Course 2316 — Sample Paper 3

Timothy Murphy
April 20, 2015

The exam will last for 2 hours.
Attempt 5 questions. All carry the same mark.

. Show that 1

p prime p

is divergent. Answer:

By the Fundamental Theorem, each integer n > 1 is expressible in the

form

n = 2°3%5% ...
where the sum extends over the primes, and e, € N, with all but a finite
number of the e, = 0.

Inverting,

1111
n

22 3% e
Informally, by addition,
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=(1-1/2)*(1—-1/3)""(1—1/5""...
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Formally,

1 1
Zﬁgnl—l/p’

n<N p<N
since the primes dividing n are all < n.

We know that ]
2

neN



is divergent. It follows that

1
H1—1/p_>OO

p<N

as N — 0.

Thus, taking logarithms,
1 1
;ln (p—_ 1) = ;m (1 o 1)

diverges.

But
if v > 1; for if

then

It follows that

diverges, and so therefore does
1
2
stnce pp, — 1 > pp_1.

. How many numbers between 1 and 1 million are not divisible by any
of the 10 integers 1 — 107

Answer: Lemma. Suppose X is a finite set, and suppose
S, X
fori=1,...,r. Then

#(S1USU---US,) =
Z #(Sz>_z #(SZQSJ)JrZ #(SiﬁSjﬁSk)— Z #(SiﬂsjﬂSkﬂSl)+- -

i,k ijik.d



We use this lemma to determine the size of the complementary set S,
ie the numbers in [1,109] divisible by one of 2-10, or in other words by
2,8,5, or 7.

If we set
T,, = {n € [1,10% : m|n}
then
S:TQUT3UT5UT7,

Also

T = [10%/m],
where [z is the largest integer < x; and if gcd(m,n) =1 then

T,NT, =T,

Hence, by the Lemma,

#S = #1To + #T3 + #15 + #1%
— #16 — #1100 — #1114 — #115 — #1101 — #1535
+ #150 + # 1y + #170 + #1105
— #1210
= 500,000 + 333, 333 4 200, 000 + 142,857
— 166,666 — 100,000 — 71,428 — 66,666 — 47,619 — 28,571
133,333 + 23,809 + 14,285 + 9,523
— 4,761
= (500, 0004200, 000—100, 000+333, 333—33, 333)+(142,857—71, 428)
— (166, 66666, 666)— (47, 619—23, 809)— (28, 57114, 285)+(9, 523—4, 761)
= 900, 000 + 71,429 — 233,332 — 23,810 — 14, 286 + 4, 762
— 976,191 — 271, 428
— 704, 763.

Thus the number not divisible by 1-10 is
1,000,000 — 704, 763 = 295, 237.

[Nb: I have not checked my arithmetic!]

. State (without proof) the Prime Number Theorem.
Show that the theorem implies that

pn ~ nlogn,
where p,, is the nth prime.

Answer:



(a) Theorem.

Inz
o)~

where 7(x) denotes the number of primes < z.
(b) By definition

m(pn) =n
Let .
f) =2 ) =iz
Then
x
g(f(z)) = m(lnx —Inlnz)
B Inz
N xlnx —Inlnzx
~Y 93,
while
zlnx
Flg(z)) = Inz+Inlnz
B Inzx
N Ilna: +Inlnzx
~ T
Hence

m(z) ~ f(x) = g(n(x)) ~ g(f(x)) ~ z.
In particular, setting x = p,,
g(n) ~ pn,
1€
Pn ~ nlnn.

4. Find all the generators of the multiplicative group (Z/23)*.

Is the group (Z/25)* (formed by the invertible elements of Z/(25))
cyclic? If so, find a generator.

Answer:

(a) The group (Z/23)* has 22 elements, so the order of each element
divides 22, by Lagrange’s Theorem, ie the order is 1,2,11 or 22.

Fuvidently 22 # 1 mod 23. So 2 has order 11 or 22 mod23.



We have
20 = 64 = —5 mod 23,
S0

2'? = 25 = 2 mod 23.
Since ged(2,23) = 1, we can divide by 2, and so
2" =1 mod 23.

Thus 2 has order 11 mod 23.

Since
(-=2)" = 2" = —1 mod 23,

it follows that —2 has order 22 mod 23, ie —2 generates the group,
which is therefore cyclic [as of course we know).

Lemma. If g is a generator of the cyclic group C), then ¢ is
also a generator if and only if ged(r,n) = 1.

It follows that the generators of (Z/23)* are
(—2)" mod 23 (r=1,3,5,7,9,13,15,17, 19, 21).
Now we know that
(—2)" = —2" mod 23
if v 1s odd, while

2! = 1 mod 23.
Hence

(—2)* = —8 mod 23,

(—2)° = —32 = —9 mod 23,

(=2)"=4--9 = —36 = 10 mod 23,

(-2)? =4-10 = 40 = —6 mod 23,
[(—=2)"' =4-—6 = —1mod 23,]
(-=2)® =4 -1 = —4mod 23,
(—2)¥ =4.-—-4=—-16 = 7 mod 23,
(=2)"=4.7=28=5mod 23,
(—2)¥ =4-5 =20 = —3 mod 23,
(—2)*=4--3=-12 =11 mod 23,
[(—2)* = —2-11 = —22 = 1 mod 23]

Thus the generators of the group are:

5,7,10,11, -2, —3, —4, —6, —8, —9 mod 23.



(b) The group (Z/25)* has order
#(5%) =5 -4 = 20.

Evidently (Z/5)* is cyclic, with generators £2.

Thus 2 has order 4 mod 5; so its order mod 25 is a multiple of 4.
On the other hand the order must divide 20. Hence it is either /
or 20.

Now
2' =16 # 1 mod 25.

Hence 2 has order 20 mod 25, ie it is a generator of (Z/25)%,
which is therefore cyclic.

5. Show that if 2™ + 1 is prime then m = 2" for some n € N.
Show that the Fermat number

F,=2"+1,

where n > 0, is prime if and only if

2" -1

32 = —1 mod F,.
Answer:
(a) Let
f(z)=2"+1.
If r is odd then
f-1)=0
It follows that
r+1] f(x).
In fact
f@) =@+ -2+ —x+1).

If now m has an odd factor r, say
m =rs,
then it follows on setting x = 2° that
2°+1]|2m+ 1.
Hence m has no odd factors if 2™ + 1 is prime, ie

m = 2".



(b) Suppose
F,=2"+1 (n>0)

18 prime.
Then
F, =1 mod 4.

It follows from Gauss’ Reciprocity Theorem that
3\  (Fa
E,) \3)

22" = (=1)*" = 1 mod 3,

Now

and so

F, =2 mod 3.

-0

But by Eisenstein’s Criterion,

It follows that

3WN-1/2 = (Fi) = —1mod F,,

1€
32" = 1 mod FE,.
Conversely, suppose this result holds. Since F,, = 2 mod 3, it must

have a prime factor
P =2mod 3;

and then -
32 7' = 1 modP.

It follows that the order of 3 mod P must be exactly 2*". For
certainly

32" = (3772 = 1 mod P,

So the order divides 22", and is therefore a power of 2. But the
order cannot be smaller than 2" since

327" % 1 mod P.



By Fermat’s Little Theorem,
2%"|P — 1.
Hence
2" < P—1.
1€
P>2"+1=F,

It follows that
P=F,,
1e F,, 1s prime.
6. Suppose
n—1=2m,

where m is odd. Show that if n is prime, and a is coprime to n, then
either
a™ =1modn

or else
2fa™ = —1 mod n

for some f € [0, e).

Show conversely that if this is true for all a coprime to n then n is
prime.

Answer:
(a) Suppose n is prime. Then
a" ' =a*™ =1 modn,
by Fermat’s Little Theorem. Thus
(a* "™)? = 1 mod n,
and so

a2 '™ = 41 mod n.

If
o' = _1modn



(b)

we are done; otherwise

(a* ™))% = 1 mod n,
and so

a® ™ = +1 mod n.

Continuing in this way, we see that either

f
a>™ = —1modn

at some stage, or else we conclude with

a™ = +1 mod n.

Suppose now that n is not prime, but that all a coprime to n have
the above property.

Then n has at least two prime factors. Let us suppose first that it
has two distinct prime factors, p and q.

We are going to consider the orders of a modulo p,q,n. But we
are only interested in the power of 2 dividing the order, in each
case. Suppose g € G has order 2'm, where m is odd. Let us call
f the 2-order of g, and write

Oz(g,n) = f.

[Nb: This is not a standard notation.]
Lemma. Suppose

a®™ = —1 mod n.
Then
Oy(a,n) = f+ 1.
For certainly
ot = (an)2 = 1 mod n,

and so
OQ(G,H) < f + 1.

On the other hand, if

OQ(avn):f/Sfa



so the order of a mod n is 2/'m’, where m' is odd, then

2'm/ | 2 m = m’ | m

;
— ¢*™ =1 mod n,

contrary to the supposition that

a®?™ = —1mod n,
Hence
02(&, n) = f + 1.
Now suppose
a®™ = —1 mod n.
Then
@™ = —1mod p and a®™ = —1 mod q.

It follows from the lemma that
02(a7 n) = OQ(CL:p) - 02((1, q) = f + L.

Lemma. If pis an odd prime, the group (Z/p)* is cyclic.

It follows that we can find a having any order | p — 1 modulo p,
and any order | ¢ — 1 modulo q.

In particular, we can find an a such that

02(0’719) 7é 02(a7 Q)v

leading to a contradiction. It remains to consider the case when

n=p,

with r > 2. In this case the group (Z/n)* has order

o(p") = (p—1)p"".

It follows that we can find an element a of order p. But our
hypothesis implies that

a™ ' =1 mod n.

Thus
plp —1,
which s absurd.

We have shown that if all a coprime to n have the specified property
then n must be prime.



[Note: FEisenstein’s Criterion gives an alternative way of finding an a
with
02<a7p) 7é 02(a7Q)7

Suppose
p—1=29 q—1=2"s,

where r, s are odd.

By Fisenstein’s Criterion,

a®P V2 = 27 = (2) mod p.
p
Thus

(%) =—1 = ¢ =—-1modp = Os(a,p) =g.
On the other hand

<%) -1 — ¥ '=1 mod p = Os(a,p) < g.

But by the Chinese Remainder Theorem, we can choose ) and <2>
p q
independently. In particular, we can find an a with

02<a7p) 7é 02(a7 Q)a

contradicting our hypothesis.|

. State without proof Gauss’ Quadratic Reciprocity Law.

Does there exist a number n such that n? ends in the digits 12347 If
so, find the smallest such n. Answer:

(a) If a is coprime to the prime p then we set

p

(a) ) +1 ifa is a quadratic residue mod p,
—1 if a is a quadratic non-residue mod p.

Gauss’ Law states that if p,q are odd primes then

(p) (q) -1 ifp=q=3mod4,
q p) |41 otherwise.



(b) We have to determine if there is an integer n such that

n? = 1234 mod 10000.

By the Chinese Remainder Theorem this is equivalent to asking if
each of the congruences

m? = 1234 mod 2°,
n? = 1234 mod 5°

158 soluble.

The first is insoluble, since

m? = 1234 mod 2° = m? = 1234 mod 22,
and

1234 = 2 mod 4,

while
m? =0 or 1 mod 4.

Hence there is no such n.

8. What is meant by an algebraic number and by an algebraic integer?
Show that the algebraic integers in the field Q(1/—3 form the ring Z[w],
where w = (1 ++/—3)/2/

Show that this ring is a unique factorisation domain, and determine
the units and primes in this domain.

Answer:

(a) An algebraic number is a number o € C satisfying a polynomial
equation
"+ ar" a2+ -+ a, =0,
with a1, as, . .., a, € Q.

(b) An algebraic integer is a number o € C satisfying a polynomial
equation
2"+ ar" F a4 +a, =0,

with ay,as, . ..,a, € N.



(c) The field Q(/—3) consists of the numbers
z=x+ y\/—_?)
with x,y € Q. If z satisfies the equation
"+ az" a7 + o+ a, =0,
with ay,as, ...,a, € Q, then so does
Z=x — y\/—_3.

Lemma. The algebraic integers form a ring.
Lemma. If o € QQ is an algebraic integer then o € Z.

Suppose z is an algebraic integer. Then so is Z (since it satisfies
the same polynomial equations over Q or 7). It follows that

z+ZzZ=2

15 an algebraic integer, and so

2z € 7.

Similarly,
2z2=a+3y° € Z.
Hence
42° +12y° = (22)* +3(2y)* € Z

— 3(2y)’ € Z

— 2y €.
Thus

T =a/2, y=1>/2,
where a,b € Z and

2 3b2
x%&yk%el\l

1€
a’® + 3b> = 0 mod 4.

Hence either a,b are both odd, or both even. It follows that

d1+\/—_3_
—— =

z=c+ ¢+ dw,



(d)

with ¢, d € 7.

Conversely, w is an algebraic integer, since it satisfies the equation
2 —r+1=0.

Thus
z=c+dw
s an algebraic integer, since the algebraic integers form a ring.

Hence the algebraic integers in Q(v/—3) are the numbers

{c+dw:c,deZ} =7Zw].

If
z=x4+yv-3 (r,y€Q)
we set
N(z) = 2z = 2* + 3y*.
Evidently,

Now suppose z,w € Z[w]. Let
z
— =+ Yyw.
w

Choose a,b € 7 such that

[z —a| <1/2, Jy = b <1/2,

and let
q=a+bw.
Then .
——q=(x— —bw.
Zg=@-a)+ b
Hence
z (r—a)?+3(@y—0b)?* 1/4+3/4 1
) = < . )
NG —a) 1 ST 7 <1
Thus

N(z — qu) < N(w).

In other words, given z,w # 0 € Zlw] we can find q,r € Z[w] such
that
Z=qw —+r,

with N(r) < N(w).



This allows us to set up the Euclidean Algorithm:
Z = qow + 7o,
w = qiro + 11,
To = q2r1 + T2,
n—1 = Qn+1Tn-
The process must finish, since
N(TQ) >N(T1) > e >N(Tn) >0,

ie the norms form a decreasing sequence of positive integers.
It follows that

d=r, =gcd(z,w),
e
d|z,wande|z,w = e|d.

Also, working backwards through the algorithm, we can find u,v €
Z|w] such that
uz +vw = d.

Recall that € € Z|w] is said to be a unit if it is invertible in Zlw].

Lemma. ¢ is a unit if and only if A/(e) = 1.
For

=1 = N(ENO) =N(1)=1
= N(e) =N(0) =1.

Conversely
N =1 = e=1

We say that m is indecomposable if
T =0T

implies that o or tau is a unit.

Now we can establish Fuclid’s Lemma: If 7 is indecomposable then

T|zw = 7|z orm|w.



Lemma. Suppose z € Z[w]. Then z is expressible as a product
of indecomposables:
2= T

This follows by induction on N(z). If z is indecomposable the
result is trivial. Otherwise

Z = uv,
where neither w nor v is a unit. Hence
N(@u),Nv) >1 = N(u), N(v) < N(2),

so the inductive hypothesis can be applied to u, v, giving the result
for z.

Finally, the uniqueness of the expression for z as a product of
irreducibles (up to order and multiplication by units) follows from
FEuclid’s Lemma. Again, we argue by induction on N(z). Suppose

Then

m |

for some i, by Fuclid’s Lemma; and uniqueness follows on apply-
ing the inductive hypothesis to
z/’ﬂ'l =Tg - Ty :7‘('/1...71';‘717'(;4»1...71'/

s*

(e) We have seen that
€=a+bw

s a unit if and only if
N(e) = (a+bw)(a+bw) =(a+bw)(a+bw?) =a*—ab+b* =1.
In other words,
(a— %b)? + sz 1
te
(2a — b)* + 3b* = 4.
FEvidently the only solutions to this are

(2a — b,b) = (£2,0) or (+1,+1),



(f)

giving
(a,b) = +(1,0), £(1,1), £(0,1).
Since 1 +w = —w?, it follows that Z[w| has just 6 units:

+1, +w, +w?

Since we have established unique factorisation, we may refer to
indecomposables as ‘primes’, with the understanding that we do
not distinguish between m and emw, where € is a unit.

Suppose T is prime. Let
N(m) =77 =p1...p,,

where the p; are rational primes. Then

™| pi

for some p;.

So every prime 7 divides a rational prime p. Hence

N(m) | N(p) = p*.
Thus
N(m) =p or p*.
If N'(m) = p* then
p = e€m,

ie the rational prime p does not split in Z[w).
If N(m) = p then
p = nm,

e p splits into two primes.
Evidently,

3=—(v=3)%,
so 3 ramifies.
Thus we may assume that p # 3.
Suppose

where

T = a+ bw.



Then
a’+ ab+b* = p.

Note that if p = 2 then a,b must both be even, in which case the
left-hand side is divisible by 4, which is impossible. So 2 does not
split in Zlw], and we may assume that p # 2, 3.

Now
a®> + ab+ b* = 0 mod p,
and so

(2a — b)* 4 3b* = 0 mod p.

But this implies that —3 is a quadratic residue mod p, since b s
evidently coprime to p, ie

But

and

(—1)_ +1 if p=+1modS8,
p/) ]-1 ifp=+3modS.

Also, by Gauss’ Reciprocity Theorem,

-1
p — if p=—1mod 4,

(]_9)_ +1 ifp=1mod 3,
3/ -1 ifp=—-1modS3.

Putting all these together, we see that

if p=1mod 4,

Wi Wi

while

<—3>_ +1 ifp=1,5,19,23 mod 24,
p) |-1 ifp=711,13,17 mod 24.



1€

(—3) _J+1 difp=4£1,45mod 24,
p) |=1 ifp=47 411 mod 24.

)

1e —3 is a quadratic residue mod p. Then we can a coprime to p
such that

Finally, suppose

a’* +3 = 0mod p,
1€
a>+3=pq
1€
(a+vV=3)(a—V=3) =pg.

If now p remains prime in Zlw| then since there is unique factori-
sation in this ring it follows that

pl(a+V=3)orpl|(a—v-3)

both of which imply that p | 1, which is absurd.
We conclude that the rational prime p # 2,3 splits in Z[w] if and
only if

p = £1,45 mod 24.

We should consider finally if the prime p ramifies in any of these
cases, ie if
T = €T,
where € € {+1, tw, +w?}.
If this is so, then (multiplying by ),

Suppose



Then

™ = (a + bw)?
= a® + abw + b*w?
= (a®* = b*) + (ab — b*)w.

Thus

p| 7 = ab—0b*=b(a—b) =0mod p
—> a=bmodp
— p=a’—ab+ b’ =a’modp
— pla,

contradicting the fact that a is coprime to p.
We have shown therefore that in Z|w)|

. p =3 ramifies;

1. if p=2 or p=4+7,4+11 mod 24 then p remains prime;
1i. if p = 1, £5 mod 24 then p splits into 2 distinct primes.



