Course 2316 - Sample Paper 3

Timothy Murphy

April 23, 2015

The exam will last for 2 hours.
Attempt 5 questions. All carry the same mark.

1. Show that

$$
\sum_{p \text { prime }} \frac{1}{p}
$$

is divergent.
2. How many numbers between 1 and 1 million are not divisible by any of the 10 integers $1-10$?
3. State (without proof) the Prime Number Theorem.

Show that the theorem implies that

$$
p_{n} \sim n \log n
$$

where p_{n} is the nth prime.
4. Find all the generators of the multiplicative group $(\mathbb{Z} / 23)^{\times}$.

Is the group $(\mathbb{Z} / 25)^{\times}$(formed by the invertible elements of $\left.\mathbb{Z} /(25)\right)$ cyclic? If so, find a generator.
5. Show that if $2^{m}+1$ is prime then $m=2^{n}$ for some $n \in \mathbb{N}$.

Show that the Fermat number

$$
F_{n}=2^{2^{n}}+1
$$

where $n>0$, is prime if and only if

$$
3^{2^{2^{n}-1}} \equiv-1 \bmod F_{n}
$$

6. Suppose

$$
n-1=2^{e} m,
$$

where m is odd. Show that if n is prime, and a is coprime to n, then either

$$
a^{m} \equiv 1 \bmod n
$$

or else

$$
2^{f} a^{m} \equiv-1 \bmod n
$$

for some $f \in[0, e)$.
Show conversely that if this is true for all a coprime to n then n is prime.
7. State without proof Gauss' Quadratic Reciprocity Law.

Does there exist a number n such that n^{2} ends in the digits 1234 ? If so, find the smallest such n.
8. What is meant by an algebraic number and by an algebraic integer?

Show that the algebraic integers in the field $\mathbb{Q}(\sqrt{-3}$ form the ring $\mathbb{Z}[\omega]$, where $\omega=(1+\sqrt{-3}) / 2 /$
Show that this ring is a unique factorisation domain, and determine the units and primes in this domain.

