Course 2316 - Sample Paper 2

Timothy Murphy

April 20, 2015

Attempt 5 questions. All carry the same mark.

1. Determine $d=\operatorname{gcd}(2009,2317)$, and find integers m, n such that

$$
2009 m+2317 n=d
$$

2. Find the smallest positive multiple of 2009 ending in the digits 001 , or else show that there is no such multiple.
3. Define Euler's totient function $\phi(n)$, and show that if a is coprime to n then

$$
a^{\phi(n)} \equiv 1 \bmod n
$$

Determine the smallest power of 2317 ending in the digits 001.
4. Explain what is meant by a primitive root modulo an odd prime p. and find all primitive roots mod 19.
5. Show that if $d>0$ is not a perfect square then Pell's equation

$$
x^{2}-d y^{2}=1
$$

has an infinity of integer solutions.
Does the equation

$$
x^{2}-5 y^{2}=-1
$$

have an integer solution?
6. Express each of the following numbers as a sum of two squares, or else show that the number cannot be expressed in this way:

23, 101, 2009, 2010, 2317.
7. Show that if the prime p satisfies $p \equiv 3 \bmod 4$ then

$$
M=2^{p}-1
$$

is prime if and only if

$$
\phi^{2^{p}} \equiv-1 \bmod M,
$$

where $\phi=(\sqrt{5}+1) / 2$.
8. Show that the ring $\mathbb{Z}[\sqrt{2}]$ formed by the numbers $m+n \sqrt{2}(m, n \in \mathbb{Z})$ is a Unique Factorisation Domain, and determine the units and primes in this domain.

