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The exam will last for 2 hours.

Attempt 5 questions. All carry the same mark.

1. Show that ∑
p prime

1

p

is divergent. Answer:

By the Fundamental Theorem, each integer n ≥ 1 is expressible in the
form

n = 2e23e35e5 · · · ,

where the sum extends over the primes, and ep ∈ N, with all but a finite
number of the ep = 0.

Inverting,
1

n
=

1

2e2

1

3e3

1

5e5
· · · .

Informally, by addition,∑
n∈N

1

n
=
∑
e2∈N

1

2e2

∑
e3∈N

1

3e3

∑
e5∈N

1

5e5
· · ·

= (1− 1/2)−1(1− 1/3)−1(1− 1/5)−1 · · ·

=
∏
p

1

1− 1/p
.

Formally, ∑
n≤N

1

n
≤
∏
p≤N

1

1− 1/p
,

since the primes dividing n are all ≤ n.

We know that ∑
n∈N

1

n



is divergent. It follows that∏
p≤N

1

1− 1/p
→∞

as N →∞.

Thus, taking logarithms,∑
p

ln

(
1

p− 1

)
=
∑
p

ln

(
1 +

1

p− 1

)
diverges.

But
ln(1 + x) ≤ x

if x ≥ 1; for if
f(x) = ln(1 + x)− x

then

f ′(x) =
1

1 + x
− 1 = − x

1 + x
≤ 0.

It follows that ∑
p

1

p− 1

diverges, and so therefore does ∑
p

1

p
,

since pn − 1 ≥ pn−1.

2. How many numbers between 1 and 1 million are not divisible by any
of the 10 integers 1− 10?

Answer: Lemma. Suppose X is a finite set, and suppose

Si ⊂ X

for i = 1, . . . , r. Then

#(S1 ∪ S2 ∪ · · · ∪ Sr) =∑
i

#(Si)−
∑
i,j

#(Si∩Sj)+
∑
i,j.k

#(Si∩Sj∩Sk)−
∑
i,j.k.l

#(Si∩Sj∩Sk∩Sl)+· · · .



We use this lemma to determine the size of the complementary set S,
ie the numbers in [1, 106] divisible by one of 2–10, or in other words by
2,3,5, or 7.

If we set
Tm = {n ∈ [1, 106] : m|n}

then
S = T2 ∪ T3 ∪ T5 ∪ T7;

Also
Tm = [106/m],

where [x] is the largest integer ≤ x; and if gcd(m,n) = 1 then

Tm ∩ Tn = Tmn.

Hence, by the Lemma,

#S = #T2 + #T3 + #T5 + #T7

−#T6 −#T10 −#T14 −#T15 −#T21 −#T35

+ #T30 + #T42 + #T70 + #T105

−#T210

= 500, 000 + 333, 333 + 200, 000 + 142, 857

− 166, 666− 100, 000− 71, 428− 66, 666− 47, 619− 28, 571

+ 33, 333 + 23, 809 + 14, 285 + 9, 523

− 4, 761

= (500, 000+200, 000−100, 000+333, 333−33, 333)+(142, 857−71, 428)

−(166, 666+66, 666)−(47, 619−23, 809)−(28, 571−14, 285)+(9, 523−4, 761)

= 900, 000 + 71, 429− 233, 332− 23, 810− 14, 286 + 4, 762

= 976, 191− 271, 428

= 704, 763.

Thus the number not divisible by 1–10 is

1, 000, 000− 704, 763 = 295, 237.

[Nb: I have not checked my arithmetic!]

3. State (without proof) the Prime Number Theorem.

Show that the theorem implies that

pn ∼ n log n,

where pn is the nth prime.

Answer:



(a) Theorem.

π(x) ∼ lnx

x
,

where π(x) denotes the number of primes ≤ x.

(b) By definition
π(pn) = n.

Let
f(x) =

x

lnx
, g(x) = x lnx.

Then

g(f(x)) =
x

lnx
(lnx− ln lnx)

= x
lnx

lnx− ln lnx

∼ x,

while

f(g(x)) =
x lnx

lnx+ ln lnx

= x
lnx

lnx+ ln lnx

∼ x.

Hence
π(x) ∼ f(x) =⇒ g(π(x)) ∼ g(f(x)) ∼ x.

In particular, setting x = pn,

g(n) ∼ pn,

ie

pn ∼ n lnn.

4. Find all the generators of the multiplicative group (Z/23)×.

Is the group (Z/25)× (formed by the invertible elements of Z/(25))
cyclic? If so, find a generator.

Answer:

(a) The group (Z/23)× has 22 elements, so the order of each element
divides 22, by Lagrange’s Theorem, ie the order is 1,2,11 or 22.

Evidently 22 6≡ 1 mod 23. So 2 has order 11 or 22 mod23.



We have

26 = 64 ≡ −5 mod 23,

so

212 ≡ 25 ≡ 2 mod 23.

Since gcd(2, 23) = 1, we can divide by 2, and so

211 = 1 mod 23.

Thus 2 has order 11 mod 23.

Since
(−2)11 ≡ −211 ≡ −1 mod 23,

it follows that −2 has order 22 mod 23, ie −2 generates the group,
which is therefore cyclic [as of course we know].

Lemma. If g is a generator of the cyclic group Cn then gr is
also a generator if and only if gcd(r, n) = 1.

It follows that the generators of (Z/23)× are

(−2)r mod 23 (r = 1, 3, 5, 7, 9, 13, 15, 17, 19, 21).

Now we know that

(−2)r ≡ −2r mod 23

if r is odd, while
211 ≡ 1 mod 23.

Hence

(−2)3 ≡ −8 mod 23,

(−2)5 ≡ −32 ≡ −9 mod 23,

(−2)7 ≡ 4 · −9 = −36 ≡ 10 mod 23,

(−2)9 ≡ 4 · 10 = 40 ≡ −6 mod 23,

[(−2)11 ≡ 4 · −6 ≡ −1 mod 23, ]

(−2)13 ≡ 4 · −1 = −4 mod 23,

(−2)15 ≡ 4 · −4 = −16 ≡ 7 mod 23,

(−2)17 ≡ 4 · 7 = 28 ≡ 5 mod 23,

(−2)19 ≡ 4 · 5 = 20 ≡ −3 mod 23,

(−2)21 ≡ 4 · −3 = −12 ≡ 11 mod 23,

[(−2)22 ≡ −2 · 11 = −22 ≡ 1 mod 23.]

Thus the generators of the group are:

5, 7, 10, 11,−2,−3,−4,−6,−8,−9 mod 23.



(b) The group (Z/25)× has order

φ(52) = 5 · 4 = 20.

Evidently (Z/5)× is cyclic, with generators ±2.

Thus 2 has order 4 mod 5; so its order mod 25 is a multiple of 4.
On the other hand the order must divide 20. Hence it is either 4
or 20.

Now
24 = 16 6≡ 1 mod 25.

Hence 2 has order 20 mod 25, ie it is a generator of (Z/25)×,
which is therefore cyclic.

5. Show that if 2m + 1 is prime then m = 2n for some n ∈ N.

Show that the Fermat number

Fn = 22n + 1,

where n > 0, is prime if and only if

322
n−1 ≡ −1 mod Fn.

Answer:

(a) Let
f(x) = xr + 1.

If r is odd then
f(−1) = 0.

It follows that
x+ 1 | f(x).

In fact
f(x) = (x+ 1)(xr−1 − xr−2 + · · · − x+ 1).

If now m has an odd factor r, say

m = rs,

then it follows on setting x = 2s that

2s + 1 | 2m + 1.

Hence m has no odd factors if 2m + 1 is prime, ie

m = 2n.



(b) Suppose
Fn = 22n + 1 (n > 0)

is prime.

Then
Fn ≡ 1 mod 4.

It follows from Gauss’ Reciprocity Theorem that(
3

Fn

)
=

(
Fn

3

)
.

Now

22n ≡ (−1)2
n ≡ 1 mod 3,

and so

Fn ≡ 2 mod 3.

It follows that (
3

Fn

)
=

(
2

3

)
= −1.

But by Eisenstein’s Criterion,

3(N−1)/2 ≡
(

3

Fn

)
= −1 mod Fn,

ie

322
n−1 ≡ −1 mod Fn.

Conversely, suppose this result holds. Since Fn ≡ 2 mod 3, it must
have a prime factor

P ≡ 2 mod 3;

and then
322

n−1 ≡ −1 mod P.

It follows that the order of 3 mod P must be exactly 22n. For
certainly

322
n

= (322
n−1

)2 ≡ 1 mod P.

So the order divides 22n, and is therefore a power of 2. But the
order cannot be smaller than 22n since

322
n−1 6≡ 1 mod P.



By Fermat’s Little Theorem,

22n|P − 1.

Hence

22n ≤ P − 1.

ie

P ≥ 22n + 1 = Fn.

It follows that
P = Fn,

ie Fn is prime.

6. Suppose
n− 1 = 2em,

where m is odd. Show that if n is prime, and a is coprime to n, then
either

am ≡ 1 mod n

or else
2fam ≡ −1 mod n

for some f ∈ [0, e).

Show conversely that if this is true for all a coprime to n then n is
prime.

Answer:

(a) Suppose n is prime. Then

an−1 = a2
em ≡ 1 mod n,

by Fermat’s Little Theorem. Thus

(a2
e−1m)2 ≡ 1 mod n,

and so

a2
e−1m ≡ ±1 mod n.

If
a2

e−1m ≡ −1 mod n



we are done; otherwise

(a2
e−2m)2 ≡ 1 mod n,

and so

a2
e−2m ≡ ±1 mod n.

Continuing in this way, we see that either

a2
fm ≡ −1 mod n

at some stage, or else we conclude with

am ≡ ±1 mod n.

(b) Suppose now that n is not prime, but that all a coprime to n have
the above property.

Then n has at least two prime factors. Let us suppose first that it
has two distinct prime factors, p and q.

We are going to consider the orders of a modulo p, q, n. But we
are only interested in the power of 2 dividing the order, in each
case. Suppose g ∈ G has order 2fm, where m is odd. Let us call
f the 2-order of g, and write

O2(g, n) = f.

[Nb: This is not a standard notation.]

Lemma. Suppose

a2
fm ≡ −1 mod n.

Then
O2(a, n) = f + 1.

For certainly
a2

f+1m = (a2
f

)2 ≡ 1 mod n,

and so
O2(a, n) ≤ f + 1.

On the other hand, if

O2(a, n) = f ′ ≤ f,



so the order of a mod n is 2f ′m′, where m′ is odd, then

2f ′m′ | 2f+1m =⇒ m′ | m
=⇒ a2

fm ≡ 1 mod n,

contrary to the supposition that

a2
fm ≡ −1 mod n,

Hence
O2(a, n) = f + 1.

Now suppose
a2

fm ≡ −1 mod n.

Then
a2

fm ≡ −1 mod p and a2
fm ≡ −1 mod q.

It follows from the lemma that

O2(a, n) = O2(a, p) = O2(a, q) = f + 1.

Lemma. If p is an odd prime, the group (Z/p)× is cyclic.

It follows that we can find a having any order | p − 1 modulo p,
and any order | q − 1 modulo q.

In particular, we can find an a such that

O2(a, p) 6= O2(a, q),

leading to a contradiction. It remains to consider the case when

n = pr,

with r ≥ 2. In this case the group (Z/n)× has order

φ(pr) = (p− 1)pr−1.

It follows that we can find an element a of order p. But our
hypothesis implies that

an−1 ≡ 1 mod n.

Thus
p | pr − 1,

which is absurd.

We have shown that if all a coprime to n have the specified property
then n must be prime.



[Note: Eisenstein’s Criterion gives an alternative way of finding an a
with

O2(a, p) 6= O2(a, q),

Suppose
p− 1 = 2gr, q − 1 = 2hs,

where r, s are odd.

By Eisenstein’s Criterion,

a(p−1)/2 = a2
g−1 ≡

(
a

p

)
mod p.

Thus (
a

p

)
= −1 =⇒ a2

g−1 ≡ −1 mod p =⇒ O2(a, p) = g.

On the other hand(
a

p

)
= 1 =⇒ a2

g−1 ≡ 1 mod p =⇒ O2(a, p) < g.

But by the Chinese Remainder Theorem, we can choose

(
a

p

)
and

(
a

q

)
independently. In particular, we can find an a with

O2(a, p) 6= O2(a, q),

contradicting our hypothesis.]

7. State without proof Gauss’ Quadratic Reciprocity Law.

Does there exist a number n such that n2 ends in the digits 1234? If
so, find the smallest such n. Answer:

(a) If a is coprime to the prime p then we set(
a

p

)
=

{
+1 if a is a quadratic residue mod p,

−1 if a is a quadratic non-residue mod p.

Gauss’ Law states that if p, q are odd primes then(
p

q

)
·
(
q

p

)
=

{
−1 if p ≡ q ≡ 3 mod 4,

+1 otherwise.



(b) We have to determine if there is an integer n such that

n2 ≡ 1234 mod 10000.

By the Chinese Remainder Theorem this is equivalent to asking if
each of the congruences

m2 ≡ 1234 mod 25,

n2 ≡ 1234 mod 55

is soluble.

The first is insoluble, since

m2 ≡ 1234 mod 25 =⇒ m2 ≡ 1234 mod 22,

and

1234 ≡ 2 mod 4,

while
m2 ≡ 0 or 1 mod 4.

Hence there is no such n.

8. What is meant by an algebraic number and by an algebraic integer?

Show that the algebraic integers in the field Q(
√
−3 form the ring Z[ω],

where ω = (1 +
√
−3)/2/

Show that this ring is a unique factorisation domain, and determine
the units and primes in this domain.

Answer:

(a) An algebraic number is a number α ∈ C satisfying a polynomial
equation

xn + a1x
n−1 + a2x

n−2 + · · ·+ an = 0,

with a1, a2, . . . , an ∈ Q.

(b) An algebraic integer is a number α ∈ C satisfying a polynomial
equation

xn + a1x
n−1 + a2x

n−2 + · · ·+ an = 0,

with a1, a2, . . . , an ∈ N.



(c) The field Q(
√
−3) consists of the numbers

z = x+ y
√
−3

with x, y ∈ Q. If z satisfies the equation

xn + a1x
n−1 + a2x

n−2 + · · ·+ an = 0,

with a1, a2, . . . , an ∈ Q, then so does

z̄ = x− y
√
−3.

Lemma. The algebraic integers form a ring.

Lemma. If α ∈ Q is an algebraic integer then α ∈ Z.

Suppose z is an algebraic integer. Then so is z̄ (since it satisfies
the same polynomial equations over Q or Z). It follows that

z + z̄ = 2x

is an algebraic integer, and so

2x ∈ Z.

Similarly,
zz̄ = x2 + 3y2 ∈ Z.

Hence

4x2 + 12y2 = (2x)2 + 3(2y)2 ∈ Z
=⇒ 3(2y)2 ∈ Z
=⇒ 2y ∈ Z.

Thus
x = a/2, y = b/2,

where a, b ∈ Z and

x2 + 3y2 =
a2 + 3b2

4
∈ N

ie

a2 + 3b2 ≡ 0 mod 4.

Hence either a, b are both odd, or both even. It follows that

z = c+ d
1 +
√
−3

2
= c+ dω,



with c, d ∈ Z.

Conversely, ω is an algebraic integer, since it satisfies the equation

x2 − x+ 1 = 0.

Thus
z = c+ dω

is an algebraic integer, since the algebraic integers form a ring.

Hence the algebraic integers in Q(
√
−3) are the numbers

{c+ dω : c, d ∈ Z} = Z[ω].

(d) If
z = x+ y

√
−3 (x, y ∈ Q)

we set

N (z) = zz̄ = x2 + 3y2.

Evidently,

N (zw) = N (z)N (w).

Now suppose z, w ∈ Z[ω]. Let

z

w
= x+ yω.

Choose a, b ∈ Z such that

|x− a| ≤ 1/2, |y − b| ≤ 1/2,

and let
q = a+ bω.

Then
z

w
− q = (x− a) + (y − b)ω.

Hence

N (
z

w
− q) =

(x− a)2 + 3(y − b)2

4
≤ 1/4 + 3/4

4
=

1

4
< 1.

Thus

N (z − qw) < N (w).

In other words, given z, w 6= 0 ∈ Z[ω] we can find q, r ∈ Z[ω] such
that

z = qw + r,

with N (r) < N (w).



This allows us to set up the Euclidean Algorithm:

z = q0w + r0,

w = q1r0 + r1,

r0 = q2r1 + r2,

. . .

rn−1 = qn+1rn.

The process must finish, since

N (r0) > N (r1) > · · · > N (rn) > 0,

ie the norms form a decreasing sequence of positive integers.

It follows that

d = rn = gcd(z, w),

ie

d | z, w and e | z, w =⇒ e | d.

Also, working backwards through the algorithm, we can find u, v ∈
Z[ω] such that

uz + vw = d.

Recall that ε ∈ Z[ω] is said to be a unit if it is invertible in Z[ω].

Lemma. ε is a unit if and only if N (ε) = 1.

For

εθ = 1 =⇒ N (ε)N (θ) = N (1) = 1

=⇒ N (ε) = N (θ) = 1.

Conversely

N (ε) = 1 =⇒ εε̄ = 1.

We say that π is indecomposable if

π = στ

implies that σ or tau is a unit.

Now we can establish Euclid’s Lemma: If π is indecomposable then

π | zw =⇒ π | z or π | w.



Lemma. Suppose z ∈ Z[ω]. Then z is expressible as a product
of indecomposables:

z = π1 · · · πr.

This follows by induction on N (z). If z is indecomposable the
result is trivial. Otherwise

z = uv,

where neither u nor v is a unit. Hence

N (u),N (v) > 1 =⇒ N (u),N (v) < N (z),

so the inductive hypothesis can be applied to u, v, giving the result
for z.

Finally, the uniqueness of the expression for z as a product of
irreducibles (up to order and multiplication by units) follows from
Euclid’s Lemma. Again, we argue by induction on N (z). Suppose

z = π1 · · · πr = π′1 · · · π′s.

Then
π1 | π′i

for some i, by Euclid’s Lemma; and uniqueness follows on apply-
ing the inductive hypothesis to

z/π1 = π2 · · · πr = π′1 · · · π′r−1π′r+1 · · · π′s.

(e) We have seen that
ε = a+ bω

is a unit if and only if

N (ε) = (a+ bω)(a+ bω̄) = (a+ bω)(a+ bω2) = a2 − ab+ b2 = 1.

In other words,

(a− 1

2
b)2 +

3

4
b2 = 1,

ie

(2a− b)2 + 3b2 = 4.

Evidently the only solutions to this are

(2a− b, b) = (±2, 0) or (±1,±1),



giving

(a, b) = ±(1, 0), ±(1, 1), ±(0, 1).

Since 1 + ω = −ω2, it follows that Z[ω] has just 6 units:

±1, ±ω, ±ω2.

(f) Since we have established unique factorisation, we may refer to
indecomposables as ‘primes’, with the understanding that we do
not distinguish between π and επ, where ε is a unit.

Suppose π is prime. Let

N (π) = ππ̄ = p1 . . . pr,

where the pi are rational primes. Then

π | pi

for some pi.

So every prime π divides a rational prime p. Hence

N (π) | N (p) = p2.

Thus

N (π) = p or p2.

If N (π) = p2 then
p = επ,

ie the rational prime p does not split in Z[ω].

If N (π) = p then
p = ππ̄,

ie p splits into two primes.

Evidently,
3 = −(

√
−3)2,

so 3 ramifies.

Thus we may assume that p 6= 3.

Suppose

p = ππ̄,

where

π = a+ bω.



Then
a2 + ab+ b2 = p.

Note that if p = 2 then a, b must both be even, in which case the
left-hand side is divisible by 4, which is impossible. So 2 does not
split in Z[ω], and we may assume that p 6= 2, 3.

Now

a2 + ab+ b2 ≡ 0 mod p,

and so

(2a− b)2 + 3b2 ≡ 0 mod p.

But this implies that −3 is a quadratic residue mod p, since b is
evidently coprime to p, ie (

−3

p

)
= 1.

But (
−3

p

)
=

(
−1

p

)(
3

p

)
,

and (
−1

p

)
=

{
+1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8.

Also, by Gauss’ Reciprocity Theorem,

(
3

p

)
=


+

(
p

3

)
if p ≡ 1 mod 4,

−
(
p

3

)
if p ≡ −1 mod 4,

while (
p

3

)
=

{
+1 if p ≡ 1 mod 3,

−1 if p ≡ −1 mod 3.

Putting all these together, we see that(
−3

p

)
=

{
+1 if p ≡ 1, 5, 19, 23 mod 24,

−1 if p ≡ 7, 11, 13, 17 mod 24.



ie (
−3

p

)
=

{
+1 if p ≡ ±1,±5 mod 24,

−1 if p ≡ ±7,±11 mod 24.

Finally, suppose (
−3

p

)
= 1,

ie −3 is a quadratic residue mod p. Then we can a coprime to p
such that

a2 + 3 ≡ 0 mod p,

ie

a2 + 3 = pq

ie

(a+
√
−3)(a−

√
−3) = pq.

If now p remains prime in Z[ω] then since there is unique factori-
sation in this ring it follows that

p | (a+
√
−3) or p | (a−

√
−3)

both of which imply that p | 1, which is absurd.

We conclude that the rational prime p 6= 2, 3 splits in Z[ω] if and
only if

p ≡ ±1,±5 mod 24.

We should consider finally if the prime p ramifies in any of these
cases, ie if

π̄ = επ,

where ε ∈ {±1,±ω,±ω2}.
If this is so, then (multiplying by π),

p = επ2.

Suppose
π = a+ bω.



Then

π2 = (a+ bω)2

= a2 + abω + b2ω2

= (a2 − b2) + (ab− b2)ω.

Thus

p | π2 =⇒ ab− b2 = b(a− b) ≡ 0 mod p

=⇒ a ≡ b mod p

=⇒ p = a2 − ab+ b2 ≡ a2 mod p

=⇒ p | a,

contradicting the fact that a is coprime to p.

We have shown therefore that in Z[ω]

i. p = 3 ramifies;

ii. if p = 2 or p ≡ ±7,±11 mod 24 then p remains prime;

iii. if p ≡ ±1,±5 mod 24 then p splits into 2 distinct primes.


