Course 2316 - Sample Paper 3

Timothy Murphy

April 20, 2015

The exam will last for 2 hours.
Attempt 5 questions. All carry the same mark.

1. Show that

$$
\sum_{p \text { prime }} \frac{1}{p}
$$

is divergent. Answer:
By the Fundamental Theorem, each integer $n \geq 1$ is expressible in the form

$$
n=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} \cdots,
$$

where the sum extends over the primes, and $e_{p} \in \mathbb{N}$, with all but a finite number of the $e_{p}=0$.

Inverting,

$$
\frac{1}{n}=\frac{1}{2^{e_{2}}} \frac{1}{3^{e_{3}}} \frac{1}{5^{e_{5}}} \cdots .
$$

Informally, by addition,

$$
\begin{aligned}
\sum_{n \in \mathbb{N}} \frac{1}{n} & =\sum_{e_{2} \in \mathbb{N}} \frac{1}{2^{e_{2}}} \sum_{e_{3} \in \mathbb{N}} \frac{1}{3^{e_{3}}} \sum_{e_{5} \in \mathbb{N}} \frac{1}{5^{e_{5}}} \cdots \\
& =(1-1 / 2)^{-1}(1-1 / 3)^{-1}(1-1 / 5)^{-1} \cdots \\
& =\prod_{p} \frac{1}{1-1 / p} .
\end{aligned}
$$

Formally,

$$
\sum_{n \leq N} \frac{1}{n} \leq \prod_{p \leq N} \frac{1}{1-1 / p},
$$

since the primes dividing n are all $\leq n$.
We know that

$$
\sum_{n \in \mathbb{N}} \frac{1}{n}
$$

is divergent. It follows that

$$
\prod_{p \leq N} \frac{1}{1-1 / p} \rightarrow \infty
$$

as $N \rightarrow \infty$.
Thus, taking logarithms,

$$
\sum_{p} \ln \left(\frac{1}{p-1}\right)=\sum_{p} \ln \left(1+\frac{1}{p-1}\right)
$$

diverges.
But

$$
\ln (1+x) \leq x
$$

if $x \geq 1$; for if

$$
f(x)=\ln (1+x)-x
$$

then

$$
f^{\prime}(x)=\frac{1}{1+x}-1=-\frac{x}{1+x} \leq 0 .
$$

It follows that

$$
\sum_{p} \frac{1}{p-1}
$$

diverges, and so therefore does

$$
\sum_{p} \frac{1}{p},
$$

since $p_{n}-1 \geq p_{n-1}$.
2. How many numbers between 1 and 1 million are not divisible by any of the 10 integers $1-10$?
Answer: Lemma. Suppose X is a finite set, and suppose

$$
S_{i} \subset X
$$

for $i=1, \ldots, r$. Then

$$
\begin{aligned}
& \quad \#\left(S_{1} \cup S_{2} \cup \cdots \cup S_{r}\right)= \\
& \sum_{i} \#\left(S_{i}\right)-\sum_{i, j} \#\left(S_{i} \cap S_{j}\right)+\sum_{i, j . k} \#\left(S_{i} \cap S_{j} \cap S_{k}\right)-\sum_{i, j . k . l} \#\left(S_{i} \cap S_{j} \cap S_{k} \cap S_{l}\right)+\cdots .
\end{aligned}
$$

We use this lemma to determine the size of the complementary set S, ie the numbers in $\left[1,10^{6}\right]$ divisible by one of 2-10, or in other words by $2,3,5$, or 7 .
If we set

$$
T_{m}=\left\{n \in\left[1,10^{6}\right]: m \mid n\right\}
$$

then

$$
S=T_{2} \cup T_{3} \cup T_{5} \cup T_{7} ;
$$

Also

$$
T_{m}=\left[10^{6} / \mathrm{m}\right],
$$

where $[x]$ is the largest integer $\leq x$; and if $\operatorname{gcd}(m, n)=1$ then

$$
T_{m} \cap T_{n}=T_{m n} .
$$

Hence, by the Lemma,

$$
\left.\begin{array}{c}
\# S=\# T_{2}+\# T_{3}+\# T_{5}+\# T_{7} \\
-\# T_{6}-\# T_{10}-\# T_{14}-\# T_{15}-\# T_{21}-\# T_{35} \\
\quad+\# T_{30}+\# T_{42}+\# T_{70}+\# T_{105} \\
\quad-\# T_{210} \\
=500,000+333,333+200,000+142,857 \\
-166,666-100,000-71,428-66,666-47,619-28,571 \\
+33,333+23,809+14,285+9,523 \\
\quad-4,761
\end{array}\right] \begin{gathered}
=(500,000+200,000-100,000+333,333-33,333)+(142,857-71,428) \\
-(166,666+66,666)-(47,619-23,809)-(28,571-14,285)+(9,523-4,761) \\
=900,000+71,429-233,332-23,810-14,286+4,762 \\
=976,191-271,428 \quad=704,763 .
\end{gathered}
$$

Thus the number not divisible by $1-10$ is

$$
1,000,000-704,763=295,237 .
$$

[Nb: I have not checked my arithmetic!]
3. State (without proof) the Prime Number Theorem.

Show that the theorem implies that

$$
p_{n} \sim n \log n
$$

where p_{n} is the nth prime.

Answer:

(a) Theorem.

$$
\pi(x) \sim \frac{\ln x}{x},
$$

where $\pi(x)$ denotes the number of primes $\leq x$.
(b) By definition

$$
\pi\left(p_{n}\right)=n
$$

Let

$$
f(x)=\frac{x}{\ln x}, \quad g(x)=x \ln x .
$$

Then

$$
\begin{aligned}
g(f(x)) & =\frac{x}{\ln x}(\ln x-\ln \ln x) \\
& =x \frac{\ln x}{\ln x-\ln \ln x} \\
& \sim x
\end{aligned}
$$

while

$$
\begin{aligned}
f(g(x)) & =\frac{x \ln x}{\ln x+\ln \ln x} \\
& =x \frac{\ln x}{\ln x+\ln \ln x} \\
& \sim x .
\end{aligned}
$$

Hence

$$
\pi(x) \sim f(x) \Longrightarrow g(\pi(x)) \sim g(f(x)) \sim x
$$

In particular, setting $x=p_{n}$,

$$
g(n) \sim p_{n}
$$

ie

$$
p_{n} \sim n \ln n .
$$

4. Find all the generators of the multiplicative group $(\mathbb{Z} / 23)^{\times}$.

Is the group $(\mathbb{Z} / 25)^{\times}$(formed by the invertible elements of $\mathbb{Z} /(25)$) cyclic? If so, find a generator.

Answer:

(a) The group $(\mathbb{Z} / 23)^{\times}$has 22 elements, so the order of each element divides 22, by Lagrange's Theorem, ie the order is 1,2,11 or 22. Evidently $2^{2} \not \equiv 1 \bmod 23$. So 2 has order 11 or $22 \bmod 23$.

We have

$$
2^{6}=64 \equiv-5 \bmod 23,
$$

so

$$
2^{12} \equiv 25 \equiv 2 \bmod 23 .
$$

Since $\operatorname{gcd}(2,23)=1$, we can divide by 2, and so

$$
2^{11}=1 \bmod 23
$$

Thus 2 has order $11 \bmod 23$.
Since

$$
(-2)^{11} \equiv-2^{11} \equiv-1 \bmod 23,
$$

it follows that -2 has order 22 mod 23, ie -2 generates the group, which is therefore cyclic [as of course we know].
Lemma. If g is a generator of the cyclic group C_{n} then g^{r} is also a generator if and only if $\operatorname{gcd}(r, n)=1$.
It follows that the generators of $(\mathbb{Z} / 23)^{\times}$are

$$
(-2)^{r} \bmod 23 \quad(r=1,3,5,7,9,13,15,17,19,21)
$$

Now we know that

$$
(-2)^{r} \equiv-2^{r} \bmod 23
$$

if r is odd, while

$$
2^{11} \equiv 1 \bmod 23
$$

Hence

$$
\begin{aligned}
(-2)^{3} & \equiv-8 \bmod 23 \\
(-2)^{5} & \equiv-32 \equiv-9 \bmod 23 \\
(-2)^{7} & \equiv 4 \cdot-9=-36 \equiv 10 \bmod 23 \\
(-2)^{9} & \equiv 4 \cdot 10=40 \equiv-6 \bmod 23 \\
{\left[(-2)^{11}\right.} & \equiv 4 \cdot-6 \equiv-1 \bmod 23,] \\
(-2)^{13} & \equiv 4 \cdot-1=-4 \bmod 23 \\
(-2)^{15} & \equiv 4 \cdot-4=-16 \equiv 7 \bmod 23 \\
(-2)^{17} & \equiv 4 \cdot 7=28 \equiv 5 \bmod 23 \\
(-2)^{19} & \equiv 4 \cdot 5=20 \equiv-3 \bmod 23 \\
(-2)^{21} & \equiv 4 \cdot-3=-12 \equiv 11 \bmod 23 \\
{\left[(-2)^{22}\right.} & \equiv-2 \cdot 11=-22 \equiv 1 \bmod 23 .]
\end{aligned}
$$

Thus the generators of the group are:

$$
5,7,10,11,-2,-3,-4,-6,-8,-9 \bmod 23 .
$$

(b) The group $(\mathbb{Z} / 25)^{\times}$has order

$$
\phi\left(5^{2}\right)=5 \cdot 4=20 .
$$

Evidently $(\mathbb{Z} / 5)^{\times}$is cyclic, with generators ± 2.
Thus 2 has order $4 \bmod 5$; so its order $\bmod 25$ is a multiple of 4 . On the other hand the order must divide 20. Hence it is either 4 or 20.
Now

$$
2^{4}=16 \not \equiv 1 \bmod 25 .
$$

Hence 2 has order $20 \bmod 25$, ie it is a generator of $(\mathbb{Z} / 25)^{\times}$, which is therefore cyclic.
5. Show that if $2^{m}+1$ is prime then $m=2^{n}$ for some $n \in \mathbb{N}$.

Show that the Fermat number

$$
F_{n}=2^{2^{n}}+1,
$$

where $n>0$, is prime if and only if

$$
3^{2^{2^{n}-1}} \equiv-1 \bmod F_{n} .
$$

Answer:

(a) Let

$$
f(x)=x^{r}+1 .
$$

If r is odd then

$$
f(-1)=0 .
$$

It follows that

$$
x+1 \mid f(x) .
$$

In fact

$$
f(x)=(x+1)\left(x^{r-1}-x^{r-2}+\cdots-x+1\right) .
$$

If now m has an odd factor r, say

$$
m=r s,
$$

then it follows on setting $x=2^{s}$ that

$$
2^{s}+1 \mid 2^{m}+1
$$

Hence m has no odd factors if $2^{m}+1$ is prime, ie

$$
m=2^{n} .
$$

(b) Suppose

$$
F_{n}=2^{2^{n}}+1 \quad(n>0)
$$

is prime.
Then

$$
F_{n} \equiv 1 \bmod 4
$$

It follows from Gauss' Reciprocity Theorem that

$$
\left(\frac{3}{F_{n}}\right)=\left(\frac{F_{n}}{3}\right)
$$

Now

$$
2^{2^{n}} \equiv(-1)^{2^{n}} \equiv 1 \bmod 3,
$$

and so

$$
F_{n} \equiv 2 \bmod 3
$$

It follows that

$$
\left(\frac{3}{F_{n}}\right)=\left(\frac{2}{3}\right)=-1
$$

But by Eisenstein's Criterion,

$$
3^{(N-1) / 2} \equiv\left(\frac{3}{F_{n}}\right)=-1 \bmod F_{n},
$$

ie

$$
3^{2^{2^{n}-1}} \equiv-1 \bmod F_{n} .
$$

Conversely, suppose this result holds. Since $F_{n} \equiv 2 \bmod 3$, it must have a prime factor

$$
P \equiv 2 \bmod 3 ;
$$

and then

$$
3^{2^{2^{n}-1}} \equiv-1 \bmod P
$$

It follows that the order of $3 \bmod P$ must be exactly $2^{2^{n}}$. For certainly

$$
3^{2^{2^{n}}}=\left(3^{2^{2^{n}-1}}\right)^{2} \equiv 1 \bmod P .
$$

So the order divides $2^{2^{n}}$, and is therefore a power of 2. But the order cannot be smaller than $2^{2^{n}}$ since

$$
3^{2^{2^{n}-1}} \not \equiv 1 \bmod P
$$

By Fermat's Little Theorem,

$$
2^{2^{n}} \mid P-1
$$

Hence

$$
2^{2^{n}} \leq P-1
$$

ie

$$
P \geq 2^{2^{n}}+1=F_{n} .
$$

It follows that

$$
P=F_{n}
$$

ie F_{n} is prime.
6. Suppose

$$
n-1=2^{e} m
$$

where m is odd. Show that if n is prime, and a is coprime to n, then either

$$
a^{m} \equiv 1 \bmod n
$$

or else

$$
2^{f} a^{m} \equiv-1 \bmod n
$$

for some $f \in[0, e)$.
Show conversely that if this is true for all a coprime to n then n is prime.

Answer:

(a) Suppose n is prime. Then

$$
a^{n-1}=a^{2^{e} m} \equiv 1 \bmod n,
$$

by Fermat's Little Theorem. Thus

$$
\left(a^{2^{e-1} m}\right)^{2} \equiv 1 \bmod n,
$$

and so

$$
a^{2^{e-1} m} \equiv \pm 1 \bmod n
$$

If

$$
a^{2^{e-1} m} \equiv-1 \bmod n
$$

we are done; otherwise

$$
\left(a^{2^{e-2} m}\right)^{2} \equiv 1 \bmod n,
$$

and so

$$
a^{2^{e-2} m} \equiv \pm 1 \bmod n
$$

Continuing in this way, we see that either

$$
a^{2^{f} m} \equiv-1 \bmod n
$$

at some stage, or else we conclude with

$$
a^{m} \equiv \pm 1 \bmod n .
$$

(b) Suppose now that n is not prime, but that all a coprime to n have the above property.
Then n has at least two prime factors. Let us suppose first that it has two distinct prime factors, p and q.
We are going to consider the orders of a modulo p, q, n. But we are only interested in the power of 2 dividing the order, in each case. Suppose $g \in G$ has order $2^{f} m$, where m is odd. Let us call f the 2-order of g, and write

$$
O_{2}(g, n)=f .
$$

[Nb: This is not a standard notation.]
Lemma. Suppose

$$
a^{2^{f} m} \equiv-1 \bmod n .
$$

Then

$$
O_{2}(a, n)=f+1
$$

For certainly

$$
a^{2^{f+1} m}=\left(a^{2^{f}}\right)^{2} \equiv 1 \bmod n,
$$

and so

$$
O_{2}(a, n) \leq f+1
$$

On the other hand, if

$$
O_{2}(a, n)=f^{\prime} \leq f
$$

so the order of $a \bmod n$ is $2^{f^{\prime}} m^{\prime}$, where m^{\prime} is odd, then

$$
\begin{aligned}
2^{f^{\prime}} m^{\prime} \mid 2^{f+1} m & \Longrightarrow m^{\prime} \mid m \\
& \Longrightarrow a^{2^{f} m} \equiv 1 \bmod n
\end{aligned}
$$

contrary to the supposition that

$$
a^{2^{2 f} m} \equiv-1 \bmod n,
$$

Hence

$$
O_{2}(a, n)=f+1
$$

Now suppose

$$
a^{2^{f} m} \equiv-1 \bmod n .
$$

Then

$$
a^{2^{f} m} \equiv-1 \bmod p \text { and } a^{2^{2 f} m} \equiv-1 \bmod q .
$$

It follows from the lemma that

$$
O_{2}(a, n)=O_{2}(a, p)=O_{2}(a, q)=f+1
$$

Lemma. If p is an odd prime, the group $(\mathbb{Z} / p)^{\times}$is cyclic.
It follows that we can find a having any order $\mid p-1$ modulo p, and any order $\mid q-1$ modulo q.
In particular, we can find an a such that

$$
O_{2}(a, p) \neq O_{2}(a, q),
$$

leading to a contradiction. It remains to consider the case when

$$
n=p^{r}
$$

with $r \geq 2$. In this case the group $(\mathbb{Z} / n)^{\times}$has order

$$
\phi\left(p^{r}\right)=(p-1) p^{r-1}
$$

It follows that we can find an element a of order p. But our hypothesis implies that

$$
a^{n-1} \equiv 1 \bmod n .
$$

Thus

$$
p \mid p^{r}-1,
$$

which is absurd.
We have shown that if all a coprime to n have the specified property then n must be prime.
[Note: Eisenstein's Criterion gives an alternative way of finding an a with

$$
O_{2}(a, p) \neq O_{2}(a, q),
$$

Suppose

$$
p-1=2^{g} r, q-1=2^{h} s,
$$

where r, s are odd.
By Eisenstein's Criterion,

$$
a^{(p-1) / 2}=a^{2^{g-1}} \equiv\left(\frac{a}{p}\right) \bmod p .
$$

Thus

$$
\left(\frac{a}{p}\right)=-1 \Longrightarrow a^{2^{g-1}} \equiv-1 \bmod p \Longrightarrow O_{2}(a, p)=g .
$$

On the other hand

$$
\left(\frac{a}{p}\right)=1 \Longrightarrow a^{2^{g-1}} \equiv 1 \bmod p \Longrightarrow O_{2}(a, p)<g
$$

But by the Chinese Remainder Theorem, we can choose $\left(\frac{a}{p}\right)$ and $\left(\frac{a}{q}\right)$ independently. In particular, we can find an a with

$$
O_{2}(a, p) \neq O_{2}(a, q),
$$

contradicting our hypothesis.]
7. State without proof Gauss' Quadratic Reciprocity Law.

Does there exist a number n such that n^{2} ends in the digits 1234 ? If so, find the smallest such n. Answer:
(a) If a is coprime to the prime p then we set

$$
\left(\frac{a}{p}\right)= \begin{cases}+1 & \text { if } a \text { is a quadratic residue } \bmod p \\ -1 & \text { if } a \text { is a quadratic non-residue } \bmod p\end{cases}
$$

Gauss' Law states that if p, q are odd primes then

$$
\left(\frac{p}{q}\right) \cdot\left(\frac{q}{p}\right)= \begin{cases}-1 & \text { if } p \equiv q \equiv 3 \bmod 4 \\ +1 & \text { otherwise }\end{cases}
$$

(b) We have to determine if there is an integer n such that

$$
n^{2} \equiv 1234 \bmod 10000
$$

By the Chinese Remainder Theorem this is equivalent to asking if each of the congruences

$$
\begin{aligned}
m^{2} & \equiv 1234 \bmod 2^{5}, \\
n^{2} & \equiv 1234 \bmod 5^{5}
\end{aligned}
$$

is soluble.
The first is insoluble, since

$$
m^{2} \equiv 1234 \bmod 2^{5} \Longrightarrow m^{2} \equiv 1234 \bmod 2^{2}
$$

and

$$
1234 \equiv 2 \bmod 4
$$

while

$$
m^{2} \equiv 0 \text { or } 1 \bmod 4
$$

Hence there is no such n.
8. What is meant by an algebraic number and by an algebraic integer?

Show that the algebraic integers in the field $\mathbb{Q}(\sqrt{-3}$ form the ring $\mathbb{Z}[\omega]$, where $\omega=(1+\sqrt{-3}) / 2 /$
Show that this ring is a unique factorisation domain, and determine the units and primes in this domain.
Answer:
(a) An algebraic number is a number $\alpha \in \mathbb{C}$ satisfying a polynomial equation

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}=0
$$

with $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Q}$.
(b) An algebraic integer is a number $\alpha \in \mathbb{C}$ satisfying a polynomial equation

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}=0,
$$

with $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N}$.
(c) The field $\mathbb{Q}(\sqrt{-3})$ consists of the numbers

$$
z=x+y \sqrt{-3}
$$

with $x, y \in \mathbb{Q}$. If z satisfies the equation

$$
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}=0,
$$

with $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Q}$, then so does

$$
\bar{z}=x-y \sqrt{-3} .
$$

Lemma. The algebraic integers form a ring.
Lemma. If $\alpha \in \mathbb{Q}$ is an algebraic integer then $\alpha \in \mathbb{Z}$.
Suppose z is an algebraic integer. Then so is \bar{z} (since it satisfies the same polynomial equations over \mathbb{Q} or \mathbb{Z}). It follows that

$$
z+\bar{z}=2 x
$$

is an algebraic integer, and so

$$
2 x \in \mathbb{Z}
$$

Similarly,

$$
z \bar{z}=x^{2}+3 y^{2} \in \mathbb{Z}
$$

Hence

$$
\begin{aligned}
4 x^{2}+12 y^{2} & =(2 x)^{2}+3(2 y)^{2} \in \mathbb{Z} \\
& \Longrightarrow 3(2 y)^{2} \in \mathbb{Z} \\
& \Longrightarrow 2 y \in \mathbb{Z}
\end{aligned}
$$

Thus

$$
x=a / 2, y=b / 2,
$$

where $a, b \in \mathbb{Z}$ and

$$
x^{2}+3 y^{2}=\frac{a^{2}+3 b^{2}}{4} \in \mathbb{N}
$$

ie

$$
a^{2}+3 b^{2} \equiv 0 \bmod 4
$$

Hence either a, b are both odd, or both even. It follows that

$$
z=c+d \frac{1+\sqrt{-3}}{2}=c+d \omega
$$

with $c, d \in \mathbb{Z}$.
Conversely, ω is an algebraic integer, since it satisfies the equation

$$
x^{2}-x+1=0 .
$$

Thus

$$
z=c+d \omega
$$

is an algebraic integer, since the algebraic integers form a ring.
Hence the algebraic integers in $\mathbb{Q}(\sqrt{-3})$ are the numbers

$$
\{c+d \omega: c, d \in \mathbb{Z}\}=\mathbb{Z}[\omega] .
$$

(d) If

$$
z=x+y \sqrt{-3} \quad(x, y \in \mathbb{Q})
$$

we set

$$
\mathcal{N}(z)=z \bar{z}=x^{2}+3 y^{2}
$$

Evidently,

$$
\mathcal{N}(z w)=\mathcal{N}(z) \mathcal{N}(w)
$$

Now suppose $z, w \in \mathbb{Z}[\omega]$. Let

$$
\frac{z}{w}=x+y \omega .
$$

Choose $a, b \in \mathbb{Z}$ such that

$$
|x-a| \leq 1 / 2,|y-b| \leq 1 / 2,
$$

and let

$$
q=a+b \omega .
$$

Then

$$
\frac{z}{w}-q=(x-a)+(y-b) \omega .
$$

Hence

$$
\mathcal{N}\left(\frac{z}{w}-q\right)=\frac{(x-a)^{2}+3(y-b)^{2}}{4} \leq \frac{1 / 4+3 / 4}{4}=\frac{1}{4}<1 .
$$

Thus

$$
\mathcal{N}(z-q w)<\mathcal{N}(w)
$$

In other words, given $z, w \neq 0 \in \mathbb{Z}[\omega]$ we can find $q, r \in \mathbb{Z}[\omega]$ such that

$$
z=q w+r,
$$

with $\mathcal{N}(r)<\mathcal{N}(w)$.

This allows us to set up the Euclidean Algorithm:

$$
\begin{aligned}
z & =q_{0} w+r_{0}, \\
w & =q_{1} r_{0}+r_{1}, \\
r_{0} & =q_{2} r_{1}+r_{2}, \\
& \cdots \\
r_{n-1} & =q_{n+1} r_{n} .
\end{aligned}
$$

The process must finish, since

$$
\mathcal{N}\left(r_{0}\right)>\mathcal{N}\left(r_{1}\right)>\cdots>\mathcal{N}\left(r_{n}\right)>0
$$

ie the norms form a decreasing sequence of positive integers. It follows that

$$
d=r_{n}=\operatorname{gcd}(z, w)
$$

ie

$$
d \mid z, w \text { and } e|z, w \Longrightarrow e| d
$$

Also, working backwards through the algorithm, we can find $u, v \in$ $\mathbb{Z}[\omega]$ such that

$$
u z+v w=d
$$

Recall that $\epsilon \in \mathbb{Z}[\omega]$ is said to be a unit if it is invertible in $\mathbb{Z}[\omega]$.
Lemma. $\quad \epsilon$ is a unit if and only if $\mathcal{N}(\epsilon)=1$.
For

$$
\begin{aligned}
\epsilon \theta=1 & \Longrightarrow \mathcal{N}(\epsilon) \mathcal{N}(\theta)=\mathcal{N}(1)=1 \\
& \Longrightarrow \mathcal{N}(\epsilon)=\mathcal{N}(\theta)=1
\end{aligned}
$$

Conversely

$$
\mathcal{N}(\epsilon)=1 \Longrightarrow \epsilon \bar{\epsilon}=1
$$

We say that π is indecomposable if

$$
\pi=\sigma \tau
$$

implies that σ or tau is a unit.
Now we can establish Euclid's Lemma: If π is indecomposable then

$$
\pi|z w \Longrightarrow \pi| z \text { or } \pi \mid w
$$

Lemma. Suppose $z \in \mathbb{Z}[\omega]$. Then z is expressible as a product of indecomposables:

$$
z=\pi_{1} \cdots \pi_{r}
$$

This follows by induction on $\mathcal{N}(z)$. If z is indecomposable the result is trivial. Otherwise

$$
z=u v,
$$

where neither u nor v is a unit. Hence

$$
\mathcal{N}(u), \mathcal{N}(v)>1 \Longrightarrow \mathcal{N}(u), \mathcal{N}(v)<\mathcal{N}(z)
$$

so the inductive hypothesis can be applied to u, v, giving the result for z.
Finally, the uniqueness of the expression for z as a product of irreducibles (up to order and multiplication by units) follows from Euclid's Lemma. Again, we argue by induction on $\mathcal{N}(z)$. Suppose

$$
z=\pi_{1} \cdots \pi_{r}=\pi_{1}^{\prime} \cdots \pi_{s}^{\prime} .
$$

Then

$$
\pi_{1} \mid \pi_{i}^{\prime}
$$

for some i, by Euclid's Lemma; and uniqueness follows on applying the inductive hypothesis to

$$
z / \pi_{1}=\pi_{2} \cdots \pi_{r}=\pi^{\prime} 1 \cdots \pi_{r-1}^{\prime} \pi_{r+1}^{\prime} \cdots \pi_{s}^{\prime}
$$

(e) We have seen that

$$
\epsilon=a+b \omega
$$

is a unit if and only if
$\mathcal{N}(\epsilon)=(a+b \omega)(a+b \bar{\omega})=(a+b \omega)\left(a+b \omega^{2}\right)=a^{2}-a b+b^{2}=1$.
In other words,

$$
\left(a-\frac{1}{2} b\right)^{2}+\frac{3}{4} b^{2}=1
$$

ie

$$
(2 a-b)^{2}+3 b^{2}=4
$$

Evidently the only solutions to this are

$$
(2 a-b, b)=(\pm 2,0) \text { or }(\pm 1, \pm 1)
$$

giving

$$
(a, b)= \pm(1,0), \pm(1,1), \pm(0,1)
$$

Since $1+\omega=-\omega^{2}$, it follows that $\mathbb{Z}[\omega]$ has just 6 units:

$$
\pm 1, \pm \omega, \pm \omega^{2}
$$

(f) Since we have established unique factorisation, we may refer to indecomposables as 'primes', with the understanding that we do not distinguish between π and $\epsilon \pi$, where ϵ is a unit.
Suppose π is prime. Let

$$
\mathcal{N}(\pi)=\pi \bar{\pi}=p_{1} \ldots p_{r}
$$

where the p_{i} are rational primes. Then

$$
\pi \mid p_{i}
$$

for some p_{i}.
So every prime π divides a rational prime p. Hence

$$
\mathcal{N}(\pi) \mid \mathcal{N}(p)=p^{2}
$$

Thus

$$
\mathcal{N}(\pi)=p \text { or } p^{2}
$$

If $\mathcal{N}(\pi)=p^{2}$ then

$$
p=\epsilon \pi
$$

ie the rational prime p does not split in $\mathbb{Z}[\omega]$.
If $\mathcal{N}(\pi)=p$ then

$$
p=\pi \bar{\pi}
$$

ie p splits into two primes.
Evidently,

$$
3=-(\sqrt{-3})^{2}
$$

so 3 ramifies.
Thus we may assume that $p \neq 3$.
Suppose

$$
p=\pi \bar{\pi}
$$

where

$$
\pi=a+b \omega
$$

Then

$$
a^{2}+a b+b^{2}=p .
$$

Note that if $p=2$ then a, b must both be even, in which case the left-hand side is divisible by 4, which is impossible. So 2 does not split in $\mathbb{Z}[\omega]$, and we may assume that $p \neq 2,3$.
Now

$$
a^{2}+a b+b^{2} \equiv 0 \bmod p,
$$

and so

$$
(2 a-b)^{2}+3 b^{2} \equiv 0 \bmod p .
$$

But this implies that -3 is a quadratic residue $\bmod p$, since b is evidently coprime to p, ie

$$
\left(\frac{-3}{p}\right)=1
$$

But

$$
\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right),
$$

and

$$
\left(\frac{-1}{p}\right)= \begin{cases}+1 & \text { if } p \equiv \pm 1 \bmod 8 \\ -1 & \text { if } p \equiv \pm 3 \bmod 8\end{cases}
$$

Also, by Gauss' Reciprocity Theorem,

$$
\left(\frac{3}{p}\right)= \begin{cases}+\left(\frac{p}{3}\right) & \text { if } p \equiv 1 \bmod 4 \\ -\left(\frac{p}{3}\right) & \text { if } p \equiv-1 \bmod 4,\end{cases}
$$

while

$$
\left(\frac{p}{3}\right)= \begin{cases}+1 & \text { if } p \equiv 1 \bmod 3 \\ -1 & \text { if } p \equiv-1 \bmod 3 .\end{cases}
$$

Putting all these together, we see that

$$
\left(\frac{-3}{p}\right)= \begin{cases}+1 & \text { if } p \equiv 1,5,19,23 \bmod 24 \\ -1 & \text { if } p \equiv 7,11,13,17 \bmod 24 .\end{cases}
$$

ie

$$
\left(\frac{-3}{p}\right)= \begin{cases}+1 & \text { if } p \equiv \pm 1, \pm 5 \bmod 24 \\ -1 & \text { if } p \equiv \pm 7, \pm 11 \bmod 24\end{cases}
$$

Finally, suppose

$$
\left(\frac{-3}{p}\right)=1,
$$

ie -3 is a quadratic residue $\bmod p$. Then we can a coprime to p such that

$$
a^{2}+3 \equiv 0 \bmod p
$$

ie

$$
a^{2}+3=p q
$$

ie

$$
(a+\sqrt{-3})(a-\sqrt{-3})=p q .
$$

If now p remains prime in $\mathbb{Z}[\omega]$ then since there is unique factorisation in this ring it follows that

$$
p \mid(a+\sqrt{-3}) \text { or } p \mid(a-\sqrt{-3})
$$

both of which imply that $p \mid 1$, which is absurd.
We conclude that the rational prime $p \neq 2,3$ splits in $\mathbb{Z}[\omega]$ if and only if

$$
p \equiv \pm 1, \pm 5 \bmod 24
$$

We should consider finally if the prime p ramifies in any of these cases, ie if

$$
\bar{\pi}=\epsilon \pi,
$$

where $\epsilon \in\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$.
If this is so, then (multiplying by π),

$$
p=\epsilon \pi^{2}
$$

Suppose

$$
\pi=a+b \omega .
$$

Then

$$
\begin{aligned}
\pi^{2} & =(a+b \omega)^{2} \\
& =a^{2}+a b \omega+b^{2} \omega^{2} \\
& =\left(a^{2}-b^{2}\right)+\left(a b-b^{2}\right) \omega .
\end{aligned}
$$

Thus

$$
\begin{aligned}
p \mid \pi^{2} & \Longrightarrow a b-b^{2}=b(a-b) \equiv 0 \bmod p \\
& \Longrightarrow a \equiv b \bmod p \\
& \Longrightarrow p=a^{2}-a b+b^{2} \equiv a^{2} \bmod p \\
& \Longrightarrow p \mid a,
\end{aligned}
$$

contradicting the fact that a is coprime to p.
We have shown therefore that in $\mathbb{Z}[\omega]$
i. $p=3$ ramifies;
ii. if $p=2$ or $p \equiv \pm 7, \pm 11 \bmod 24$ then p remains prime;
iii. if $p \equiv \pm 1, \pm 5 \bmod 24$ then p splits into 2 distinct primes.

