s−1 + · · ·+ arbs + · · ·+ ar+sb0 ≡ arbs mod p,

since all the terms exceptarbs are divisible byp. Hence

p | arbs =⇒ p mod ar or p mod bs,

contrary to hypothesis. In other words,

p - F (x)G(x).

C

Lemma 1.4 Supposef(x) ∈ K[x]. Thenf(x) is expressible in the form

f(x) = αF (x),

whereα ∈ K and
F (x) = anx

n + · · ·+ a0 ∈ A[x]

with
gcd(a0, . . . , an) = 1;

and the expression is unique up to multiplication by a unit, ie if

f(x) = αF (x) = βG(x),

whereG(x) has the same property then

G(x) = εF (x), α = εβ

for some unitε ∈ A.
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Proof of LemmaB Suppose

f(x) = αnx
n + · · ·+ α0.

Let
αi =

ai
bi
,

whereai, bi ∈ A; and let
b =

∏
bi.

Then
bf(x) = bnx

n + · · ·+ b0 ∈ A[x].

Now let
d = gcd(b0, . . . , bn).

Then
f(x) = (b/d)(cnx

n + · · ·+ c0)

is of the required form, since

gcd(c0, . . . , cn) = 1.

To prove uniqueness, suppose

f(x) = αF (x) = βG(x).

Then
G(x) = γF (x),

whereγ = α/β.
In a unique factorisation domainA we can express anyγ ∈ K in the form

γ =
a

b
,

with gcd(a, b) = 1, since we can dividea andb by any common factor.
Thus

aF (x) = bG(x).

Let p be a prime factor ofb. Then

p | aF (x) =⇒ p | F (x),

contrary to our hypothesis on the coefficients ofF (x). Thusb has no prime factors,
ie b is a unit; and similarlya is a unit, and soγ is a unit. C

Lemma 1.5 A non-constant polynomial

F (x) = anx
n + · · ·+ a0 ∈ A[x]

is prime inA[x] if and only if
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1. F (x) is prime (ie irreducible) inK(x); and

2. gcd(a0, . . . , an) = 1.

Proof of LemmaB SupposeF (x) is prime inA[x]. Then certainly

gcd(a0, . . . , an) = 1,

otherwiseF (x) would be reducible.
SupposeF (x) factors inK[x]; say

F (x) = g(x)h(x).

By Proposition 1.4,

g(x) = αG(x), h(x) = βH(x),

whereG(x), H(x) have no factors inA. Thus

F (x) = γG(x)H(x),

whereγ ∈ K. Let γ = a/b, wherea, b ∈ A andgcd(a, b) = 1. Then

bF (x) = aG(x)H(x).

Supposep is a prime factor ofb. Then

p | G(x) or p | H(x),

neither of which is tenable. Henceb has no prime factors, ieb is a unit. But now

F (x) = ab−1G(x)H(x);

and soF (x) factors inA[x].
Conversely, supposeF (x) has the two given properties. We have to show that

F (x) is prime inA[x].
Suppose

F (x) | G(x)H(x)

in A[x].
If F (x) is constant then

F (x) = a ∼ 1

by the second property, so

F (x) | G(x) and F (x) | H(x).

We may suppose therefore thatdegF (x) ≥ 1. SinceK[x] is a unique factori-
sation domain (Corollary to Proposition 1.11),

F (x) | G(x) or F (x) | H(x)
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in K[x]. We may suppose without loss of generality that

F (x) | G(x)

in K[x], say
G(x) = F (x)h(x),

whereh(x) ∈ K[x].
By Lemma 1.4 we can expressh(x) in the form

h(x) = αH(x),

where the coefficients ofH(x) are factor-free. Writing

α =
a

b
,

with gcd(a, b) = 1, we have

bG(x) = aF (x)H(x).

Supposep is a prime factor ofb. Then

p | a or p | F (x) or p | H(x),

none of which is tenable. Henceb has no prime factors, ieb is a unit. Thus

F (x) | G(x)

in A[x]. C

Now suppose
F (x) = anx

n + · · · a0 ∈ A[x]

is not a unit inA[x].
If F (x) is constant, sayF (x) = a, then the factorisation ofa into primes inA

is a factorisation into primes inA[x], by Lemma 1.3. Thus we may assume that
degF (x) ≥ 1.

SinceK[x] is a unique factorisation domain (Corollary to Proposition 1.11),
F (x) can be factorised inK[x]:

F (x) = anp1(x) · · · ps(x),

wherep1(x), . . . , ps(x) are irreducible monic polynomials inK[x]. By Lem-
mas 1.4 and 1.5 eachpi(x) is expressible in the form

pi(x) = αiPi(x),

wherePi(x) is prime inA[x].
Thus

F (x) = αP1(x) · · ·Pr(x),
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where
α = anα1 · · ·αr ∈ K.

Let
α =

a

b
,

wheregcd(a, b) = 1. Then

bF (x) = aP1(x) · · ·Pr(x).

Let p be a prime factor ofb. Then

p | Pi(x)

for somei, contrary to the definition ofPi(x). Henceb has no prime factors, ieb
is a unit.

If a is a unit then we can absorbε = a/b into P1(x):

F (x) = Q(x)P2(x) · · ·Pr(x),

whereQ(x) = (a/b)P1(x).
If a is not a unit then

ab−1 = p1 · · · ps,

wherep1, . . . , ps are prime inA (and so inA[x] by Lemma 1.3); and

F (x) = p1 · · · psP1(x) · · ·Pr(x),

as required.
Finally, to prove uniqueness, we may suppose thatdegF (x) ≥ 1, since the

result is immediate ifF (x) = a is constant.
Suppose

F (x) = p1 · · · psP1(x) · · ·Pr(x) = q1 · · · qs′Q1(x) · · ·Qr′(x).

EachPi(x), Qj(x) is prime inK[x] by Lemma 1.5. SinceK[x] is a unique
factorisation domain (Corollary to Proposition 1.11) it follows thatr = r′ and
that after re-ordering,

Qi(x) = αPi(x),

whereα ∈ K×. Let
α = a/b

with gcd(a, b) = 1. Then
aPi(x) = bQi(x).

If p is a prime factor ofb then

p | bQi(x) =⇒ p | Qi(x),
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contrary to the definition ofQi(x). Thusb has no prime factors, and is therefore a
unit. Similarlya is a unit. Hence

Qi(x) = εiPi(x),

whereεi ∈ A is a unit.
Setting

ε =
∏
i

εi,

we have
p1 · · · ps = εq1 · · · qs′ .

SinceA is a unique factorisation domain,s = s′ and after re-ordering,

qj = ηjpj,

whereηj ∈ A is a unit.
We conclude that the prime factors ofF (x) are unique up to order and equiv-

alence (multiplication by units), ieA[x] is a unique factorisation domain.J

Example:There is unique factorisation inZ[x], sinceZ is a principal ideal domain
by Proposition 1.3 and so a unique factorisation domain by Proposition 1.7.

Note thatZ[x] is not a principal ideal domain, since eg the ideal

a = 〈2, x〉,

consisting of all polynomials

F (x) = anx
n + · · ·+ a0

with a0 even, is not principals:

a 6= 〈G(x)〉.

For if it were, its generatorG(x) would have to be constant, sincea contains
non-zero constants, and

degG(x)H(x) ≥ degG(x)

if H(x) 6= 0. But if G(x) = d then

a ∩ Z = 〈2〉 =⇒ d = ±2,

ie a consists of all polynomials withevencoefficients. Sincex ∈ a is not of this
form we conclude thata is not principal.



Chapter 2

Number fields

2.1 Algebraic numbers

Definition 2.1 A numberα ∈ C is said to bealgebraicif it satisfies a polynomial
equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

with rational coefficientsai ∈ Q.

For example,
√

2 andi/2 are algebraic.
A complex number is said to betranscendentalif it is not algebraic. Bothe

andπ are transcendental. It is in general extremely difficult to prove a number
transcendental, and there are many open problems in this area, eg it is not known
if πe is transcendental.

Proposition 2.1 The algebraic numbers form a field̄Q ⊂ C.

Proof I If α satisfies the equationf(x) = 0 then−α satisfiesf(−x) = 0, while
1/α satisfiesxnf(1/x) = 0 (wheren is the degree off(x)). It follows that−α
and1/α are both algebraic. Thus it is sufficient to show that ifα, β are algebraic
then so areα + β, αβ.

Supposeα satisfies the equation

f(x) ≡ xm + a1x
m−1 + · · ·+ am = 0,

andβ the equation

g(x) ≡ xn + b1x
n−1 + · · ·+ bn = 0.

Consider the vector space

V = 〈αiβj : 0 ≤ i < m, 0 ≤ j < n〉

overQ spanned by themn elementsαiβj. Evidently

α + β, αβ ∈ V.

2–1
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But if θ ∈ V then themn+ 1 elements

1, θ, θ2, . . . , θmn

are necessarily linearly dependent (overQ), sincedimV ≤ mn. In other words
θ satisfies a polynomial equation of degree≤ mn. Thus each elementθ ∈ V is
algebraic. In particularα + β andαβ are algebraic. J

2.2 Minimal polynomials and conjugates

Recall that a polynomialp(x) is said to bemonicif its leading coefficient — the
coefficient of the highest power ofx — is 1:

p(x) = xn + a1x
n−1 + · · ·+ an.

Proposition 2.2 Each algebraic numberα ∈ Q̄ satisfies a unique monic polyno-
mialm(x) of minimal degree.

Proof I Supposeα satisfies two monic polynomialsm1(x),m2(x) of minimal
degreed. Thenα also satisfies the polynomial

p(x) = m1(x)−m2(x)

of degree< d; and if p(x) 6= 0 then we can make it monic by dividing by its
leading coefficient. This would contradict the minimality ofm1(x). Hence

m1(x) = m2(x).

J

Definition 2.2 The monic polynomialm(x) satisfied byα ∈ Q̄ is called themin-
imal polynomialof α. Thedegreeof the algebraic numberα is the degree of its
minimal polynomialm(x).

Proposition 2.3 The minimal polynomialm(x) of α ∈ Q̄ is irreducible.

Proof I Suppose to the contrary

m(x) = f(x)g(x)

wheref(x), g(x) are of lower degrees thanm(x). But thenα must be a root of
one off(x), g(x). J

Definition 2.3 Two algebraic numbersα, β are said to beconjugateif they have
the same minimal polynomial.

Proposition 2.4 An algebraic number of degreed has justd conjugates.
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Proof I If the minimal poynomial ofα is

m(x) = xd + a1x
d−1 + · · ·+ ad,

then by definition the conjugates ofα are thed rootsα1 = α, α2, . . . , αd of m(x):

m(x) = (x− α1)(x− α2) · · · (x− αd).

These conjugates are distinct, since an irreducible polynomialm(x) overQ is
necessarilyseparable, ie it cannot have a repeated root. For ifα were a repeated
root ofm(x), ie

(x− α)2 | m(x)

then
(x− α) | m′(x),

and so
(x− α) | d(x) = gcd(m(x),m′(x)).

But
d(x) | m(x)

and
1 ≤ deg(d(x)) ≤ d− 1,

contradicting the irreducibility ofm(x). J

2.3 Algebraic number fields

Proposition 2.5 Every subfieldK ⊂ C contains the rationalsQ:

Q ⊂ K ⊂ C.

Proof I By definition,1 ∈ K. Hence

n = 1 + · · ·+ 1 ∈ K

for each integern > 0.
By definition,K is an additive subgroup ofC. Hence−1 ∈ K; and so

−n = (−1)n ∈ K

for each integern > 0. Thus
Z ⊂ K.

Finally, sinceK is a field, each rational number

r =
n

d
∈ K

wheren, d ∈ Z with d 6= 0. J

We can consider any subfieldK ⊂ C as a vector space overQ.



374 2–4

Definition 2.4 An number field(or more precisely, analgebraic number field) is
a subfieldK ⊂ C which is of finite dimension as a vector space overQ. If

dimQ = d

thenK is said to be a number field of degreed.

Proposition 2.6 There is a smallest number fieldK containing the algebraic
numbersα1, . . . , αr.

Proof I Every intersection (finite or infinite) of subfields ofC is a subfield ofC;
so there is a smallest subfieldK containing the given algebraic numbers, namely
the intersection of all subfields containing these numbers. We have to show that
this field is a number field, ie of finite dimension overQ.

Lemma 2.1 SupposeK ⊂ C is a finite-dimensional vector space overQ. Then
K is a number field if and only if it is closed under multiplication.

Proof of LemmaB If K is a number field then it is certainly closed under multi-

plication.
Conversely, if this is so thenK is closed under addition and multiplication; so

we only have to show that it is closed under division by non-zero elements.
Supposeα ∈ V, α 6= 0. Consider the map

x 7→ αx : V → V.

This is a linear map overQ; and it is injective since

αx = 0 =⇒ x = 0.

SinceV is finite-dimensional it follows that the map is surjective; in particular,

αx = α

for somex ∈ V , ie
x = 1 ∈ V.

Moreover
αx = 1

for somex ∈ V , ieα is invertible. HenceV is a field. C

Now supposeαi is of degreedi (ie satisfies a polynomial equation of degree
di overQ). Consider the vector space (overQ)

V = 〈αi11 · · ·αirr : 0 ≤ i1 < d1, · · · , 0 ≤ ir < dr〉.

It is readily verified that
αiV ⊂ V,
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and so
V V ⊂ V,

ie V is closed under multiplication.
It follows that V is a field; and since any field containingα1, . . . , αr must

contain these products,V is the smallest field containingα1, . . . , αr. MoreoverV
is a number field since

dimQ V ≤ d1 · · · dr.

J

Definition 2.5 We denote the smallest field containingα1, . . . , αr ∈ C byQ(α1, . . . , αr).

Proposition 2.7 If α is an algebraic number of degreed then each elementγ ∈
Q(α) is uniquely expressible in the form

a0 + a1α + · · ·+ ad−1α
d−1 (a0, a1, . . . , ad−1 ∈ Q).

Proof I It follows as in the proof of Proposition 2.6 that these elements do con-
stitute the fieldQ(α). And if two of the elements were equal thenα would satisfy
an equation of degree< d, which could be made monic by dividing by the leading
coefficient. J

A number field of the formK = Q(α), ie generated by a single algebraic
numberα, is said to besimple. Our next result shows that, surprisingly, every
number field is simple. The proof is more subtle than might appear at first sight.

Proposition 2.8 Every number fieldK can be generated by a single algebraic
number:

K = Q(α).

Proof I It is evident that
K = Q(α1, . . . , αr);

for if we successively adjoin algebraic numbers

αi+1 ∈ K \Q(α1, . . . , αr)

then
dimQ(α1) < dimQ(α1, α2) dimQ(α1, α2, α3) <

and soK must be attained after at mostdimQK adjunctions.
Thus it is suffient to prove the result whenr = 2, ie to show that, for any two

algebraic numbersα, β,
Q(α, β) = Q(γ).

Let p(x) be the minimal polynomial ofα, andq(x) the minimal polynomial
of β. Supposeα1 = α, . . . , αm are the conjugates ofα andβ1 = β, . . . , βn the
conjugates ofβ. Let

γ = α + aβ,
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wherea ∈ Q is chosen so that themn numbers

αi + aβj

are all distinct. This is certainly possible, since

αi + aβj = αi′ + aβj′ ⇐⇒ a =
αi′ − αi
βj − βj′

.

Thusa has to avoid at mostmn(mn− 1)/2 values.
Since

α = γ − aβ,

and
p(α) = 0,

β satisfies the equation
p(γ − ax) = 0.

This is a polynomial equation over the fieldk = Q(γ).
But β also satisfies the equation

q(x) = 0.

It follows thatβ satisfies the equation

d(x) = gcd(p(γ − ax), q(x)) = 0.

Now
(x− β) | d(x)

sinceβ is a root of both polynomials. Also, since

d(x) | q(x) = (x− β1) · · · (x− βn),

d(x) must be the product of certain of the factors(x − βj). Suppose(x − βj) is
one such factor. Thenβj is a root ofp(γ − ax), ie

p(γ − aβj) = 0.

Thus
γ − aβj = αi

for somei. Hence
γ = αi + aβj.

But this implies thati = 1, j = 1, since we chosea so that the elements

αi + aβj

were all distinct.



374 2–7

Thus
d(x) = (x− β).

But if u(x), v(x) ∈ k[x] then we can computegcd(u(x), v(x)) by the eu-
clidean algorithm without leaving the fieldk, ie

u(x), v(x) ∈ k[x] =⇒ gcd(u(x), v(x)) ∈ k[x].

In particular, in our case

x− β ∈ k = Q(γ).

But this means that
β ∈ Q(γ);

and so also
α = γ − aβ ∈ Q(γ).

Thus
α, β ∈ Q(γ) =⇒ Q(α, β) ⊂ Q(γ) ⊂ Q(α, β).

Hence
Q(α, β) = Q(γ).

J

2.4 Algebraic integers

Definition 2.6 A numberα ∈ C is said to be analgebraic integerif it satisfies a
polynomial equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

with integral coefficientsai ∈ Z. We denote the set of algebraic integers byZ̄.

Proposition 2.9 The algebraic integers form a rinḡZ with

Z ⊂ Z̄ ⊂ Q̄.

Proof I Evidently
Z ⊂ Z̄,

sincen ∈ Z satisfies the equation

x− n = 0.

We have to show that

α, β ∈ Z̄ =⇒ α + β, αβ ∈ Z̄.
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Lemma 2.2 The numberα ∈ C is an algebraic integer if and only if there exists
a finitely-generated (but non-zero) additive subgroupS ⊂ C such that

αS ⊂ S.

Proof of LemmaB Supposeα ∈ Z̄; and suppose the minimal polynomial ofα is

m(x) = xd + a1x
d−1 + · · ·+ ad,

wherea1, . . . , ad ∈ Z. LetS be the abelian group generated by1, α, . . . , αd−1:

S = 〈1, α, . . . , αd−1〉.

Then it is readily verified that
αS ⊂ S.

Conversely, supposeS is such a subgroup. C
If α is a root of the monic polynomialf(x) then−α is a root of the monic

polynomialf(−x). It follows that ifα is an algebraic integer then so is−α. Thus
it is sufficient to show that ifα, β are algebraic integers then so areα + β, αβ.

Supposeα satisfies the equation

f(x) ≡ xm + a1x
m−1 + · · ·+ am = 0 (a1, . . . , am ∈ Z),

andβ the equation

g(x) ≡ xn + b1x
n−1 + · · ·+ bn = 0 (b1, . . . , bn ∈ Z).

Consider the abelian group (orZ-module)

M = 〈αiβj : 0 ≤ i < m, 0 ≤ j < n〉

generated by themn elementsαiβj. Evidently

α + β, αβ ∈ V.

As a finitely-generated torsion-free abelian group,M is isomorphic toZd for
somed. MoreoverM is noetherian, ie every increasing sequence of subgroups of
M is stationary: if

S1 ⊂ S2 ⊂ S3 · · · ⊂M

then for someN ,
SN = SN+1 = SN+2 = · · · .

Supposeθ ∈M . Consider the increasing sequence of subgroups

〈1〉 ⊂ 〈1, θ〉 ⊂ 〈1, θ, θ2〉 ⊂ · · · .

This sequence must become stationary; that is to say, for someN

θN ∈ 〈1, θ, . . . , θN−1〉.

In other words,θ satisfies an equation of the form

θN = a1θ
N−1 + a2θ

N−2 + · · · .

Thus everyθ ∈M is an algebraic integer. In particularα+β andαβ are algebraic
integers. J
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Proposition 2.10 A rational numberc ∈ Q is an algebraic integer if and only if
it is a rational integer:

Z̄ ∩Q = Z.

Proof I Supposec = m/n, wheregcd(m,n) = 1; and supposec satisfies the
equation

xd + a1x
d−1 + · · ·+ ad = 0 (ai ∈ Z).

Then
md + a1m

d−1n+ · · ·+ adn
d = 0.

Sincen divides every term after the first, it follows thatn | md. But that is
incompatible withgcd(m,n) = 1, unlessn = 1, ie c ∈ Z. J

Proposition 2.11 Every algebraic numberα is expressible in the form

α =
β

n
,

whereβ is an algebraic integer, andn ∈ Z.

Proof I Let the minimal polynomial ofα be

m(x) = xd + a1x
d−1 + · · ·+ ad,

wherea1, . . . , ad ∈ Q. Let thelcm of the denominators of theai ben. Then

bi = nai ∈ Z (1 ≤ i ≤ d).

Now α satisfies the equation

nxd + b1x
d−1 + · · ·+ bd = 0.

It follows that
β = nα

satisfies the equation

xd + b1x
d−1 + (nb2)xd−2 + · · ·+ (nd−1bd = 0.

Thusβ is an integer, as required.J
The following result goes in the opposite direction.

Proposition 2.12 Supposeα is an algebraic integer. Then we can find an alge-
braic integerβ 6= 0 such that

αβ ∈ Z.
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Proof I Let the minimal polynomial ofα be

m(x) = xd + a1x
d−1 + · · ·+ ad,

wherea1, . . . , ad ∈ Z. Recall that the conjugates ofα,

α1 = α, . . . , αd

are the roots of the minimal equation.
Each of these conjugates is an algebraic integer, since its minimal equation

m(x) has integer coefficients. Hence

β = α2 · · ·αd

is an algebraic integer; and

αβ = α1α2 · · ·αd = ±ad ∈ Z.

J

2.5 Units

Definition 2.7 A numberα ∈ C is said to be aunit if bothα and1/α are alge-
braic integers.

Any root of unity, ie any number satisfyingxn = 1 for somen, is a unit.
But these are not the only units; for example,

√
2− 1 is a unit.

The units form a multiplicative subgroup ofQ̄×.

2.6 The Integral Basis Theorem

Proposition 2.13 SupposeA is a number ring. Then we can findγ1, . . . , γd ∈ A
such that eachα ∈ A is uniquely expressible in the form

α = c1γ1 + cdγd

with c1, . . . , cd ∈ Z.

In other words, as an additive group

A ∼= Z
d.

We may say thatγ1, . . . , γd is aZ-basisfor A.

Proof I SupposeA is the ring of integers in the number fieldK. By Proposi-
tion 2.8,

K = Q(α).
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By Proposition 2.12,

α =
β

m
,

whereβ ∈ Z̄, m ∈ Z. Since

Q(β) = Q(α),

we may suppose thatα is an integer.
Let

m(x) = xd + a1x
d−1 + · · ·+ ad

be the minimal polynomial ofα; and let

α1 = α, . . . , αd

be the roots of this polynomial, ie the conjugates ofα.
Note that these conjugates satisfy exactly the same set of polynomials overQ;

for
p(α) = 0⇐⇒ m(x) | p(x)⇐⇒ p(αi) = 0.

Now supposeβ ∈ A. Then

β = b0 + b1α + · · · bd−1α
d−1,

whereb0, . . . , bd−1 ∈ Q, say
β = f(α)

with f(x) ∈ Q[x].
Let

βi = b0 + b1αi + · · · bd−1α
d−1
i

for i = 1, . . . , d.
Eachβi satisfies the same set of polynomials overQ asβ. for

p(β) = 0⇐⇒ p(f(α)) = 0⇐⇒ p(f(αi)) = 0⇐⇒ p(βi) = 0.

In particular, eachβi has the same minimal polynomial asβ, and so eachβi is an
integer.

We may regard the formulae for theβi as linear equations for the coefficients
b0, . . . , bd−1:

b0 + α1b1 + · · ·αd−1bd−1 = β1,

. . .

b0 + αdb1 + · · ·αd−1
d bd−1 = βd.

We can write this as a matrix equation

D


b0
...

bd−1

 =


β1
...
βd


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whereD is the matrix

D =


1 α1 . . . αd−1

1
... . . . . . .

...
1 αd . . . αd−1

d .


By a familiar argument,

det


1 x1 . . . xd−1

1
... . . . . . .

...
1 xd . . . xd−1

d

 =
∏
i<j

(xi − xj).

(The determinant vanishes wheneverxi = xj since then two rows are equal.
Hence(xi − xj) is a factor for each pairi, j; from which the result follows on
comparing degrees and leading coefficients.)

Thus
detD =

∏
i<j

(αi − αj).

In particular,detD is an integer.
On solving the equations forb0, . . . , bd−1 by Cramer’s rule, we deduce that

bi =
βi

detD
,

whereβi is a co-factor of the matrixD, and so a polynomial inα1, . . . , αd with
coefficients inZ, and therefore an algebraic integer.

By Proposition 2.12, we can find an integerδ such that

δ detD = n ∈ Z,

where we may suppose thatn > 0. Thus eachbi is expressible in the form

bi =
γi
n
,

where
γi ∈ Z̄ ∩Q = Z.

In other words, eachβ ∈ A is expressible in the form

β = coδ0 + · · ·+ cd−1δd−1,

where

δi =
αi

n
and

ci ∈ Z (0 ≤ i < d).

The elements
coδ0 + · · ·+ cd−1δd−1 (ci ∈ Z)

form a finitely-generated and torsion-free abelian groupC, of rankd; andA is
a subgroup ofC of finite index. We need the following standard result from the
theory of finitely-generated abelian groups.
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Lemma 2.3 If
S ⊂ Zd

is a subgroup of finite index then

S ∼= Z
d

Proof of LemmaB We have to construct aZ-basis forS. We argue by induction

ond.
Choose an element

e = (e1, . . . , ed) ∈ S

with least positive last coordinateed. Suppose

s = (s1, . . . , sd) ∈ S.

Then
sd = qe,

or we could find an element ofS with smaller last coordinate. Thus

s− qe = (t1, . . . , td−1, 0).

Hence
S = Ze⊕ T,

where
T = S ∩ Zd−1

(identifyingZd−1 with the subgroup ofZd formed by thed-tuples with last coor-
dinate0).

The result follows on applying the inductive hypothesis toT . C

The Proposition follows on applying the Lemma to

A ⊂ C ∼= Z
d.

J

2.7 Unique factorisation in number rings

As we saw in Chapter 1, a principal ideal domain is a unique factorisation domain.
The converse is not true; there is unique factorisation inZ[x], but the ideal〈2, x〉
is not principal. Our main aim in this Section is to show that the conversedoes
hold for number ringsA:

A principal ideal domain⇐⇒ A unique factorisation domain.

We suppose throughout the Section thatA is a number ring, ie the ring of
integers in a number fieldK.
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Proposition 2.14 Supposea ⊂ A is a non-zero ideal. Then the quotient-ring

A/a

is finite.

Proof I Takeα ∈ a, α 6= 0. By Proposition 1.8, we can findβ ∈ A, β 6= 0 such
that

a = αβ ∈ Z.
We may suppose thata > 0. Then

〈a〉 ⊂ 〈α〉 ⊂ a.

Thus
α ≡ β mod a =⇒ α ≡ β mod a.

By Proposition 2.13,A has an integral basisγ1, . . . , γd, ie eachα ∈ A is
(uniquely) expressible in the form

α = c1γ1 + · · ·+ cdγd

with c1, . . . , cd ∈ Z. It follows thatα is congruentmoda to one of the numbers

r1γ1 + rdγd (0 ≤ ri < a).

Thus
‖A/〈a〉‖ = ad.

Hence
‖A/a‖ ≤ ad.

J

Proposition 2.15 The number ringA is a unique factorisation domain if and only
if it is a principal ideal domain.

Proof IWe know from Chapter 1 that

A principal ideal domain=⇒ A unique factorisation domain.

We have to proce the converse.
Let us suppose therefore that the number ringA is a unique factorisation do-

main.

Lemma 2.4 Suppose

α = επe11 · · ·πerr , β = ε′πf1
1 · · ·πfrr .

Let
δ = π

min(e1,f1)
1 · · ·πmin(er,fr)

r .

Then
δ = gcd(α, β)

in the sense that

δ | α, δ | β and δ′ | α, δ | β =⇒ δ′ | δ.
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Proof of LemmaB This follows at once from unique factorisation.C

Lemma 2.5 If
β1 ≡ β2 mod α

then
gcd(α, β1) = gcd(α, β2).

Proof of LemmaB It is readily verified that if

β1 = β2 + αγ

then
δ | α, β1 ⇐⇒ δ | α, β2.

C

We say thatα, β arecoprimeif

gcd(α, β) = 1.

It follows from the Lemma that we may speak of a congruence classβ̄ mod α
being coprime toα.

Lemma 2.6 The congruence classesmodα coprime toα form a multiplicative
group

(A/〈α〉)× .

Proof of LemmaBWe have

gcd(α, β1β2) = 1⇐⇒ gcd(α, β1) = 1, gcd(α, β2) = 1.

Thus(A/〈α〉)× is closed under multiplication; and ifβ is coprime toα then the
map

γ̄ 7→ β̄γ̄ : (A/〈α〉)× → (A/〈α〉)×

is injective, and so surjective sinceA/〈α〉 is finite. Hence(A/〈α〉)× is a group.
C

Lemma 2.7 Suppose
gcd(α, β) = δ.

Then we can findu, v ∈ A such that

αu + βv = δ.
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Proof of LemmaBWe may suppose, on dividing byδ, that

gcd(α, β) = 1,

and so
β̄ ∈ (A/〈α〉)× .

Since this group is finite,
β̄n = 1

for somen > 0. In other words,

βn ≡ 1 mod α,

ie

βn = 1 + αγ,

ie

αu + βv = 1

with u = −γ, v = βn−1. C

We can extend the definition ofgcd to any set (finite or infinite) of numbers

αi ∈ A (i ∈ I).

and by repeated application of the last Lemma we can findβi (all but a finite
number equal to 0) such that∑

i∈I
αiβi = gcd

i∈I
(αi).

Applying this to the ideala, let

δ = gcd
α∈a

(α).

Then
δ =

∑
αiβi ∈ a;

and so
a = 〈δ〉.

J



Chapter 3

Quadratic Number Fields

3.1 The fieldsQ(
√
m)

Definition 3.1 A quadratic fieldis a number field of degree 2.

Recall that this means the fieldk has dimension 2 as a vector space overQ:

dimQ k = 2.

Definition 3.2 The integerm ∈ Z is said to besquare-freeif

m = r2s =⇒ r = ±1.

Thus
±1,±2,±3,±5,±6,±7,±10,±11,±13, . . .

are square-free.

Proposition 3.1 Each quadratic field is of the formQ(
√
m) for a unique square-

free integerm 6= 1.

Recall thatQ(
√
m) consists of the numbers

x+ y
√
m (x, y ∈ Q).

Proof I Supposek is a quadratic field. Letα ∈ k \Q. Thenα2, α, 1 are linearly
dependent overQ, sincedimQ k = 2. In other words,α satisfies a quadratic
equation

a0α
2 + a1α + a2 = 0

with a0, a1, a2 ∈ Q. We may assume thata0, a1, a2 ∈ Z. Then

α =
−a1 +

√
a2

1 − 4a0a2

2a0

3–1
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Thus √
a2

1 − 4a0a2 = 2a0α + a1 ∈ k.
Let

a2
1 − 4a0a2 = r2m

wherem is square-free. Then

√
m =

1

r

√
a2

1 − 4a0a2 ∈ k.

Thus
Q ⊂ Q(

√
m) ⊂ k.

SincedimQ k = 2,
k = Q(

√
m).

To see that different square-free integersm1,m2 give rise to different quadratic
fields, suppose

√
m1 ∈ Q(

√
m2),

say

m1 = x+ y
√
m2 (x, y ∈ Q)

Squaring,
m1 = x2 +m2y

2 + 2xy
√
m2.

Thus eitherx = 0 or y = 0 or √
m2 ∈ Q,

all of which are absurd. J
When we speak of the quadratic fieldQ(

√
m) it is understood thatm is a

square-free integer6= 1.

Definition 3.3 The quadratic fieldQ(
√
m) is said to bereal if m > 0, and imag-

inary if m < 0.

This is a natural definition since it means thatQ(
√
m) is real if and only if

Q(
√
m) ⊂ R.

3.2 Conjugates and norms

Proposition 3.2 The map

x+ y
√
m 7→ x− y

√
m

is an automorphism ofQ(
√
m); and it is the only such automorphism apart from

the identity map.
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Proof I The map clearly preserves addition. It also preserves multiplication, since

(x+ y
√
m)(u+ v

√
m = (xu+ yvm) + (xv + yu)

√
m,

and so
(x− y

√
m)(u− v

√
m = (xu+ yvm)− (xv + yu)

√
m.

Since the map is evidently bijective, it is an automorphism.
Conversely, ifθ is an automorphism ofQ(

√
m) thenθ preserves the elements

of Q; in fact if α ∈ Q(
√
m) then

θ(α) = α⇐⇒ α ∈ Q.

Thus
θ(
√
m)2 = θ(m) = m =⇒ θ(

√
m) = ±

√
m,

giving the identity automorphism and the automorphism above.J

Definition 3.4 If
α = x+ y

√
m (x, y ∈ Q)

then we write
ᾱ = x− y

√
m (x, y ∈ Q)

and we callᾱ theconjugateof α.

Note that ifQ(
√
m) is imaginary (iem < 0) then the conjugatēα coincides

with the usual complex conjugate.

Definition 3.5 We define the norm‖α‖ of α ∈ Q(
√
m) by

‖α‖ = αᾱ.

Thus if
α = x+ y

√
m (x, y ∈ Q)

then
‖α‖ = (x+ y

√
m)(x− y

√
m) = x2 −my2.

Proposition 3.3 1. ‖α‖ ∈ Q;

2. ‖(‖α = 0⇐⇒ α = 0;

3. ‖αβ‖ = ‖α‖‖β‖;

4. If a ∈ Q then‖a‖ = a2;

5. Ifm < 0 then‖α‖ ≥ 0.

Proof I All is clear except perhaps the third part, where

‖αβ‖ = (αβ)(αβ)

= (αβ)(ᾱβ̄)

= (αᾱ)(ββ̄)

= ‖α‖‖β‖.

J
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3.3 Integers

Proposition 3.4 Supposek = Q(
√
m), wherem 6= 1 is square-free.

1. Ifm 6≡ 1 mod 4 then the integers ink are the numbers

a+ b
√
m,

wherea, b ∈ Z.

2. Ifm ≡ 1 mod 4 then the integers ink are the numbers

a

2
+
b

2

√
m,

wherea, b ∈ Z and
a ≡ b mod 2,

ie a, b are either both even or both odd.

Proof I Suppose
α = a+ b

√
m ( b ∈ Q)

is an integer. Recall that an algebraic numberα is an integer if and only if its
minimal polynomial has integer coefficients. Ify = 0 the minimal polynomial of
α is x − a. Thusα = a is in integer if and only ifa ∈ Z (as we know of course
sinceZ̄ ∩Q = Z).

If y 6= 0 then the minimal polynomial ofα is

(x− a)2 −mb2 = x2 − 2ax+ (a2 −mb2).

Thusα is an integer if and only if

2a ∈ Z and a2 −mb2 ∈ Z.

Suppose2a = A, ie

a =
A

2
.

Then

4a2 ∈ Z, a2 −mb2 ∈ Z =⇒ 4mb2 ∈ Z
=⇒ 4b2 ∈ Z
=⇒ 2b ∈ Z

sincem is square-free. Thus

b =
B

2
,

whereB ∈ Z.
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Now

a2 −mb2 =
A2 −mB2

4
∈ Z,

ie

A2 −mB2 ≡ 0 mod 4.

If A is even then

2 | A =⇒ 4 | A2 =⇒ 4 | mB2 =⇒ 2 | B2 =⇒ 2 | B;

and similarly
2 | B =⇒ 4 | B2 =⇒ 4 | A2 =⇒ 2 | A.

ThusA,B are either both even, in which casea, b ∈ Z, or both odd, in which case

A2, B2 ≡ 1 mod 4,

so that

1−m ≡ 0 mod 4,

ie

m ≡ 1 mod 4.

Conversely ifm ≡ 1 mod 4 then

A,B odd =⇒ A2 −mB2 ≡ 0 mod 4

=⇒ a2 −mb2 ∈ Z.

J

It is sometimes convenient to express the result in the following form.

Corollary 3.1 Let

ω =


√
m if m 6≡ 1 mod 4,

1+
√
m

2
if m ≡ 1 mod 4.

Then the integers inQ(
√
m) form the ringZ[ω].

Examples:

1. The integers in the gaussian fieldQ(i) are the gaussian integers

a+ bi (a, b ∈ Z)
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2. The integers inQ(
√

2) are the numbers

a+ b
√

2 (a, b ∈ Z).

3. The integers inQ(
√
−3) are the numbers

a+ bω (a, b ∈ Z)

where

ω =
1 +
√
−3

2
.

Proposition 3.5 If α ∈ Q(
√
m) is an integer then

‖α‖ ∈ Z.

Proof I If α is an integer then so is its conjugateᾱ (sinceα, ᾱ satisfy the same
polynomial equations overQ). Hence

‖α‖ ∈ Z̄ ∩Q = Z.

J

3.4 Units

Proposition 3.6 An integerε ∈ Q(
√
m) is a unit if and only if

‖ε‖ = ±1.

Proof I Supposeε is a unit, say

εη = 1.

Then
‖ε‖‖η‖ = ‖1‖ = 1.

Hence
‖ε‖ = ±1.

Conversely, suppose

‖ε‖ = ±1,

ie

εε̄ = ±1.

Then
ε−1 = ±ε̄

is an integer, ieε is a unit. J
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Proposition 3.7 An imaginary quadratic number field contains only a finite num-
ber of units.

1. The units inQ(i) are±1,±i;

2. The units inQ(
√
−3) are±1,±ω,±ω2, whereω = (1 +

√
−3)/2.

3. In all other cases the imaginary quadratic number fieldQ(
√
m) (where

m < 0) has just two units,±1.

Proof IWe know of course that±1 are always units.
Suppose

ε = a+ b
√
m

is a unit. Then
N)ε) = a2 + (−m)b2 = 1

by Proposition 3.6. In particular

(−m)b2 ≤ 1.

If m ≡ 3 mod 4 thena, b ∈ Z; and sob = 0 unlessm = −1 in which case
b = ±1 is a solution, givinga = 0, ie ε = ±i.

If m ≡ 1 mod 4 thenb may be a half-integer, ieb = B/2, and

(−m)b2 = (−m)B2/4 > 1

if B 6= 0, unlessm = −3 andB = ±1, in which caseA = ±1. Thus we get four
additional units inQ(

√
−3), namely±ω,±ω2. J

Proposition 3.8 Every real quadratic number fieldQ(
√
m) (wherem > 0) con-

tains an infinity of units. More precisely, there is a unique unitη > 1 such that the
units are the numbers

±ηn (n ∈ Z)

Proof I The following exercise in the pigeon-hole principle is due to Kronecker.

Lemma 3.1 Supposeα ∈ R. There are an infinity of integersm,n with m > 0
such that

|mα− n| < 1

n
.

Proof of LemmaB Let {x} denote the fractional part ofx ∈ R. Thus

{x} = x− [x],

where[x] is the integer part ofx.
SupposeN is a positive integer. Let us divide[0, 1) intoN equal parts:

[0, 1/N), [1/N, 2/N), . . . , [(N − 1)/N, 1).
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Consider how theN + 1 fractional parts

{0}, {α}, {2α}, . . . , {Nα}

fall into theseN divisions.
Two of the fractional parts — say{rα} and{sα}, wherer < s — must fall

into the same division. But then

|{sα} − {rα}| < 1/N,

ie

|(sα− [sα])− (rα− [rα])| < N.

Let
m = s− r, n = [sα]− [rα].

Then
|mα− n| < 1/N ≤ 1/m.

C

Lemma 3.2 There are an infinity ofa, b ∈ Z such that

|a2 − b2m| < 2
√
m+ 1.

Proof of LemmaBWe apply Kronecker’s Lemma above withα =
√
m. There are

an infinity of integersa, b > 0 such that

|a− b
√
m| < 1/b.

But then
a < b

√
m+ 1,

and so
a+ b

√
m < 2b

√
m+ 1

Hence

|a2 − b2m| = (a+ b
√
m)|a− b

√
m|

< (2b
√
m+ 1)/b

≤ 2
√
m+ 1.

C

It follows from this lemma that there are an infinity of integer solutions of

a2 − b2m = d

for some
d < 2

√
m+ 1.

But then there must be an infinity of these solutions(a, b) with the same re-
maindersmodd.
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Lemma 3.3 Suppose

α1 = a1 + b1

√
m, α2 = a2 + b2

√
m,

where
a2

1 − b2
1 = d = a2

2 − b2
2

and
a1 ≡ a2 mod d, b1 ≡ b2 mod d.

Then
α1

α2

is an algebraic integer.

Proof of LemmaB Suppose

a2 = a1 +mr, b2 = b1 +ms.

Then
α2 = α1 + dβ,

where
β = r + s

√
m.

Hence

α1

α2

=
α1ᾱ2

α2ᾱ2

=
α1ᾱ2

d

=
α1(ᾱ1 + dβ̄)

d

=
α1ᾱ1

d
+ β̄

=
d

d
+ β

= 1 + β,

which is an integer. C
Now suppose(a1, b1), (a2, b2) are two such solutions. Then

ε =
α1

α2

is an integer, and

‖ε‖ =
‖α1‖
‖α2‖

=
d

d
= 1.

Henceε is a unit, by Proposition 3.6.
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Since there are an infinity of integersα satisfying these conditions, we obtain
an infinity of units if we fixα1 and letα2 vary. In particular there must be a unit

ε 6= ±1.

Just one of the four units
±ε, ±ε−1

must lie in the range(1,∞). (The others are distributes one each in the ranges
(−∞,−1), (−1, 0) and(0, 1).)

Suppose then that
ε = a+ b

√
m > 1.

Then
|ε−1| < 1,

and so

ε̄ = ±ε−1 ∈ (−1, 1),

ie

−1 < a− b
√
m < 1.

Adding these two inequalities,

0 < 2a,

ie

a > 0.

On the other hand,
ε > ε̄ =⇒ b > 0.

It follows that there can only be a finite number of units in any range

1 < ε ≤ c.

In particular, ifε > 1 is a unit, then there is a smallest unitη in the range

1 < η ≤ ε.

Evidentlyη is the least unit in the range

1 < η.

Now supposeε is a unit6= ±1. As we observed, one of the four units±ε,±ε−1

must lie in the range(1,∞). We can take this in place ofε, ie we may assume that

ε > 1.
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Sinceηn →∞,
ηr ≤ ε < ηr+1

for somer ≥ 1. Hence
1 ≤ εη−r < η.

Sinceη is the smallest unit> 1, this implies that

εη−1 = 1,

ie

ε = ηr.

J

3.5 Unique factorisation

SupposeA is an integral domain. Recall that ifA is aprincipal ideal domain, ie
each idealA ⊂ A can be generated by a single elementa,

a = 〈a〉,

thenA is aunique factorisation domain, ie eacha ∈ A is uniquely expressible —
up to order, and equivalence of primes — in the form

a = επe11 · · ·πerr ,

whereε is a unit, andπ1, . . . , πr are inequivalent primes.
We also showed that ifA is the ring of integers in an algebraic number fieldk

then the converse is also true, ie

A principal ideal domain⇐⇒ A unique factorisation domain.

Proposition 3.9 The ring of integersZ[ω] in the quadratic fieldQ(
√
m is a prin-

cipal ideal domain (and so a unique factorisation domain) if

m = −11,−7,−3,−2,−1, 2, 3, 5, 13.

Proof IWe take
|‖α‖|

as a measure of the size ofα ∈ Z[ω].

Lemma 3.4 Supposeα, β ∈ Z[ω[, with β 6= 0. Then there existγ, ρ ∈ Z[ω] such
that

α = βγ + ρ

with
|‖ρ‖| < |‖β‖|.

In other words, we can divideα byβ, and get a remainderρ smaller thanβ.
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Proof of LemmaB Let
α

β
= x+ y

√
m

wherex, y ∈ Q.
Suppose first thatm 6≡ 1 mod 4. We can find integersa, b such that

|x− a|, |y − b| ≤ 1

2
.

Let
γ = a+ b

√
m.

Thenγ ∈ Z[ω]; and

α

β
− γ = (x− a) + (y − b)

√
m.

Thus
‖α
β
− γ‖ = (x− a)2 −m(y − b)2.

If now m < 0 then

0 ≤ ‖α
β
− γ‖ ≤ 1 +m

4
,

yielding

|‖α
β
− γ‖| < 1

if m = −2 or − 1; while if m > 0 then

−m
4
≤ ‖α

β
− γ‖ ≤ 1

4
,

yielding

|‖α
β
− γ‖| < 1

if m = 2 or 3.
On the other hand, ifm ≡ 1 mod 4 then we can choosea, b to be integers or

half-integers. Thus we can chooseb so that

‖y − b‖ ≤ 1

4
;

and then we can choosea so that

‖x− a‖ ≤ 1

2
.

(Note thata must be an integer or half-integer according asb is an integer or
half-integer; so we can only choosea to within an integer.)

If m < 0 this gives

0 ≤ ‖α
β
− γ‖ ≤ 4 +m

16
,
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yielding

|‖α
β
− γ‖| < 1

if m = −11,−7 or − 3; while if m > 0 then

−m
16
≤ ‖α

β
− γ‖ ≤ 1

4
,

yielding

|‖α
β
− γ‖| < 1

if m = 5 or 13.
Thus in all the cases listed we can findγ ∈ Z[ω] such that

|‖α
β
− γ‖| < 1

Multiplying by β,
|‖α− βγ‖| < |‖β‖|,

which gives the required result on setting

ρ = α− βγ,

ie

α = βγ + ρ.

C

Now supposea 6= 0 is an ideal inZ[ω]. Let α ∈ a (α 6= 0) be an element
minimising |‖α‖|. (Such an element certainly exists, since|‖α‖| is a positive
integer.)

Now supposeβ ∈ a. By the lemma we can findγ, ρ ∈ Z[ω] such that

β = αγ + ρ

with
|‖ρ‖| < |‖α‖|.

But
ρ = β − αγ ∈ a.

Thus by the minimality of|‖α‖|,

‖α‖ = 0 =⇒ ρ = 0

=⇒ β = αγ

=⇒ β ∈ 〈α〉.

Hence
a = 〈α〉.

J

Remarks:
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1. We do not claim that these are theonly cases in whichQ(
√
m) — or rather

the ring of integers in this field — is a unique factorisation domain. There
are certainly otherm for which it is known to hold; and in fact is not known
if the number of suchm is finite or infinite. But the result is easily estab-
lished for them listed above.

2. On the other hand, unique factorisation fails in many quadratic fields. For
example, ifm = −5 then

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

Now 2 is irreducible inZ[
√

5], since

a2 + 5b2 = 2

has no solution in integers. Thus if there were unique factorisation then

2 | 1 +
√
−5 or 2 | 1−

√
−5,

both of which are absurd.

As an example of a real quadratic field in which unique factorisation fails,
considerm = 10. We have

6 = 2 · 3 = (4 +
√

10)(4−
√

10)

The prime 2 is again irreducible; for

a2 − 10b2 = ±2

has no solution in integers, since neither±2 is a quadratic residuemod
10. (The quadratic residuesmod10 are0,±1,±4, 5.) Thus if there were
unique factorisation we would have

2 | 4 +
√

10 or 2 | 4−
√

10,

both of which are absurd.

3.6 The splitting of rational primes

Throughout n this section we shall assume thatthe integersZ[ω] in Q(
√
m) form

a principal ideal domain(and so a unique factorisation domain).

Proposition 3.10 Let p ∈ N be a rational prime. Thenp either remains a prime
in Z[ω], or else

p = ±ππ̄,

whereπ is a prime inZ[ω]. In other words,p has either one or two prime factors;
and if it has two then these are conjugage.
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Proof I Suppose
p = επ1 · · ·πr.

Then
‖π1‖ · · · ‖πr‖ = ‖p‖ = p2.

Since‖πi‖ is an integer6= 1, it follows that eitherr = 1, ie p remains a prime, or
elser = 2 with

‖π1‖ = ±p, ‖π2‖ = ±p.

In this case, writingπ for π1,

p = ±‖π‖ = ±ππ̄.

J

We say thatp splits in Q(
√
m) in the latter case, ie ifp divides into two prime

factors inZ[ω]. We say thatp ramifiesif these two prime factors are equal, ie if

p = επ2,

Corollary 3.2 The rational primep ∈ N splits if and only if there is an integer
α ∈ Z[ω] with

‖α‖ = ±p.

Proposition 3.11 Supposep ∈ N is an odd prime withp - m. Thenp splits in
Q(
√
m) if and only ifm is a quadratic residuemodp, ie if and only if

x2 ≡ m mod p

for somex ∈ Z.

Proof I Suppose
x2 ≡ m mod p.

Then
(x−

√
m)(x+

√
m) = pq

for someq ∈ Z.
If now p is prime inZ[ω] (where it is assumed, we recall, that there is unique

factorisation). Then

p | x−
√
m or p | x+

√
m,

both of which are absurd, since for example

p | x−
√
m =⇒ x−

√
m = p(a+ b

√
m)

=⇒ pb = −1,

whereb is (at worst) a half-integer. J
It remains to consider two cases,p | m andp = 2.
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Proposition 3.12 If the rational primep | m thenp ramifies inQ(
√
m).

Proof IWe have
(
√
m)2 = m = pq,

for someq ∈ Z. If p remains prime then

p |
√
m =⇒ ‖p‖ | ‖

√
m‖

=⇒ p2 | −m,

which is impossible, sincem is square-free.
Hence

p = ±ππ̄,

and √
m = πα

for someα ∈ Z[ω]. Note thatα cannot contain̄π as a factor, since this would
imply that

p = ±ππ̄ |
√
m,

which as we have seen is impossible.
Taking conjugates

−
√
m = π̄ᾱ.

Thus
π̄ |
√
m.

Since the factorisation of
√
m is (by assumption) unique,

π̄ ∼ π,

ie p ramifies. J

Proposition 3.13 The rational prime 2 remains prime inZ[ω] if and only if

m ≡ 5 mod 8.

Moreover, 2 ramifies unless
m ≡ 1 mod 4.

Proof I We have dealt with the case where2 | m, so we may assume thatm is
odd.

Suppose first that
m ≡ 3 mod 4.

In this case
(1−

√
m)(1 +

√
m) = 1−m = 2q.
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If 2 does not split then

2 | 1−
√
m or 2 | 1 +

√
m,

both of which are absurd.
Thus

2 = ±ππ̄,

where
π = a+ b

√
m (a, b ∈ Z),

say. But then
π̄ = a− b

√
m = π + 2b

√
m.

Sinceπ | 2 is follows that
π | π̄;

and similarly
π̄ | π.

Thus
π̄ = επ,

whereε is a unit; and so 2 ramifies.
Now suppose

m ≡ 1 mod 4.

Suppose 2 splits, say
a2 −mb2 = ±2,

wherea, b are integers or half-integers. Ifa, b ∈ Z then

a2 −mb2 ≡ 0,±1 mod 4,

sincea2, b2 ≡ 0 or 1 mod 4.
Thusa, b must be half-integers, saya = A/2, b = B/2, whereA,B are odd

integers. In this case,
A2 −mB2 = ±8.

Hence
A2 −mB2 ≡ 0 mod 8

But
A2 ≡ B2 ≡ 1 mod 8,

and so
A2 −mB2 ≡ 1−m mod 8.

Thus the equation is insoluble if

m ≡ 5 mod 8,

ie 2 remains prime in this case.
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Finally, if
m ≡ 1 mod 8

then
1−
√
m

2
· 1 +

√
m

2
=

1−m
4

= 2q.

If 2 does not split then

2 | 1−
√
m

2
or 2 | 1 +

√
m

2
,

both of which are absurd.
Suppose

2 = ±ππ̄,

where

π =
A+B

√
m

2
,

with A,B odd; and

π̄ =
A−B

√
m

2
= π −B

√
m.

Thus

π | π̄ =⇒ π | B
√
m

=⇒ ‖π‖ | ‖B
√
m‖

=⇒ ±2 | B2m,

which is impossible sinceB,m are both odd. Hence 2 is unramified in this case.
J

3.7 Quadratic residues

Definition 3.6 Supposep is an odd rational prime; and supposea ∈ Z. Then the
Legendre symbol is defined by

(
a

p

)
=


0 if p | a
1 if p - a anda is a quadratic residuemodp

−1 if a is a quadratic non-residuemodp

Proposition 3.14 Supposep is an odd rational prime; and supposea, b ∈ Z.
Then (

a

p

)(
b

p

)
=

(
ab

p

)
.
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Proof I The resul is trivial ifp | a or p | b; so we may suppose thatp - a, b.
Consider the group-homomorphism

θ : (Z/p)× → (Z/p)× : x̄ 7→ x̄2.

Since
ker θ = {±1}

it follows from the First Isomorphism Theorem that

|im θ| = p− 1

2
,

and so
(Z/p)×/ im θ ∼= C2 = {±1}.

The result follows, since

im θ = {ā ∈ (Z/p)× :

(
a

p

)
= 1}.

J

Proposition 3.15 Supposep is an odd rational prime; and supposea ∈ Z. Then

a(p−1)/2 ≡
(
a

p

)
mod p.

Proof I The resul is trivial ifp | a; so we may suppose thatp - a.
By Lagrange’s Theorem (or Fermat’s Little Theorem)

ap−1 ≡ 1 mod p.

Thus (
a(p−1)/2

)2
≡ 1 mod p;

and so
a(p−1)/2 ≡ ±1 mod p.

Supposea is a quadratic residue, say

a ≡ b2 mod p.

Then
a
p−1

2 ≡ bp−1 ≡ 1 mod p.

Thus (
a

p

)
= 1 =⇒ a

p−1
2 ≡ 1 mod p.
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As we saw in the proof of Proposition 3.14, exactly half, iep−1
2

of the numbers
1, 2, . . . , p− 1 are quadratic residues. On the other hand, the equation

x
p−1

2 − 1 = 0

over the fieldFp = Z/(p) has at mostp−1
2

roots. It follows that(
a

p

)
= 1⇐⇒ a

p−1
2 ≡ 1 mod p;

and so (
a

p

)
≡ a

p−1
2 mod p;

J

Corollary 3.3 If p ∈ N is an odd rational prime then

(
−1

p

)
=

1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.

Proof I By the Proposition,(
−1

p

)
≡ (−1)

p−1
2 mod p.

If

p ≡ 1 mod 4,

say

p = 4m+ 1,

then

p− 1

2
= 2m;

while if

p ≡ 3 mod 4,

say

p = 4m+ 3,
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then

p− 1

2
= 2m+ 1.

J

It is sometimes convenient to take the remainderr ≡ a mod p in the range

−p
2
< r <

p

2
.

We may say thata hasnegative remaindermodp if

−p
2
< r < 0.

Thus13 has negative remaindermod7, since

13 ≡ −1 mod 7.

Proposition 3.16 Supposep ∈ N is an odd rational prime; and supposep - a.
Then (

a

p

)
= (−1)µ,

whereµ is the number of numbers among

1, 2a, . . . ,
p− 1

2
a

with negative remainders.

Suppose, for example,p = 11, a = 7. Then

7 ≡ −4, 14 ≡ 3, 21 ≡ −1, 28 ≡ −5, 35 ≡ 2 mod 11.

Thus
µ = 3.

Proof I Suppose

1 ≤ r ≤ p− 1

2
.

Then just one of the numbers

a, 2a, . . .
p− 1

2
a

has remainder±r.
For suppose

ia ≡ r mod p, ja ≡ −r mod p.

Then
(i+ j)a ≡ 0 mod p =⇒ p | i+ j
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which is impossible since
1 ≤ i+ j ≤ p− 1.

It follows (by the Pigeon-Hole Principle) that just one of the congruences

ia ≡ ±r mod p (1 ≤ i ≤ p− 1

2
)

is soluble for each r.
Multiplying together these congruences,

a · 2a · · · p− 1

2
a ≡ (−1)µ1 · 2 · · · p− 1

2
mod p,

ie

a
p−1

2 1 · 2 · · · p− 1

2
≡ (−1)µ1 · 2 · · · p− 1

2
mod p,

and so

a
p−1

2 ≡ (−1)µ mod p.

Since (
a

p

)
≡ a

p−1
2 mod p

by Proposition 3.15, we conclude that(
a

p

)
≡ (−1)µ mod p.

J

Proposition 3.17 If p ∈ N is an odd rational prime then(
2

p

)
=

1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8.

Proof I Consider the numbers

2, 4, . . . , p− 1.

The number2i will have negative remainder if

p

2
< 2i < p,

ie

p

4
< i <

p

2
.
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Thus theµ in Proposition 3.16 is given by

µ =
[
p

2

]
−
[
p

4

]
.

We considerp mod 8. If

p ≡ 1 mod 8,

say

p = 8m+ 1,

then [
p

2

]
= 4m,

[
p

4

]
= 2m,

and so

µ = 2m.

If

p ≡ 3 mod 8,

say

p = 8m+ 3,

then [
p

2

]
= 4m+ 1,

[
p

4

]
= 2m,

and so

µ = 2m+ 1.

If

p ≡ 5 mod 8,

say

p = 8m+ 5,

then [
p

2

]
= 4m+ 2,

[
p

4

]
= 2m+ 1,
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and so

µ = 2m+ 1.

If

p ≡ 7 mod 8,

say

p = 8m+ 7,

then [
p

2

]
= 4m+ 3,

[
p

4

]
= 2m+ 1,

and so

µ = 2m+ 2.

J

Corollary 3.4 If p ∈ N is an odd rational prime then

(
−2

p

)
=

1 if p ≡ 1 or 3 mod 8,

−1 if p ≡ 5 or 7 mod 8.

Proof I This follows from the Proposition and the Corollary to Proposition 3.15,
since (

−2

p

)
=

(
−1

p

)(
2

p

)
,

by Proposition 3.14. J

Proposition 3.18 If p ∈ N is an odd rational prime then

(
3

p

)
=

1 if p ≡ ±1 mod 12,

−1 if p ≡ ±5 mod 12.

Proof I If

0 < i <
p

2

then

0 < 3i <
3p

2
.
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Thus3i has negative remainder if

p

2
< 3i < p,

ie

p

6
< i <

p

3
.

Thus
µ =

[
p

3

]
−
[
p

6

]
.

If

p ≡ 1 mod 6,

say

p = 6m+ 1,

then [
p

3

]
= 2m,

[
p

6

]
= m,

and so

µ = m.

If

p ≡ 5 mod 6,

say

p = 6m+ 5,

then [
p

3

]
= 2m+ 1,

[
p

6

]
= m,

and so

µ = m+ 1.

The result follows. J
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Corollary 3.5 If p ∈ N is an odd rational prime then(
−3

p

)
=

1 if p ≡ 1 mod 6,

−1 if p ≡ 5 mod 6.

Proof I This follows from the Proposition and the Corollary to Proposition 3.15,
since (

−3

p

)
=

(
−1

p

)(
3

p

)
,

by Proposition 3.14. J

Proposition 3.19 If p ∈ N is an odd rational prime then(
5

p

)
=

1 if p ≡ ±1 mod 10,

−1 if p ≡ ±3 mod 10.

Proof I If

0 < i <
p

2
then

0 < 5i <
5p

2
.

Thus5i has negative remainder if

p

2
< 5i < p or

3p

2
< i < 2p,

ie

p

10
< i <

p

5
or

3p

10
< i <

2p

5
.

Thus

µ =
[
p

5

]
−
[
p

10

]
+
[
2p

5

]
−
[
3p

10

]
.

If

p ≡ 1 mod 12,

say

p = 10m+ 1,

then [
p

5

]
= 2m,

[
p

10

]
= m,

[
2p

5

]
= 4m,

[
3p

10

]
= 3m,

and so

µ = 2m.

The other cases are left to the reader.J
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3.8 Gauss’ Law of Quadratic Reciprocity

Proposition 3.16 provides an algorithm for computing the Legendre symbol, as
illustrated in Propositions 3.17–3.19, perfectly adequate for our purposes. How-
ever, Euler discovered and Gauss proved a remarkable result which makes com-
putation of the symbol childishly simple. This result — The Law of Quadratic
Reciprocity — has been called the most beautiful result in Number Theory, so it
would be a pity not to mention it, even though — as we said — we do not really
need it.

Proposition 3.20 Supposep, q ∈ N are two distinct odd rational primes. Then(
q

p

)(
p

q

)
=

−1 if p ≡ q ≡ 3 mod 4,

1 otherwise.

Another way of putting this is to say that(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 .

Proof I Let

S = {1, 2, . . . , p− 1

2
}, T = {1, 2, . . . , q − 1

2
}.

We shall choose remaindersmodp from the set

{−p
2
< i <

p

2
} = −S ∪ {0} ∪ S,

and remaindersmodq from the set

{−q
2
< i <

q

2
} = −T ∪ {0} ∪ T.

By Gauss’ Lemma (Proposition 3.16),(
q

p

)
= (−1)µ,

(
p

q

)
= (−1)ν ,

where

µ = ‖{i ∈ S : qi mod p ∈ −S}‖, ν = ‖{i ∈ T : pi mod q ∈ −T}‖.

By ‘qi mod p ∈ −S’ we mean that there exists aj (necessarily unique) such
that

qi− pj ∈ −S.
But now we observe that, in this last formula,

0 < i <
p

2
=⇒ 0 < j <

q

2
.
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Figure 3.1:p = 11, q = 7

The basic idea of the proof is to associate to each such contribution toµ the
‘point’ (i, j) ∈ S × T . Thus

µ = ‖{(i, j) ∈ S × T : −p
2
< qi− pj < 0}‖;

and similarly

ν = ‖{(i, j) ∈ S × T : 0 < qi− pj < q

2
}‖,

where we have reversed the order of the inequality on the right so that both for-
mulae are expressed in terms of(qi− pj).

Let us write[R] for the number of integer points in the regionR ⊂ R2. Then

µ = [R1], ν = [R2],

where

R1 = {(x, y) ∈ R : −p
2
< qx−py < 0}, R2 = {(x, y) ∈ R : 0 < qx−py < q

2
},

andR denotes the rectangle

R = {(x, y) : 0 < x <
p

2
, 0 < y <

p

2
}.

The line
qx− py = 0

is a diagonal of the rectangleR, andR1, R2 are strips above and below the diago-
nal (Fig 3.8).

This leaves two triangular regions inR,

R3 = {(x, y) ∈ R : qx− py < −p
2
}, R4 = {(x, y) ∈ R : qx− py > q

2
}.

We shall show that, surprisingly perhaps, reflection in a central point sends the
integer points in these two regions into each other, so that

[R3] = [R4].

Since
R = R1 ∪R2 ∪R3 ∪R4,

it will follow that

[R1] + [R2] + [R3] + [R4] = [R] =
p− 1

2

q − 1

2
,
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ie

µ+ ν + [R3] + [R4] =
p− 1

2

q − 1

2
.

But if now [R3] = [R4] then it will follow that

µ+ ν ≡ p− 1

2

q − 1

2
mod 2,

which is exactly what we have to prove.
It remains to define our central reflection. Note that reflection in the centre

(p
4
, q

4
) of the rectangleR will not serve, since this does not send integer points into

integer points. For that, we must reflect in a point whose coordinates are integers
or half-integers.

We choose this point by “shrinking” the rectangleR to a rectangle bounded
by integer points, ie the rectangle

R′ = {1 ≤ x ≤ p− 1

2
, 1 ≤ y ≤ q − 1

2
}.

Now we takeP to be the centre of this rectangle, ie

P = (
p+ 1

4
,
q + 1

4
).

The reflection is then given by

(x, y) 7→ (X, Y ) = (
p+ 1

−
x,
q + 1

−
y).

It is clear that reflection inP will send the integer points ofR into themselves.
But it is not clear that it will send the integer points inR3 into those inR4, and
vice versa. To see that, let us shrink these triangles as we shrank the rectangle. If
x, y ∈ Z then

qx− py < −p
2

=⇒ qx− py ≤ −p+ 1

2
;

and similarly

qx− py > q

2
=⇒ qx− py ≥ q + 1

2
.

Now reflection inP doessend the two lines

qx− py = −p+ 1

2
, qx− py =

q + 1

2

into each other; for

qX − pY = q(p+ 1− x)− p(q + 1− y) = (q − p)− (qx− py),

and so

qx− py = −p+ 1

2
⇐⇒ qX − pY = (q − p) +

p+ 1

2
=
q + 1

2
.
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We conclude that
[R3] = [R4].

Hence
[R] = [R1] + [R2] + [R3] + [R4] ≡ µ+ ν mod 2,

and so

µ+ ν ≡ [R] =
p− 1

2

q − 1

2
.

J

Example:Takep = 37, q = 47. Then(
37

47

)
=

(
47

37

)
since37 ≡ 1 mod 4

=

(
10

37

)

=

(
2

37

)(
5

37

)

= −
(

5

37

)
since37 ≡ −3 mod 8

= −
(

37

5

)
since5 ≡ 1 mod 4

= −
(

2

5

)
= −(−1) = 1.

Thus 37is a quadratic residuemod47.

We could have avoided using the result for

(
2

p

)
:

(
10

37

)
=

(
−27

37

)

=

(
−1

37

)(
3

37

)3

= (−1)18

(
37

3

)

=

(
1

3

)
= 1.

3.9 Some quadratic fields

We end by applying the results we have established to a small number of quadratic
fields.
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3.9.1 The gaussian fieldQ(i)

Proposition 3.21 1. The integers inQ(i) are the gaussian integers

a+ bi (a, b ∈ Z)

2. The units inZ[i] are the numbers

±1,±i.

3. The ring of integersZ[i] is a principal ideal domain (and so a unique fac-
torisation domain).

4. The prime 2 ramifies inZ[i]:

2 = −i(1 + i)2.

The odd primep splits inZ[i] if and only if

p ≡ 1 mod 4,

in which case it splits into two conjugate but inequivalent primes:

p = ±ππ̄.

Proof I This follows from Propositions 3.4, 3.7, 3.9, 3.11–3.13, and the Corollary
to Proposition 3.15. J

Factorisation in the gaussian fieldQ(i) gives interesting information on the
expression of a number as a sum of two squares.

Proposition 3.22 An integern > 0 is expressible as a sum of two squares,

n = a2 + b2 (a, b ∈ Z)

if and only if each primep ≡ 3 mod 4 occurs to an even power inn.

Proof I Suppose
n = a2 + b2 = (a+ bi)(a− bi).

Let
a+ bi = επe11 · · ·πerr .

Taking norms,
n = ‖a+ bi‖ = ‖π1‖e1 · · · ‖πr‖er .

Suppose
p ≡ 3 mod 4.

Thenp remains prime inZ[i], by Proposition 3.21.
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Suppose

pe ‖ a+ ib,

ie

pe | a+ ib but pe+1
- a+ ib.

Then

pe ‖ a− ib,

since

a+ ib = peα =⇒ a− ib = peᾱ,

on taking conjugates. Hence

p2e ‖ n = (a+ ib)(a− ib),

ie p appears inn with even exponent.
We have shown, incidentally, that ifp ≡ 3 mod 4 then

p2e ‖ n = a2 + b2 =⇒ pe | a, pe | b.

In other words, each expression ofn as a sum of two squares

n = a2 + b2

is of the form
n = (pea′)2 + (peb′)2,

where
n

p2e
= a′

2
+ b′

2
.

We have shown that each primep ≡ 3 mod 4 must occur with even exponent
in n. Conversely, suppose that this is so.

Each primep ≡ 1 mod 4 splits inZ[i], by Proposition 3.21, say

p = πpπp.

Also, 2 ramifies inZ[i]:
2 = −i(1 + i)2.

Now suppose
n = 2e23e35e5 · · · ,

wheree3, e7, e11, e19, . . . are all even, say

p ≡ 3 mod 4 =⇒ ep = 2fp.
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Let
α = α2α3α5 · · · ,

where

αp =


(1 + i)e2 if p = 2,

πepp if p ≡ 1 mod 4,

pfp if p ≡ 3 mod 4.

Then
‖αp‖ = pep

in all cases, and so
‖α‖ =

∏
p

‖αp‖ =
∏
p

pep = n.

Thus if
α = a+ bi

then
n = a2 + b2.

J

It’s worth noting that this argument actually gives thenumberof ways of ex-
pressingn as a sum of two squares, ie the number of solutions of

n = a2 + b2 (a, b ∈ Z).

For the number of solutions is the number of integersα ∈ Z[i] such that

n = ‖(‖α) = αᾱ.

Observe that whenp ≡ 1 mod 3 in the argument above we could equally well
have taken

αp = πrπ̄s

for anyr, s ≥ 0 with
r + s = ep.

There are just
ep + 1

ways of choosingαp in this way.
It follows from unique factorisation that the choice of theαp for p ≡ 1 mod 4

determinesα up to a unit, ie the general solution is

α = ε(1 + i)e2
∏

p≡1 mod 4

αp
∏

p≡3 mod 4

pfp .

Since there are four units,±1, ±i, we conclude that the number of ways of ex-
pressingn as a sum of two sqares is

4
∏

p≡1 mod 4

(ep + 1).
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Note that in this calculation, each solution

n = a2 + b2

with
0 < a < b

gives rise to 8 solutions:

n = (±a)2 + (±b)2, n = (±b)2 + (±a)2.

To these must be added solutions witha = 0 or with a = b. The former occurs
only if n = m2, giving 4 additional solutions:

n = 02 + (±m)2 = (±m)2 + 02;

while the latter occurs only ifn = 2m2, again giving 4 additional solutions:

n = (±m)2 + (±m)2.

We conclude that the number of solutions witha, b ≥ 0 is
1
2

∏
p≡1 mod 4(ep + 1) if n 6= m2, 2m2

1
2

(∏
p≡1 mod 4(ep + 1) + 1

)
if n = m2 or 2m2.

This is of course assuming that

p ≡ 3 mod 4 =⇒ 2 | ep,

without which there are no solutions.
In particular, each primep ≡ 1 mod 4 is uniquely expressible as a sum of two

squares
n = a2 + b2 (0 < a < b),

eg
53 = 22 + 72.

As another example,
108 = 2233

cannot be expressed as a sum of two squares, sincee3 = 3 is odd.

3.9.2 The fieldQ(
√

3)

Proposition 3.23 1. The integers inQ(
√

3) are the numbers

a+ b
√

3 (a, b ∈ Z)
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2. The units inZ[
√

3] are the numbers

±ηn (n ∈ Z),

where
η = 2 +

√
3.

3. The ring of integersZ[
√

3] is a principal ideal domain (and so a unique
factorisation domain).

4. The primes 2 and 3 ramify inZ[
√

3]:

2 = η−1(1 +
√

3)2, 3 = (
√

3)2.

The odd primep 6= 3 splits inZ[
√

3] if and only if

p ≡ ±1 mod 12,

in which case it splits into two conjugate but inequivalent primes:

p = ±ππ̄.

Proof I This follows from Propositions 3.4, 3.8, 3.9, 3.11–3.13, and Proposi-
tion 3.18. J

3.9.3 The fieldQ(
√

5)

Proposition 3.24 1. The integers inQ(
√

5) are the numbers

a+ bω (a, b ∈ Z),

where

ω =
1 +
√

5

2
.

2. The units inZ[
√

5] are the numbers

±ωn (n ∈ Z).

3. The ring of integersZ[ω] is a principal ideal domain (and so a unique fac-
torisation domain).

4. The prime 5 ramifies inZ[ω]:

5 = (
√

5)2.

The primep 6= 5 splits inZ[ω] if and only if

p ≡ ±1 mod 10,

in which case it splits into two conjugate but inequivalent primes:

p = ±ππ̄.

Proof I This follows from Propositions 3.4, 3.8, 3.9, 3.11–3.13, and Proposi-
tion 3.19. J



Chapter 4

Mersenne and Fermat numbers

4.1 Mersenne numbers

Proposition 4.1 If
n = am − 1 (a,m > 1)

is prime then

1. a = 2;

2. m is prime.

Proof I In the first place,
(a− 1) | (am − 1);

so if a > 2 thenn is certainly not prime.
Supposem = rs, wherer, s > 1. Evidently

(x− 1) | (xs − 1)

in Z[x]; explicitly

xs − 1 = (x− 1)(xs−1 + xs−2 + xs−3 + · · ·+ 1).

Subsititutingx = ar,

(ar − 1) | (ars − 1) = am − 1.

Thus ifam − 1 is prime thenm has no proper factors, iem is prime. J

Definition 4.1 The numbers
Mp = 2p − 1,

wherep is prime, are calledMersenne numbers.

4–1
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The numbers

M2 = 3, M3 = 7, M5 = 31, M7 = 127

are all prime. However,
M11 = 2047 = 23 · 89.

(It should be emphasized that Mersenne never claimed the Mersenne numbers
were all prime. He listed the numbersMp for p ≤ 257, indicating which were
prime, in his view. His list contained several errors.)

The following heuristic argument suggests that there are probably an infinity
of Mersenne primes. (Webster’s Dictionary defines ‘heuristic’ as:providing aid
or direction in the solution of a problem but otherwise unjustified or incapable of
justification.)

By the Prime Number Theorem, the probability that a large numbern is prime
is

≈ 1

log n
.

In this estimate we are including even numbers. Thus the probability that anodd
numbern is prime is

≈ 2

log n
.

Thus the probability thatMp is prime is

≈ 2

p log 2
.

So the expected number of Mersenne primes is

≈ 2

log 2

∑ 1

pn

wherepn is thenth prime.
But — again by the Prime Number Theorem —

pn ≈ n log n.

Thus the expected number of Mersenne primes is

≈ 2

log 2

∑ 1

n log n
=∞,

since ∑ 1

n log n

diverges, eg by comparison with∫ X 1

x log x
= log logX + C.
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4.1.1 The Lucas-Lehmer test

Mersenne numbers are important because there is a simple test, announced by
Lucas and proved rigorously by Lehmer, for determining whether or notMp is
prime. (There are manynecessarytests for primality, eg ifp is prime then

2p ≡ 2 mod p.

What is rare is to find a necessary andsufficienttest for the primality of numbers
in a given class, and one which is moreover relatively easy to implement.) For this
reason, all recent “record” primes have been Mersenne primes.

We shall give two slightly different versions of the Lucas-Lehmer test. The
first is only valid if p ≡ 3 mod 4, while the second applies to all Mersenne num-
bers. The two tests are very similar, and equally easy to implement. We are giving
the first only because the proof of its validity is rather simpler. So it should be
viewed as an introduction to the second, and true, Lucas-Lehmer test.

Both proofs are based on arithmetic in quadratic fields: the first inQ(
√

5), and
the second inQ(

√
3); and both are based on the following result.

Proposition 4.2 Supposeα is an integer in the fieldQ(
√
m); and supposeP is

an odd prime withP - m. Then

αP ≡


α if

(
P

m

)
= 1,

ᾱ if

(
P

m

)
= −1.

Proof I Suppose
α = a+ b

√
m,

wherea, b are integers ifm 6≡ 1 mod 4, and half-integers ifm ≡ 1 mod 4.
In fact these cases do not really differ; for 2 is invertiblemodP , so we may

considera as an integermodP if 2a ∈ Z. Thus

αP ≡ aP +

(
P

1

)
aP−1b

√
m+

(
P

2

)
aP−2bm+ · · ·+ bPm

P−1
2
√
m mod P.

Now

P |
(
P

r

)
if 1 ≤ r ≤ P − 1. Hence

αP ≡ aP + bPm
P−1

2
√
m mod P

By Fermat’s Little Theorem,

aP ≡ a mod P, bP ≡ b mod P.
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Also

m
P−1

2 ≡
(
m

P

)
mod P,

by Proposition 3.15. Thus

αP ≡ a+ b

(
P

m

)
√
m mod P,

ie (
m

P

)
= 1 =⇒ αP ≡ α mod P,(

m

P

)
= −1 =⇒ αP ≡ ᾱ mod P.

J

Corollary 4.1 For all integersα in Q(
√
m,

αP
2 ≡ α mod P.

We may regard this as the analogue of Fermat’s Little Theorem

aP ≡ a mod P

for quadratic fields.
There is another way of establishing this result, which we shall sketch briefly.

It depends on considering the ring

A = Z[ω]/(P ).

formed by the remainders
α mod P

of integersα in Q(
√
m).

There areP 2 elements in this ring, since eachα ∈ Z[ω] is congruentmodP
to just one of the numbers

a+ b
√
m

wherea, b ∈ Z and
0 ≤ a, b < P.

There are no nilpotent elements in the ringA if P - m; for if α = a + b
√
m

then

P | α2 =⇒ P | 2ab, P | a2 + b2m

=⇒ P | a, b.

Thus
α2 ≡ 0 mod P =⇒ α ≡ 0 mod P,
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from which it follows that, ifn > 0,

αn ≡ 0 mod P =⇒ α ≡ 0 mod P,

A ring without non-zero nilpotent elements is said to besemi-simple. It is not
hard to show thata finite semi-simple commutative ring is a direct sum of fields.

Now there is just one field (up to isomorphism) containingpe elements for
each prime powerpe, namely the galois fieldGF(pe). It follows that either

1. Z[ω]/(P ) ∼= GF(P 2); or

2. Z[ω]/(P ) ∼= GF(P )⊕GF(P ).

The non-zero elements inGF(pe) form a multiplicative groupGF(pe)× with
pe − 1 elements. It follows from Legendre’s Theorem that

a 6= 0 =⇒ ap
e−1 = 1

in GF(pe). Hence
ap

e

= a

for all a ∈ GF(pe).
Thus in the first case,

αP
2 ≡ α

for all α ∈ Z[ω]/(P ); while in the second case we even have

αP ≡ α

for all α ∈ Z[ω]/(P ), since this holds in each of the constituent fields.
In the first case we can go further. The galois fieldGF(pe) is of characteristic

p, ie
pa = a+ · · · a = 0,

for all ainGF(pe). Also, the map

a 7→ ap

is an automorphism ofGF(pe). (This follows by essentially the same argument
that we used above to show thatαP ≡ α or ᾱ above.)

In particular, the map
α 7→ αP mod P

is an automorphism of our field

Z[ω]/(P ).

On the other hand, the map
α 7→ ᾱ
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is also an automorphism ofZ[ω]/(P ), since

P | α =⇒ P | ᾱ.

Moreover, this is the only automorphism ofZ[ω]/(P ) apart from the identity map,
since any automorphism must send

√
m mod P 7→ ±

√
m mod P.

The automorphism
α 7→ αP mod P

is not the identity map, since the equation

xP − x = 0

has at mosP solutions in the fieldZ[ω]/(P ). We conclude that

αP ≡ ᾱ mod P.

If Z[ω] is a principal ideal domain the second case arises if and only ifP splits,
which by Proposition 3.14 occurs when(

m

P

)
= 1.

Explicitly, if
P = π1π2,

then

Z[ω]/(P ) ∼= Z[ω]/(π1)⊕ Z[ω]/(π2)
∼= GF(P )⊕GF(P ).

Proposition 4.3 Supposep ≡ 3 mod 4. Let the sequencern be defined by

r1 = 3, rn+1 = r2
n − 2.

ThenMp is prime if and only if

Mp | rp−1.

Proof IWe work in the fieldQ(
√

5). By Proposition 3.4, the integers in this field
are the numbers

a+ bω (a, b ∈ Z)

where

ω =
1 +
√

5

2
.

By Proposition 3.9, there is unique factorisation in the ring of integersZ[ω].



374 4–7

Lemma 4.1 If rn is the sequence defined in the Proposition then

rn = ω2n + ω−2n

for eachn ≥ 1.

Proof of LemmaB Let us set

sn = ω2n + ω−2n

for n ≥ 0. Then

s2
n =

(
ω2n + ω−2n

)2

= ω2n+1

+ 2 + ω−2n+1

= sn+1 + 2,

ie
sn+1 = s2

n − 2.

Also

s0 = ω + ω−1

= ω − ω̄
=
√

5,

and so
s1 = s2

0 − 2 = 3.

We conclude that
rn = sn = ω2n + ω−2n

for all n ≥ 1. C

Let us suppose first thatMp is prime. Let us writeP = Mp.

Lemma 4.2 We have (
5

P

)
= −1.

Proof of LemmaB Since

24 ≡ 1 mod 5

it follows that

2p ≡ 23 mod 5

≡ 3 mod 5.
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Hence
P = 2p − 1 ≡ 2 mod 5;

and so, by Proposition 3.19, (
5

P

)
= −1.

C

It follows from this Lemma and Proposition 4.2 that

αP ≡ ᾱ mod P

for all α ∈ Z[ω]. In particular,

ωP ≡ ω̄ mod P.

Hence

ωP+1 ≡ ωω̄ mod P

≡ ‖ω‖ mod P ≡ −1 mod P.

In other words,
ω2p ≡ −1 mod P.

Thus
ω2p + 1 ≡ 0 mod P.

Dividing by ω2p−1
,

ω2p−1

+ ω−2p−1 ≡ 0 mod P,

ie

rp−1 ≡ 0 mod P.

Conversely, supposeP is a prime factor ofMp. Then

Mp | rp−1 =⇒ rp−1 ≡ 0 mod P

=⇒ ω2p−1

+ ω−2p−1 ≡ 0 mod P

=⇒ ω2p + 1 ≡ 0 mod P

=⇒ ω2p ≡ −1 mod P.

But this implies that the order ofω mod P is 2p+1. For

ω2p+1

= (ω2p)2 ≡ 1 mod P,

so if the order ofω mod P is d then

d | 2p+1 =⇒ d = 2e
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for somee ≤ p+ 1; and if e ≤ p then

ω2p ≡ 1 mod P.

On the other hand, by the Corollary to Proposition 4.2,

ωP
2 ≡ ω mod P =⇒ ωP

2−1 ≡ 1 mod P.

Hence
2p+1 | P 2 − 1 = (P + 1)(P − 1).

Now
gcd(P + 1, P − 1) = 2.

It follows that
2p | P + 1 or 2p | P − 1.

The latter is impossible since

2p > Mp ≥ P > P − 1;

while

2p | P + 1 =⇒ 2p ≤ P + 1 =⇒Mp = 2p − 1 ≤ P =⇒ P = Mp.

J

Now for the ‘true’ Lucas-Lehmer test. As we shall see, the proof is a little
harder, which is why we gave the earlier version.

Proposition 4.4 Let the sequencern be defined by

r1 = 4, rn+1 = r2
n − 2.

ThenMp is prime if and only if

Mp | rp−1.

Proof IWe work in the fieldQ(
√

3). By Proposition 3.4, the integers in this field
are the numbers

a+ b
√

3 (a, b ∈ Z).

By Proposition 3.9, there is unique factorisation in the ring of integersZ[
√

3].
We set

η = 1 +
√

3, ε = 2 +
√

3.

Lemma 4.3 The units inZ[
√

3] are the numbers

±εn (n ∈ N).
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Proof of LemmaB It is sufficient, by Proposition 3.8, to show thatε is the smallest

unit> 1. And from the proof of that Proposition, we need only consider units of
the form

a+ b
√

3

with a, b ≥ 0.
Thus the only possible units in the range(1, ε) are

√
3 and1+

√
3 = η, neither

of which is in fact a unit, since

‖
√

3‖ = −3, ‖η‖ = −2,

whereas a unit must have norm±1, by Proposition 3.6. C

Lemma 4.4 If rn is the sequence defined in the Proposition then

rn = ε2
n−1

+ ε−2n−1

for eachn ≥ 1.

Proof of LemmaB Let us set

sn = ε2
n−1

+ ε−2n−1

for n ≥ 1. Then

s2
n =

(
ε2
n−1

+ ε−2n−1
)2

= ε2
n

+ 2 + ε−2n

= sn+1 + 2,

ie
sn+1 = s2

n − 2.

Also

s1 = ε+ ε−1

= ε+ ε̄

= 4.

We conclude that
rn = sn = ε2

n−1

+ ε−2n−1

for all n ≥ 1. C

Suppose first thatP = Mp is prime.

Lemma 4.5 We have (
3

P

)
= −1.
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Proof of LemmaBWe have

Mp = 2p − 1

≡ (−1)p − 1 mod 3

≡ −1− 1 mod 3

≡ 1 mod 3;

while
Mp ≡ −1 mod 4.

By the Chinese Remainder Theorem there is just one remaindermod12 with
these remaindersmod3 andmod4; and that is7 ≡ −5 mod 12. For any odd
primep,

Mp ≡ 7 mod 12

Hence (
3

P

)
= −1.

by Proposition 3.18, C
It follows from this Lemma and Proposition 4.2 that

αP ≡ ᾱ mod P

for all α ∈ Z[
√

3]. In particular,

εP ≡ ε̄ mod P.

Hence

εP+1 ≡ εε̄ mod P

≡ ‖ε‖ mod P ≡ 1 mod P.

In other words,
ε2
p ≡ 1 mod P.

It follows that
ε2
p−1 ≡ ± mod P.

We want to show that in fact

ε2
p−1 ≡ −1 mod P.

This is where things get a little trickier than in the first version of the Lucas-
Lehmer test. In effect, we need a number with negative norm. To this end we
introduce

η = 1 +
√

3.

Lemma 4.6 1. ‖η‖ = −2.
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2. η2 = 2ε.

Proof of LemmaB This is a matter of simple verification:

‖η‖ = 1− 3 = −2,

while

η2 = (1 +
√

3)2

= 4 + 2
√

3

= 2ε.

C

By Proposition /refMersenneLemma,

ηP ≡ η̄ mod P,

and so

ηP+1 ≡ ηη̄ − 2 mod P,

ie

η2p ≡ −2 mod P.

By the Lemma, this can be written

(2ε)2p−1 ≡ −2 mod P,

ie

22p−1

ε2
p−1 ≡ −2 mod P,

But by Proposition 3.14,

2
P−1

2 = 22p−1−1 ≡
(

2

P

)
mod P

≡ 1 mod P,

by Proposition 3.17, since

P = 2p − 1 ≡ −1 mod 8.

Thus
22p−1 ≡ 2 mod P



374 4–13

and so
2ε2

p−1 ≡ −2 mod P.

Hence
ε2
p−1 ≡ −1 mod P.

Thus
ε2
p−1

+ 1 ≡ 0 mod P.

Dividing by ε2
p−2

,

ε2
p−2

+ ε−2p−2 ≡ 0 mod P,

ie

rp−1 ≡ 0 mod P.

Conversely, supposeP is a prime factor ofMp. Then

Mp | rp−1 =⇒ rp−1 ≡ 0 mod P

=⇒ ε2
p−2

+ ε−2p−2 ≡ 0 mod P

=⇒ ε2
p−1

+ 1 ≡ 0 mod P

=⇒ ε2
p−1 ≡ −1 mod P.

But (by the argument we used in the proof of the first Lucas-Lehmer test) this
implies that the order ofε mod P is 2p.

On the other hand, by the Corollary to Proposition 4.2,

εP
2 ≡ ε mod P =⇒ εP

2−1 ≡ 1 mod P.

Hence
2p | P 2 − 1 = (P + 1)(P − 1).

Now
gcd(P + 1, P − 1) = 2.

It follows that
2p−1 | P + 1 or 2p−1 | P − 1.

In either case,

2p−1 ≤ P + 1 =⇒ P ≥ 2p−1 − 1 =
Mp − 1

2

=⇒ P ≥ Mp

3

=⇒ Mp

P
< 3.

SinceMp is odd, this implies that

P = Mp,

ieMp is prime. J
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4.1.2 Perfect numbers

Mersenne numbers are also of interest because of their intimate connection with
perfectnumbers.

Definition 4.2 For n ∈ N, n > 0 we denote the number of divisors ofn byd(n),
and the sum of these divisors byσ(n).

Example:Since12 has divisors1, 2, 3, 4, 6, 12,

d(12) = 6, σ(12) = 28.

Definition 4.3 The numbern ∈ N is said to beperfectif

σ(n) = 2n,

ie if n is the sum of its proper divisors.

Example:The number 6 is perfect, since

6 = 1 + 2 + 3.

Proposition 4.5 If
Mp = 2p − 1

is a Mersenne prime then
2p−1(2p − 1)

is perfect.
Conversely, everyevenperfect number is of this form.

Proof I In number theory, a functionf(n) defined on{n ∈ N : n > 0} is said to
bemultiplicativeif

gcd(m,n) = 1 =⇒ f(mn) = f(m)f(n).

If the functionf(n) is multiplicative, and

n = pe11 · · · perr

then
f(n) = f(pe11 ) · · · f(perr ).

Thus the functionf(n) is completely determined by its valuef(pe) for prime
powers.
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Lemma 4.7 The functionsd(n) andσ(n) are both multiplicative.

Proof of LemmaB Supposegcd(m,n) = 1; and suppose

d | mn.

Thend is uniquely expressible in the form

d = d1d2 (d1 | m, d2 | n).

In fact
d1 = gcd(d,m), d2 = gcd(d, n).

It follows that
d(mn) = d(m)d(n);

and

σ(mn) =
∑
d|mn

d

=
∑
d1|m

d1

∑
d2|n

d2

= σ(m)σ(n).

C

Now suppose
n = 2p−1Mp

whereMp is prime. SinceMp is odd,

gcd(2p−1,Mp) = 1.

Hence
σ(n) = σ(2p−1)σ(Mp).

If P is prime then evidently

σ(P ) = 1 + P.

On the other hand,

σ(P e) = 1 + P + P 2 + · · ·+ P e =
P e+1 − 1

P − 1
.

In particular,
σ(2e) = 2e+1 − 1.

Thus
σ(2p−1) = 2p − 1 = Mp,
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while
σ(Mp) = Mp + 1 = 2p.

We conclude that
σ(n) = 2pMp = 2n.

Conversely, supposen is an even perfect number. We can writen (uniquely)
in the form

n = 2em

wherem is odd. Since2e andm are coprime,

σ(n) = σ(2e)σ(m) = (2e+1 − 1)σ(m).

On the other hand, ifn is perfect then

σ(n) = 2n = 2e+1m.

Thus
2e+1 − 1

2e+1
=

m

σ(m)
.

The numerator and denominator on the left are coprime. Hence

m = d(2e+1 − 1), σ(m) = d2e+1,

for somed ∈ N.
If d > 1 thenm has at least the factors1, d,m. Thus

σ(m) ≥ 1 + d+m = 1 + d2e+1,

contradicting the value forσ(m) we derived earlier.
It follows thatd = 1. But then

σ(m) = 2e+1 = m+ 1.

Thus the only factors ofm are 1 andm, ie

m = 2e+1 − 1 = Me+1

is prime. Settinge+ 1 = p, we conclude that

n = 2p−1Mp,

whereMp is prime. J

It is an unsolved problem whether or not there are anyoddperfect numbers.
The first 4 even perfect numbers are

21M2 = 6, 22M3 = 28, 24M5 = 496, 26M7 = 8128.

(In fact these are the first 4 perfect numbers, since it is known that any odd perfect
number must have at least 300 digits!)
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4.2 Fermat numbers

Proposition 4.6 If
n = am + 1 (a,m > 1)

is prime then

1. a2 is even;

2. m = 2e.

Proof I If a is odd thenn is even and> 2, and so not prime.
Supposem has an odd factor, say

m = rs,

wherer is odd. Sincexr + 1 = 0 whenx = −1, it follows by the Remainder
Theorem that

(x+ 1) | (xr + 1).

Explicitly,
xr + 1 = (x+ 1)(xr−1 − xr−2 + · · · − x+ 1).

Substitutingx = ys,
(ys + 1) | (ym + 1)

in Z[x]. Settingy = a,

(as + 1) | (ars + 1) = (am + 1).

In particular,am + 1 is not prime.
Thus ifam + 1 is prime thenm cannot have any odd factors. In other words,

m = 2e.

J

Definition 4.4 The numbers

Fn = 22n + 1 (n = 0, 1, 2, . . . )

are calledFermat numbers.

Fermat hypothesized — he didn’t claim to have a proof — that all the numbers

F0, F1, F2, . . .

are prime. In fact this is true for

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.
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However, Euler showed in 1747 that

F5 = 232 + 1 = 4294967297

is composite. In fact, no Fermat prime beyondF4 has been found.
The heuristic argument we used above to suggest that the number of Mersenne

primes is probably infinite now suggests that the number of Fermat primes is
probably finite.

For by the Prime Number Theorem, the probability ofFn being prime is

≈ 2/ logFn

≈ 2 · 2−n.

Thus the expected number of Fermat primes is

2 ≈
∑

2−n = 4 <∞.

This argument assumes that the Fermat numbers are “independent”, as far as
primality is concerned. It might be argued that our next result shows that this is
not so. However, the Fermat numbers are so sparse that this does not really affect
our heuristic argument.

Proposition 4.7 The Fermat numbers are coprime, ie

gcd(Fm, Fn) = 1

if m 6= n.

Proof I Suppose
gcd(Fm, Fn) > 1.

Then we can find a primep (which must be odd) such that

p | Fm, p | Fn.

Now the numbers{1, 2, . . . , p− 1} form a group(Z/p)× under multiplication
modp. Sincep | Fm,

22m ≡ −1 mod p.

It follows that the order of2 mod p (ie the order of 2 in(Z/p)×) is exactly2m+1.
For certainly

22m+1

= (22m)2 ≡ 1 mod p;

and so the order of 2 divides2m+1, ie it is 2e for somee ≤ m + 1. But if e ≤ m
then

22m ≡ 1 mod p,

whereas we just saw that the left hand side was≡ −1 mod p. We conclude that
the order must be2m+1.
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But by the same token, the order is also2n+1. This is a contradiction, unless
m = n. J

We can use this result to give a second proof of Euclid’s Theorem that there
are an infinity of primes.

Proof I Each Fermat numberFn has at least one prime divisor, sayqn. But by the
last Proposition, the primes

q0, q1, q2, . . .

are all distinct. J

We end with a kind of pale imitation of the Lucas-Lehmer test, but now applied
to Fermat numbers.

Proposition 4.8 The Fermat number

Fn = 22n + 1

is prime if and only if
3
Fn−1

2 ≡ −1 mod Fn.

Proof I SupposeP = Fn is prime.

Lemma 4.8 We have
Fn ≡ 5 mod 12.

Proof of LemmaB Evidently

Fn ≡ 1 mod 4;

while

Fn ≡ (−1)2n + 1 mod 3

≡ 2 mod 3.

By the Chinese Remainder Theorem these two congruences determineFn mod
12; and observation shows that

Fn ≡ 5 mod 12.

C

It follows from this Lemma, and Proposition 3.18, that(
3

P

)
= −1.

Hence
3
P−1

2 ≡ −1 mod P
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by Proposition 3.14.
Conversely, suppose

3
Fn−1

2 ≡ −1 mod Fn;

and supposeP is a prime factor ofFn. Then

3
Fn−1

2 ≡ −1 mod P,

ie

322n−1 ≡ −1 mod P.

It follows (as in the proof of the Lucas-Lehmer theorems) that the order of3 mod
P is

22n .

But by Fermat’s Little Theorem,

3P−1 ≡ 1 mod P.

Hence

22n | P − 1,

ie

Fn − 1 | P − 1.

SinceP | Fn this implies that
Fn = P,

ie Fn is prime. J

This test is more-or-less useless, even for quite smalln, since it will take an
inordinate time to compute the power, even working moduloFn. However, it does
give a short proof — which we leave to the reader — thatF5 is composite.

It may be worth noting why this test is simpler than its Mersenne analogue.
In the case of Mersenne primesP = Mp we had to introduce quadratic fields
because the analogue of Fermat’s Little Theorem,

αP
2−1 ≡ 1 mod P,

then allowed us to find elements of orderP +1 = 2p. In the case of Fermat primes
P = Fn Fermat’s Little Theorem

aP−1 = a22n ≡ 1 mod P

suffices.



Chapter 5

Primality

5.1 The Fermat test

Supposep is an odd prime; and supposegcd(a, p) = 1, ie p - a. Then

ap−1 ≡ 1 mod p

by Fermat’s Little Theorem.

Definition 5.1 Supposen is an odd number> 1. Then we say thatn is apseudo-
prime to basea (or ana-pseudoprime) if

an−1 ≡ 1 mod n.

Fermat’s Little Theorem can be restated as

Proposition 5.1 If n is an odd prime then it is a pseudoprime to all basesa co-
prime ton.

This provides a necessary test for primality, which we may call theFermat
test.

It is reasonable to suppose that if we perform the test repeatedly with coprime
bases then the results will be independent; so each success will increase the prob-
ability thatn is prime — while a failure of course will prove thatn is composite.

Unfortunately, there is a flaw in this argument. The test may succeed for all
bases coprime ton even ifn is composite.

5.2 Carmichael numbers

Definition 5.2 Supposen is an odd number> 1. Then we say thatn is aCarmichael
numberif n is not a prime, but is a pseudoprime to all basesa coprime ton, ie

gcd(a, n) = 1 =⇒ an−1 ≡ 1 mod n.

5–1
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Recall the definition of Euler’s functionφ(n): for n ≥ 1,

φ(n) = ‖{1 ≤ i ≤ n : gcd(i, n) = 1}‖,

ie φ(n) is the number of congruence classesmodn coprime ton:
Thus

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2, . . . .

Euler’s function ismultiplicative in the number-theoretic sense:

gcd(m,n) = 1 =⇒ φ(mn) = φ(m)φ(n).

For according to the Chinese Remainder Theorem, each pair of remaindersa mod
m, b mod n determines a unique remainderc mod mn; and it is easy to see that

gcd(c,mn) = 1⇐⇒ gcd(a,m) = 1 and gcd(b, n) = 1.

If p is a prime then
φ(pe) = pe−1(p− 1).

For i is coprime tope unlessp | i. Thus all the numbersi ∈ [1, pe] are coprime to
pe except for thepe−1 multiples ofp. Hence

φ(pe) = pe − pe−1 = pe−1(p− 1).

Putting together these results, we see that if

n = pe11 · · · perr

then
φ(n) = pe1−1

1 (p1 − 1) · · · per−1
r (pr − 1).

The congruence classesmod n form a ringZ/(n) with n elements̄0, 1̄, . . . , n− 1.
The invertible elements (or units) in this ring form a multiplicative group

(Z/n)×.

The importance of Euler’s function for us is that this group containsφ(n)
elements:

‖(Z/n)×‖ = φ(n).

This follows from the fact that̄a is invertiblemodn if and only if gcd(a, n) = 1.
For certainlyā cannot be invertible ifgcd(a, n) = d > 1: if

ab ≡ 1 mod n

then
d | a, d | n =⇒ d | 1.
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Conversely, supposegcd(a, n) = 1. Consider the map

x̄ 7→ ax : Z/(n)→ Z/(n).

This map is injective, since

ax = 0 =⇒ n | ax =⇒ n | x =⇒ x̄ = 0.

It is therefore surjective; and in particular

āx̄ = ax = 1

for somex̄, ie ā is invertible.
But now it follows from Lagrange’s Theorem on the order of elements in finite

groups that
aφ(n) ≡ 1 mod n

for all a coprime ton. (We may regard this as an extension of Fermat’s Little
Theorem to composite moduli.)

Proposition 5.2 The integern > 1 is a Carmichael number if and only if

1. n is square-free, ie
n = p1 · · · pr

wherep1, . . . , pr are distinct primes; and

2. For eachi (1 ≤ i ≤ r),
pi − 1|n− 1.

Proof I Suppose first thatn has these properties; and suppose thatgcd(a, n) = 1.
Thengcd(a, pi) = 1 for eachi, and so

api−1 ≡ 1 mod pi,

by Fermat’s Little Theorem. Hence

an−1 ≡ 1 mod pi

sincepi − 1|n− 1.
Since this holds for alli,

an−1 ≡ 1 mod n.

Thusn is a Carmichael number.
Suppose conversely thatn is a Carmichael number. First we show thatn is

square-free.

Lemma 5.1 SupposeA is an abelian group; and supposep | ‖A‖, wherep is a
prime. ThenA contains an element of orderp.
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Proof of LemmaB We argue by induction on‖A‖. The result follows by La-

grange’s Theorem if‖A‖ = p.
If ‖A‖ > p, take any elementa ∈ A, a 6= 0. Supposea is of ordere. If p | e,

say
e = pr

thenar is of orderp.
If p - e, letB be the quotient-group

B = A/〈a〉.

Since
p | ‖B‖ = ‖A‖/e

it follows from the inductive hypothesis thatB has an element,̄a say, of orderp.
Then the order ofa is a multiple ofp, saypr, andar has orderp, as before. C

Remark:In fact this result holds for any finite groupG: if p | ‖G‖ thenG contains
an element of orderp. This follows from Sylow’s Theorem.

In the abelian case the result also follows immediately from the Structure The-
orem for Finite Abelian Groups, which states that such a groupA is a product of
cyclic groups of prime-power order:

A = Z/(pe11 )⊕ · · · ⊕ Z/(perr ).

If p | ‖A‖ thenp = pi for somei; andpe−1 is an element of orderp in Z/(pe).
Returning to the proof of the Proposition, if a prime, sayp = p1, occurs as a

square or higher power inn, then

p|φ(n).

Hence, by the Lemma, there is an elementa of orderp in (Z/n)×. Since

an−1 ≡ 1 mod n,

it follows that
p | n− 1,

which cannot be true sincep | n.
Thus

n = p1 · · · pr,

wherep1, . . . , pr are distinct primes.
Recall that theexponente of a finite groupG is the smallest numbere > 0

such that
ge = 1

for all g ∈ G. By Lagrange’s Theorem,

e | ‖G‖.
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Lemma 5.2 If p is a prime then the exponent of the group(Z/p)× is p− 1.

Proof of LemmaB SupposeG = (Z/p)× has exponente. Then thep− 1 elements

ā ∈ G are all roots of the polynomial equation

xe − 1 = 0

over the field
Fp = Z/(p).

But a polynomial equation of degreed has at mostd roots. hence

p− 1 ≤ e.

Sincee|p− 1 it follows that
e = p− 1.

C

Remark:It is not hard to show that an abelian group of exponente must contain
an element of ordere. It follows that the group(Z/p)× is cyclic. (The generators
of this group are calledprimitive rootsmodp.) However, the Lemma above is
sufficient for our purposes.

Returning to the proof of the Proposition, supposea is coprime topi. By the
Chinese Remainder Theorem we can findb such that

b ≡ a mod pi, b ≡ 1 mod pj (j 6= i).

Thenb is coprime ton. Hence

bn−1 ≡ 1 mod n,

sincen is a Carmichael number. Thus

an−1 ≡ bn−1 ≡ 1 mod pi

so if e is the exponent of the group(Z/p)× then

e | n− 1.

Hence, by the Lemma,
pi − 1 | n− 1.

J

Example:Let
n = 3 · 11 · 17 = 561.

Then
n− 1 = 560 = 24 · 5 · 7.

Since
3− 1, 11− 1, 17− 1 | n− 1 = 560,

n = 561 is a Carmichael number.
It was generally believed that there were only a finite number of Carmichael

numbers, until Pomeranceet al proved in 1993 that there are in fact an infinite
number.
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5.3 The Miller-Rabin test

Proposition 5.3 Supposep is an odd prime. Let

p− 1 = 2em,

wherem is odd. Supposegcd(a, n) = 1. Then either

am ≡ 1 mod n

or else
a2im ≡ −1 mod n

for somei with 0 ≤ i ≤ e− 1.

Proof I By Fermat’s Little Theorem,

ap−1 ≡ 1 mod p.

Thus (
a
p−1

2

)2
≡ 1 mod p.

Hence
a
p−1

2 ≡ ±1 mod p.

We know how to distinguish these two cases:

a
p−1

2 ≡
(
a

p

)
mod p,

by Proposition 3.15.
But now suppose

a
p−1

2 ≡ 1 mod p,

which as we have seen is the case ifa is a quadratic residuemodp; and suppose
p ≡ 1 mod 4. Then (

a
p−1

4

)2
≡ 1 mod p;

and so
a
p−1

4 ≡ ±1 mod p.

Repeating this argument, we either reach a point where we cannot divide the
exponent by 2, ie the exponent has been reduced tom and

am ≡ 1 mod n;

or else
a2im ≡ −1 mod n

for somei ∈ [0, e− 1]. J
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Definition 5.3 Supposen is an odd integer> 1. Let

n− 1 = 2em,

wherem is odd. Supposegcd(a, n) = 1. Thenn is said to bea strong pseudoprime
to basea if either

am ≡ 1 mod n

or else
a2im ≡ −1 mod n

for somei with 0 ≤ i ≤ e− 1.

We can re-state the last Proposition as

Proposition 5.4 An odd primep is a strong pseudoprime to each basea with
gcd(a, p) = 1.

Proposition 5.5 Supposen is an odd integer> 1. If n is a strong pseudoprime to
each basea with gcd(a, n) = 1 thenn is prime.

Proof I Supposen is composite. Then eithern is a prime-power,

n = pe (e > 1),

or elsen has two distinct prime factors,p andq.
Let us deal with the second case first. Supposegcd(a, n) = 1. Let the orders

of a modulop, q, n ber, s, t, respectively. Then

r | t, s | t,

sincep | n, q | n.
We are actually interested only in the powers of 2 dividing these orders. Let

us set
v2(u) = e

if
2e ‖ u,

ie 2e is the highest power of 2 dividingu. Then

v2(r) ≤ v2(t), v2(s) ≤ v2(t),

sincer | t, s | t.

Lemma 5.3 Supposen is a pseudoprime to basea, ie

an−1 ≡ 1 mod n.

Then
v2(t) ≤ v2(n− 1).
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Proof of LemmaBWe have

an−1 ≡ 1 mod n =⇒ t | n− 1

=⇒ v2(t) ≤ v2(n− 1).

C

Lemma 5.4 Supposep is an odd prime; and supposegcd(a, p) = 1. Let the order
of a mod p ber. Then

v2(r)


< v2(p− 1) if

(
p

a

)
= 1,

= v2(p− 1) if

(
p

a

)
= −1.

Proof of LemmaB By Proposition 3.14,

a
p−1

2 ≡
(
p

a

)
mod p.

Thus if (
p

a

)
= 1

then

r | p− 1

2
=⇒ v2(r) ≤ v2

(
p− 1

2

)
= v2(p− 1)− 1.

On the other hand if (
p

a

)
= −1

then
ap−1 ≡ 1 mod p, a

p−1
2 6≡ 1 mod p.

Thus

r | p− 1, r -
p− 1

2
.

It follows that
v2(r) = v2(p− 1).

C

By the Chinese Remainder Theorem we can finda coprime ton such that(
p

a

)
= −1,

(
q

a

)
= 1,

ie a is a quadratic residuemodq, and a quadratic non-residuemodp.
By the last Lemma,

0 ≤ v2(s) < v2(r) = v2(p− 1) ≤ v2(t).
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Now supposea is a strong pseudoprime to basen. Let

n− 1 = 2em,

wherem is odd. If
am ≡ 1 mod n

thena has odd ordermodn, ie

v2(t) = 0.

Hencea has odd ordermodp, ie

v2(r) = 0.

But that is impossible, since

v2(r) = v2(p− 1) > 0.

Thus
a2im ≡ −1 mod n

for somei ∈ [0, e). Hence

a2im ≡ −1 mod p, a2im ≡ −1 mod q.

Lemma 5.5 Suppose
a2im ≡ −1 mod n,

wherem is odd. Let the order ofa mod n bet. Then

v2(t) = i+ 1.

Proof of LemmaBWe have

a2i+1m =
(
a2im

)2
≡ 1 mod n.

Hence
t | 2i+1m, t - 2im.

It follows that
v2(t) = i+ 1.

C

Applying this Lemma with modulip, q, n,

v2(r) = v2(s) = v2(t) = i+ 1.

But that is a contradiction, since

v2(s) < v2(p− 1) = v2(r).

We conclude thatn is not a strong pseudoprime to basea. J
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5.4 The Jacobi symbol

If p is an odd prime andgcd(a, p) = 1 then then

a
p−1

2 ≡
(
a

p

)
mod p,

by Proposition 3.15.
We cannot use this as a test of primality as it stands, since the Legendre symbol

has only been defined whenp is prime. Jacobi’s extension of the Legendre symbol
overcomes this problem.

Definition 5.4 Supposen ∈ N is odd. Let

n = p1 · · · pr,

wherep1, . . . , pr are primes (not necessarily distinct). Then we set(
a

n

)
=

(
a

p1

)
· · ·

(
a

pr

)
.

Remarks:

1. Note that Jacobi’s symbol does extends the Legendre symbol; ifn is prime
the two coincide.

2. Note too that (
a

n

)
= 0

if a, n are not coprime.

3. Suppose
n = pe11 · · · perr .

Thena is a quadratic residuemodn if and only if it is a quadratic residue
modpeii for i = 1, . . . , r.

This implies thata is a quadratic residuemodpi for eachi; and so(
a

n

)
= 1.

But the converse does not hold;(
a

n

)
= 1

does not imply thata is a quadratic residuemodn.
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For example, (
8

15

)
=

(
8

3

)(
8

5

)

=

(
2

3

)(
3

5

)
= −1 · −1 = 1,

while 8 is not a quadratic residuemod15 since it is not a quadratic residue
mod3.

Many of the basic properties of the Legendre symbol carry over to the Jacobi
symbol, as the next few Propositions show.

Proposition 5.6 1. Ifm,n ∈ N are both odd then(
a

mn

)
=

(
a

m

)(
a

n

)
.

2. For all a, b, (
ab

n

)
=

(
a

n

)(
b

n

)
.

Proof I The first result follows at once from the definition. The second follows
from the corresponding result for the Legendre symbol.J

Proposition 5.7 If
a ≡ b mod n

then (
a

n

)
=

(
b

n

)
.

Proof I This follows from the corresponding result for the Legendre symbol,
since

a ≡ b mod n =⇒ a ≡ b mod pi

for eachpi | n. J

Proposition 5.8 Supposem,n ∈ N are odd. Then

(
n

m

)
=



(
m

n

)
if m ≡ 1 mod 4 or n ≡ 1 mod 4,

-

(
m

n

)
if m ≡ n ≡ 3 mod 4.
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Proof I If m,n are not coprime then both sides are 0; so we may assume that
gcd(m,n) = 1. We have to show that(

m

n

)(
n

m

)
= (−1)

m−1
2
·n−1

2 .

Suppose
m = p1 · · · pr, n = q1 · · · qs

(where the primes in each case are not necessarily distinct). By Proposition 5.6,(
m

n

)(
n

m

)
=
∏
i,j

(
pi
qj

)(
pi
qj

)

=
∏
i,j

(−1)
pi−1

2
·
qj−1

2 ,

by the Quadratic Reciprocity Theorem (Proposition 3.20).
Thus we have to prove that

m− 1

2

n− 1

2
≡
∑
i,j

pi − 1

2

qj − 1

2
mod 2,

ie

(m− 1)(n− 1) ≡
∑
i,j

(pi − 1)(qj − 1) mod 8.

Lemma 5.6 If a, b ∈ Z are odd then

ab− 1 ≡ (a− 1) + (b− 1) mod 4.

Proof of LemmaB Sincea, b are odd,

(a− 1)(b− 1) ≡ mod4,

ie

ab+ 1 ≡ a+ b mod 4,

from which the result follows. C
It follows by repeated application of the Lemma that

a1 · · · at − 1 ≡
∑
i

(ai − 1) mod 4.

In particular,

m− 1 ≡ (p1 − 1) + · · ·+ (pr − 1) mod 4.
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Sincen− 1 is even, this implies that

(m− 1)(n− 1) ≡ (p1 − 1)(n− 1) + · · ·+ (pr − 1)(n− 1) mod 8.

Again, by the Lemma,

n− 1 ≡ (q1 − 1) + · · ·+ (qs − 1) mod 4;

and therefore, sincepi − 1 is even,

(pi − 1)(n− 1) ≡ (pi − 1)(q1 − 1) + · · ·+ (pi − 1)(qs − 1) mod 8.

Putting these results together,

(m− 1)(n− 1) ≡
∑
i,j

(pi − 1)(qj − 1) mod 8,

as required. J

Proposition 5.9 Supposen ∈ N is odd. Then(
−1

n

)
=

1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4.

Proof I Suppose
n = p1 · · · prq1 · · · qs,

where
pi ≡ 1 mod 4, qj ≡ 3 mod 4.

Then (
−1

pi

)
= 1,

(
−1

qj

)
= −1,

and so (
−1

n

)
= (−1)s.

On the other hand,

n ≡ 1r3s mod 4

≡

1 mod 4 if s is even,

3 mod 4 if s is odd.

J

Proposition 5.10 Supposen ∈ N is odd. Then(
2

n

)
=

1 if n ≡ ±1 mod 8,

−1 if n ≡ ±3 mod 8.
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Proof I Suppose
n = p1 · · · prq1 · · · qs,

where
pi ≡ ±1 mod 8, qj ≡ ±3 mod 8.

Then (
2

pi

)
= 1,

(
2

qj

)
= −1,

and so (
2

n

)
= (−1)s.

On the other hand,

n ≡ (±1)r(±3)s mod 8

≡

±1 mod 8 if s is even,

±3 mod 8 if s is odd.

J

5.5 A weaker test

Recall that ifp is prime then

a
1
2

(p−1) ≡
(
p

a

)
.

We are now in a position to convert this into a test for primality.

Proposition 5.11 Supposen ∈ N is odd. Thenn is prime if and only if

a
1
2

(n−1) ≡
(
n

a

)
mod n

for all a coprime ton.

Proof I If n is prime then it certainly has the given property.
Suppose conversely thatn has this property. We show first thatn must be

square-free. For suppose
p2 | n,

wherep is an odd prime.
Let the exponent of(Z/n)× bee. Then

p | φ(n);

and so
p | e
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by Lemma 5.1 to Proposition 5.2. On the other hand,

e | n− 1

since
an−1 =

(
a
n−1

2

)2
≡ 1 mod n.

Thusp | n− 1 andp | n, which is absurd.
Thusn is square-free, say

n = p1 · · · pr,

wherep1, . . . , pr are distinct odd primes.
Our argument runs along the same lines as the proof of Proposition 5.4. Let

n− 1 = 2em, pi − 1 = 2eimi;

and let us re-arrange thepi so that

e1 = max(e1, . . . , er),

ie

v2(p1 − 1) ≥ v2(pi − 1)

for 1 ≤ i ≤ r.
By the Chinese Remainder Theorem, we can finda coprime ton such that(

a

p1

)
= −1,

(
a

p2

)
= 1, · · ·

(
a

pr

)
= 1.

Thus (
a

n

)
=

(
a

p1

)
· · ·

(
a

pr

)
= −1;

and so
a
n−1

2 ≡ −1 mod n.

Hence
a
n−1

2 ≡ −1 mod pi

for 1 ≤ i ≤ r.
Let the order ofa mod n bed; and let the orders ofa mod pi bedi. Then

v2(d) = v2(d1) = · · · = v2(dr) = v2(n− 1),

by Lemma 5.5 to Proposition 5.4.
On the other hand, (

a

p1

)
= −1 =⇒ v2(d1) = e1,
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by Lemma 5.4 to Proposition 5.4; while by the same Lemma,(
a

pi

)
= 1 =⇒ v2(di) < ei

for 2 ≤ i ≤ r.
But this is a contradiction, since eg

e1 ≥ e2 =⇒ v2(d1) > v2(d2).

J

At first sight this seems to offer an additional test for primality, which could
be incorporated into the Miller-Rabin test at the first stage; having determined
whether

a
n−1

2 ≡ ±1 mod n,

we could compute (
a

n

)
and see if this gives the same value.

However, the following result shows that this would be a waste of time; the
two values are certain to coincide.

Proposition 5.12 Supposen is an odd integer> 1. If n is a strong pseudoprime
to basea then

a
1
2

(n−1) =

(
a

n

)
.

Proof I Let
n− 1 = 2em,

wherem is odd.
Suppose first that

am ≡ 1 mod n.

Then

am ≡ 1 mod n =⇒ a
1
2

(n−1) = a2e−1m = (am)2e−1 ≡ 1 mod n.

On the other hand,a has odd ordermodn. Hencea has odd ordermodp for
each primep | n. It follows from Lemma 5.4 to Proposition 5.4 that(

a

p

)
= 1.

Since that is true for allp | n, (
a

n

)
=
∏
p

(
a

p

)
= 1.
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Now suppose that
a2im ≡ −1 mod n,

where0 ≤ i ≤ e− 1. Then

a
1
2

(n−1) = a2e−1m ≡

1 if i < e− 1

−1 if i = e− 1.

Now
a2im ≡ −1 mod n =⇒ a2im ≡ −1 mod p

for eachp | n. Let the order ofa mod p ber. Then

v2(r) = i+ 1

by Lemma 5.5 to Proposition 5.4.
Suppose first thati < e− 1. In that case

v2(r) = i+ 1 < e = v2(p− 1).

Hence (
a

p

)
= 1

by Lemma 5.4 to Proposition 5.4. Since this holds for allp | n,(
a

n

)
= 1.

Thus the result holds in this case.
Finally, supposei = e− 1. Then

a
1
2

(n−1) = a2e−1m = a2im ≡ −1 mod n.

If (
a

p

)
= −1

then by Lemma 5.4 to Proposition 5.4

v2(p− 1) = i+ 1 = e =⇒ p ≡ 1 mod 2e, p 6≡ 1 mod 2e+1

=⇒ p ≡ 1 + 2e mod 2e+1.

On the other hand, if (
a

p

)
= 1

then by the same Lemma

v2(p− 1) > i+ 1 = e =⇒ p ≡ 1 mod 2e+1.
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Supposen hasr prime factorsp with(
a

p

)
= −1.

Then

n ≡ (1 + 2e)r mod 2e+1

≡

1 mod 2e+1 if r is even,

1 + 2e mod 2e+1 if r is odd.

But
2e ‖ n− 1,

and so
n 6≡ 1 mod 2e+1.

Thusr is odd, and so (
a

n

)
= (−1)r = −1.

So the result holds also in this last case.J
However, although the weaker test is of no practical value, it does have some

theoretical significance because of the following result.

Proposition 5.13 Supposen is an odd integer> 1. Then the congruence classes

{ā ∈ (Z/n)× : ā
n−1

2 =

(
ā

n

)
}

form a subgroup of(Z/n)×.

Proof I This follows at once from the multiplicative property of the Jacobi sym-
bol, as spelled out in Proposition 5.6(ii).J

By Proposition 5.11, this subgroup is proper if and only ifn is composite. But
it has been shown (by E. Bach) that if the Extended Riemann Hypothesis (ERH)
holds, and

S ⊂ (Z/n)×

is a proper subgroup then there is ana /∈ S with

0 < a < 2(log n)2.

This implies that if the ERH holds then our weaker test, and soa fortiori the
Miller-Rabin test, must complete in polynomial time; for we need only determine
whethern is a stronga-pseudoprime fora in the above range.
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