Course 2316 - Sample Paper 2

Timothy Murphy

April 20, 2015

Attempt 5 questions. All carry the same mark.

1. Determine $d=\operatorname{gcd}(2009,2317)$, and find integers m, n such that

$$
2009 m+2317 n=d
$$

Answer:

(a) Following the Euclidean Algorithm,

$$
\begin{aligned}
2317 & =2009+308, \\
2009 & =308 \cdot 6+161, \\
308 & =161 \cdot 2-14, \\
161 & =14 \cdot 11+7, \\
14 & =7 \cdot 2 .
\end{aligned}
$$

It follows that

$$
d=\operatorname{gcd}(2009,2317)=7
$$

(b) Wording backwards,

$$
\begin{aligned}
7 & =161-14 \cdot 11 \\
& =161-(161 \cdot 2-308) \cdot 11 \\
& =308 \cdot 11-161 \cdot 21 \\
& =308 \cdot 11-(2009-308 \cdot 6) \cdot 21 \\
& =308 \cdot 137-2009 \cdot 21 \\
& =(2317-2009) \cdot 137-2009 \cdot 21 \\
& =2317 \cdot 137-2009 \cdot 158
\end{aligned}
$$

Thus

$$
2009 \cdot-158+2317 \cdot 137=7
$$

2. Find the smallest positive multiple of 2009 ending in the digits 001 , or else show that there is no such multiple.

Answer: We are trying to solve the congruence

$$
2009 n \equiv 1 \bmod 1000,
$$

ie

$$
9 n \equiv 1 \bmod 1000
$$

Since

$$
9 \cdot 111=999 \equiv-1 \bmod 1000
$$

it follows that

$$
\frac{1}{9} \equiv-111 \bmod 1000
$$

Multiplying the congruence by $1 / 9 \bmod 1000$,

$$
n \equiv-111 \bmod 1000
$$

ie

$$
n=-111+1000 t .
$$

Thus the smallest positive solution is

$$
n=-111+1000=889 .
$$

3. Define Euler's totient function $\phi(n)$, and show that if a is coprime to n then

$$
a^{\phi(n)} \equiv 1 \bmod n .
$$

Determine the smallest power of 2317 ending in the digits 001 .

Answer:

(a) $\phi(n)$ is the number of integers $a \in[0, n)$ coprime to n.
(b) Let $(\mathbb{Z} / n)^{*}$ denote the set of residues $\bmod n$ coprime to n.

Then $(\mathbb{Z} / n)^{n}$ forms a group under multiplication $\bmod n$, with neutral element $1 \bmod n$.
For if a, b are coprime to n then so is $a b$. Moreover, if a is coprime to n then the map

$$
x \mapsto a x:(\mathbb{Z} / n)^{*} \rightarrow(\mathbb{Z} / n)^{*}
$$

is injective, since

$$
\begin{aligned}
a x \equiv a y \bmod n & \Longrightarrow a(x-y) \equiv 0 \bmod n \\
& \Longrightarrow x-y \equiv 0 \bmod n \\
& \Longrightarrow x \equiv y \bmod n .
\end{aligned}
$$

Hence the map is surjective, and so a has an inverse $b \bmod n$ with

$$
a b \equiv 1 \bmod n
$$

It follows that $(\mathbb{Z} / n)^{*}$ is a group.
By definition, the group is of order $\phi(n)$. It follows by Lagrange's Theorem that

$$
g^{\phi(n)}=1
$$

for all $g \in(\mathbb{Z} / n)^{*}$, ie

$$
a^{\phi(n)} \equiv 1 \bmod n
$$

for all a coprime to n.
(c) We are trying to solve the congruence

$$
2317^{n} \equiv 1 \bmod 1000
$$

ie

$$
317^{n} \equiv 1 \bmod 1000
$$

By the Chinese Remainder Theorem, this is equivalent to

$$
317^{n} \equiv 1 \bmod 8 \text { and } 317^{n} \equiv 1 \bmod 125
$$

The first congruence reduces to

$$
5^{n} \equiv 1 \bmod 8
$$

Since

$$
5^{2} \equiv 1 \bmod 8,
$$

the congruence holds if and only if n is even.
The second congruence reduces to

$$
67^{n} \equiv 1 \bmod 125
$$

Thus we have to determine the order of $\overline{67}$ in the group $(\mathbb{Z} / 125)^{*}$. This group has order

$$
\phi(125)=5^{3}-5^{2}=100,
$$

since there are just $125 / 5=25$ numbers in $[0,125)$ divisible by 5 . It follows that the order of $67 \bmod 125$ divides 100 .
Since

$$
67 \equiv 2 \bmod 5
$$

and the order of $2 \bmod 5$ is 4 , it follows that the order of $67 \bmod$ 125 is divisible by 4. Hence it is 4,20 or 100.
A computer can determine $a^{n} \bmod m$ very quickly, even if the numbers are large. The standard way is to express n to base 2, ie as a sum

$$
n=2^{e_{1}}+2^{e_{2}}+2^{e_{3}}+\cdots,
$$

and then successively square $a \bmod m$.
But we don't have a computer. I don't know a better way to answer the question than to play with modular arithmetic.
Let us first work out the order mod 25, which we know is either 4 or 20.
We have

$$
67 \equiv 17 \equiv-8 \bmod 25
$$

So

$$
67^{4} \equiv(-8)^{4} \equiv 2^{12} \bmod 25
$$

Now if we play with computers we know that

$$
2^{10}=1024 .
$$

Hence

$$
2^{12}=4096 \equiv-4 \bmod 25 .
$$

So 67 must have order $20 \bmod 25$. Thus 67 has order 20 or 100 $\bmod 125$.

We have

$$
67=3 \cdot 5^{2}-2^{3} .
$$

By the binomial theorem

$$
67^{5} \equiv-2^{15} \bmod 5^{3},
$$

since the other terms in the binomial expansion will all contain 5 to at least the power 3.
It follows that

$$
67^{20} \equiv 2^{60} \bmod 5^{3}
$$

If now 67 has order 20 then the order of 2 divides 60, and so must be 5 or 20 (since it also divides $\phi(125)=100$).
The order of $2 \bmod 125$ is certainly not 5 , since $2^{5}=32$.
So if the order of 67 is 20 then so is the order of 2. Conversely, if the order of 2 is 20 then so is the order of 67 .
Thus the problem is reduced to determining the order of 2 mod 125.

We have

$$
2^{10}=1024 \equiv 24 \bmod 125
$$

Thus

$$
2^{20} \equiv 24^{2}=4 \cdot 144 \equiv 4 \cdot 19=76 \bmod 125
$$

We conclude that 20 has order 100, and so too has 67 .
Thus the smallest power of 2317 ending in 001 is 100.
[Nb There are many ways of completing the last part of the question; I've just given the first that occurs to me, to show how one can play modular arithmetic.]
4. Explain what is meant by a primitive root modulo an odd prime p. and find all primitive roots mod 19.

Answer:

(a) The multiplicative group $(\mathbb{Z} / p)^{*}$ is cyclic. A primitive root $\bmod p$ is a generator of this group, ie a number coprime to p of order $(p-1) \bmod p$.
(b) Since $(\mathbb{Z} / 19)^{*}$ has order 18 , the order of any number coprime to 19 divides 18, ie the order is $1,2,3,6,9$ or 18 .
Consider 2. Evidently $2^{e} \not \equiv 1 \bmod 19$ for $e=1,2,3$. We have

$$
2^{6}=64 \equiv 7 \bmod 19,
$$

and so

$$
2^{9}=2^{3} \cdot 2^{6} \equiv 8 \bmod 7=56 \equiv-1 \bmod 19 .
$$

It follows that the order of $2 \bmod 19$ is 18 , ie 2 is a primitive root. Lemma. If $G=\langle g\rangle$ is a finite group of order n generated by g then g^{e} is a generator of G if and only if $\operatorname{gcd}(e, n)=1$.
It follows that there are

$$
\phi(18)=\phi(2) \phi\left(3^{2}\right)=6
$$

primitive roots mod19, namely

$$
2^{e} \quad(e=1,5,7,11,13,17) .
$$

Since

$$
2^{18} \equiv 1 \bmod 19,
$$

we can write these as

$$
2^{ \pm 1}, 2^{ \pm 5}, 2^{ \pm 7}
$$

Now

$$
\begin{aligned}
& 2^{5}=32 \equiv-4 \bmod 19 \\
& 2^{7}=4 \cdot 2^{5} \equiv-16 \equiv 3 \bmod 19 .
\end{aligned}
$$

Since

$$
\begin{gathered}
2^{-1} \equiv 10 \bmod 19 \\
4^{-1} \equiv 5 \bmod 19 \\
3^{-1} \equiv-6 \bmod 19
\end{gathered}
$$

we see that the primitive roots mod19 are

$$
2,3,5,10,13,14
$$

5. Show that if $d>0$ is not a perfect square then Pell's equation

$$
x^{2}-d y^{2}=1
$$

has an infinity of integer solutions.
Does the equation

$$
x^{2}-5 y^{2}=-1
$$

have an integer solution?

Answer:

(a) Lemma. Given $\alpha \in \mathbb{R}$ there are an infinity of approximants such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}} .
$$

Applying this with $\alpha=\sqrt{d}$ we see that there are an infinity of $p, q \in \mathbb{Z}$ such that

$$
|q \sqrt{d}-p|<\frac{1}{q} .
$$

But then

$$
|q \sqrt{d}+p|<2 q \sqrt{d}+\frac{1}{q}
$$

Multiplying these two inequalities,

$$
|(q \sqrt{d}+p)(q \sqrt{d}+p)|=\left|p^{2}-d q^{2}\right|<2 \sqrt{d}+\frac{1}{q^{2}}
$$

It follows that are an infinity of p, q such that

$$
p^{2}-d q^{2}= \pm N
$$

for some $N<2 \sqrt{d}+1$. (We mean either an infinity such that $p^{2}-d q^{2}=N$, or else an infinity such that $p^{2}-d q^{2}=-N$.)
Also, among this infinity of solutions there must be an infinite number such that

$$
p \equiv r \bmod N, q \equiv s \bmod N
$$

for some $r, s \in[0, N)$.
Suppose $(p, q),(P, Q)$ are two such solutions. Let

$$
z=\frac{p+q \sqrt{d}}{P+Q \sqrt{d}}=x+y \sqrt{d},
$$

with $x, y \in \mathbb{Q}$. Then

$$
\begin{aligned}
\mathcal{N}(z) & =\frac{\mathcal{N}(p+q \sqrt{d}}{\mathcal{N}(P+Q \sqrt{d}} \\
& =\frac{N}{N} \\
& =1,
\end{aligned}
$$

ie

$$
x^{2}-d y^{2}=1
$$

We shall show that in fact

$$
x, y \in \mathbb{Z}
$$

We have

$$
\begin{aligned}
z & =\frac{(p+q \sqrt{d})(P-Q \sqrt{d})}{P^{2}-d Q^{2}} \\
& = \pm \frac{(p+q \sqrt{d})(P-Q \sqrt{d})}{N} \\
& = \pm \frac{(p P-q Q d)+(-p Q+q P) \sqrt{d}}{N}, \\
& = \pm \frac{m+n \sqrt{d}}{N}
\end{aligned}
$$

say.
Now

$$
p \equiv P, q \equiv Q \Longrightarrow n=-p Q+q P \equiv 0 \bmod N
$$

Also

$$
m+n \sqrt{d}=(p+q \sqrt{d})(P-Q \sqrt{d})
$$

and so

$$
\mathcal{N}(m+n \sqrt{d})=\mathcal{N}(p+q \sqrt{d}) \mathcal{N}(P-Q \sqrt{d})
$$

ie

$$
m^{2}-d n^{2}=N^{2}
$$

Hence

$$
N|n \Longrightarrow N| m
$$

Thus

$$
x=\frac{m}{N} \in \mathbb{Z}, y=\frac{n}{N} \in \mathbb{Z}
$$

giving an integral solution of

$$
x^{2}-d y^{2}=1
$$

(b) The equation

$$
x^{2}-5 y^{2}=-1
$$

has the obvious solution

$$
2^{2}-5 \cdot 1^{2}=-1
$$

6. Express each of the following numbers as a sum of two squares, or else show that the number cannot be expressed in this way:

23, 101, 2009, 2010, 2317.

Answer: Lemma. The integer $n>0$ is expressible as a sum of 2 squares if and only if each prime $p \equiv 3 \bmod 4$ divides n to an even power.
(a) 23 is prime, and $23 \equiv 3 \bmod 4$. Hence it is not expressible as a sum of 2 squares.
(b) 101 is prime, and $101 \equiv 1 \bmod 4$. Hence it is expressible as a sum of 2 squares; and trivially

$$
101=10^{2}+1^{2}
$$

(c) We see that

$$
2009=7 \cdot 287=7^{2} \cdot 41
$$

Since each prime $\equiv 3 \bmod 4$ divides 2009 to an even power, it must be expressible as the sum of two squares:

$$
2009=a^{2}+b^{2}
$$

Moreover

$$
7 \mid a, b
$$

for if 7 divides one it must divide other, and if 7 divides neither then

$$
a^{2}, b^{2} \equiv 1,2 \text { or } 4 \bmod 7,
$$

and these cannot add to $0 \bmod 7$.
[This also follows from the fact that ring Γ of gaussian integers is a unique factorisation domain, in which 7 is a prime, so that

$$
\begin{aligned}
7 \mid a^{2}+b^{2}=(a+i b)(a-i b) & \Longrightarrow 7 \mid(a+i b) \text { or } 7 \mid(a-i b) \\
& \Longrightarrow 7 \mid a, b .
\end{aligned}
$$

In fact this argument shows that if $p \equiv 3 \bmod 4$ and $p^{2 e}$ exactly divides n, ie $p^{2 e} \mid n$ but $p^{2 e+1} \nmid n$, then

$$
\left.n=a^{2}+b^{2} \Longrightarrow p^{e} \mid a, b .\right]
$$

Thus

$$
a=7 c, b=7 d,
$$

with

$$
c^{2}+d^{2}=41
$$

Evidently

$$
41=5^{2}+4^{2}
$$

and so

$$
2009=35^{2}+28^{2}
$$

(d) Since the digits of 2010 add up to 3, it is divisible by 3 but not by 9. Hence 3 divides 2010 to an odd power, and so 2010 is not expressible as a sum of two squares.
(e) Since

$$
2317=7 \cdot 331,
$$

and

$$
7 \nmid 331,
$$

7 occurs to the first power, and so 2317 is not expressible as a sum of two squares.
7. Show that if the prime p satisfies $p \equiv 3 \bmod 4$ then

$$
M=2^{p}-1
$$

is prime if and only if

$$
\phi^{2^{p}} \equiv-1 \bmod M,
$$

where $\phi=(\sqrt{5}+1) / 2$.
Answer: Suppose M is prime. Then

$$
\phi^{M}=\frac{(\sqrt{5}+1)^{M}}{2^{M}} .
$$

Expanding by the binomial theorem, and noting that all the binomial coefficients except the first and last are divisible by M,

$$
\begin{aligned}
\phi^{M} & =\frac{(\sqrt{5}+1)^{M}}{2^{M}} \\
& \equiv \frac{\sqrt{5}^{M}+1}{2^{M}} \bmod M \\
& \equiv \frac{5^{(M-1) / 2} \sqrt{5}+1}{2^{M}} \bmod M
\end{aligned}
$$

By Fermat's Little Theorem,

$$
2^{M} \equiv 2 \bmod M
$$

Also, by Eisenstein's criterion,

$$
5^{(M-1) / 2} \equiv\left(\frac{5}{M}\right) \bmod M .
$$

By Gauss' Quadratic Reciprocity Law,

$$
\left(\frac{5}{M}\right)=\left(\frac{M}{5}\right)
$$

But since $p \equiv 3 \bmod 4$, and $2^{4} \equiv 1 \bmod 5$,

$$
2^{p} \equiv 2^{3} \equiv 3 \bmod 5,
$$

and so

$$
M=2^{p}-1 \equiv 2 \bmod 5
$$

Hence

$$
5^{(M-1) / 2} \equiv-1 \bmod M
$$

Thus

$$
\begin{aligned}
\phi^{M} & \equiv \frac{-\sqrt{5}+1}{2} \bmod M \\
& =-\phi^{-1} .
\end{aligned}
$$

It follows that

$$
\phi^{2^{p}}=\phi^{M+1} \equiv\left(-\phi^{-1}\right) \phi=-1 \bmod M .
$$

Conversely, suppose that this is the case, and suppose M is composite. Since

$$
M \equiv 2 \bmod 5
$$

M has a prime factor

$$
P \equiv \pm 2 \bmod 5 ;
$$

and

$$
\phi^{2^{p}} \equiv-1 \bmod P
$$

Now P does not split in the ring $\mathbb{Z}[\phi]$ (the ring of integers in the field $\mathbb{Q}(\sqrt{5}))$. For if it did, say

$$
(a+b \phi) \mid P
$$

where $a, b \in \mathbb{Z}$. Then

$$
\mathcal{N}(a+b \phi)=(a+b \phi)(a+b \bar{\phi})=a^{2}+a b-b^{2}
$$

divides $\mathcal{N}(P)=P^{2}$, and in particular

$$
a^{2}+a b-b^{2} \equiv 0 \bmod P .
$$

Multiplying by 4,

$$
(2 a-b)^{2}-5 b^{2} \equiv 0 \bmod P .
$$

It follows that 5 is a quadratic residue mod P. But

$$
\left(\frac{5}{P}\right)=\left(\frac{P}{5}\right)=-1
$$

since $P \equiv \pm 2 \bmod 5$.
Hence P remains prime in the ring $\mathbb{Z}[\phi]$, and so

$$
F=\mathbb{Z}[\phi] /(P)
$$

is a field, containing P^{2} elements (represented by $a+b \phi$, where $a, b \in$ $[0, P)$).
Thus

$$
F^{*}=(\mathbb{Z}[\phi] / P)^{*}
$$

is a group of order $P^{2}-1$.
It follows by Lagrange's Theorem that the order of $\phi \bmod P$ divides $P^{2}-1$.

On the other hand, it follows from

$$
\phi^{2^{p}} \equiv-1 \bmod P
$$

that the order of $\phi \bmod P$ is 2^{p+1}.
(For

$$
\phi^{2^{p+1}}=\left(\phi^{2^{p}}\right)^{2} \equiv 1 \bmod P,
$$

so the order divides 2^{p+1}, but does not divide 2^{p}.)
Hence

$$
2^{p+1} \mid P^{2}-1 .
$$

But that is impossible, since

$$
P^{2}-1<M^{2}<2^{p+1} .
$$

We conclude that M is prime.
8. Show that the ring $\mathbb{Z}[\sqrt{2}]$ formed by the numbers $m+n \sqrt{2}(m, n \in \mathbb{Z})$ is a Unique Factorisation Domain, and determine the units and primes in this domain.

Answer:
(a) Lemma. The norm

$$
\mathcal{N}(x+y \sqrt{2})=x^{2}-2 y^{2} \quad(x, y \in \mathbb{Q})
$$

is multiplicative, ie if $z, w \in \mathbb{Q}[\sqrt{2}]$ then

$$
\mathcal{N}(w z)=\mathcal{N}(w) \mathcal{N}(z) .
$$

Now suppose $u, v \in \mathbb{Z}[\sqrt{2}]$. Let

$$
\frac{u}{v}=x+y \sqrt{2},
$$

with $x, y \in \mathbb{Q}$. Choose m, n so that

$$
|x-m|,|y-n| \leq \frac{1}{2}
$$

Let

$$
q=m+n \sqrt{2} .
$$

Then

$$
\frac{u}{v}-q=(x-m)+(y-n) \sqrt{2}
$$

Hence

$$
\mathcal{N}\left(\frac{u}{v}-q\right)=(x-m)^{2}-2(y-n)^{2} \in[-1 / 2,1 / 4] .
$$

In particular

$$
\left|\mathcal{N}\left(\frac{u}{v}-q\right)\right|<1,
$$

and so

$$
|\mathcal{N}(u-q v)|<|\mathcal{N}(v)|,
$$

ie

$$
u=q v+r,
$$

with

$$
|\mathcal{N}(r)|<|\mathcal{N}(v)| .
$$

This allows us to compute $\operatorname{gcd}(u, v)$ for any 2 elements $u, v \in$ $\mathbb{Z}[\sqrt{2}]$, using the Euclidean Algorithm:

$$
\begin{aligned}
u & =q_{1} v+r_{1}, \\
v & =q_{2} r_{1}+r_{2}, \\
r_{1} & =q_{3} r_{2}+r_{3}, \\
& \ldots \\
r_{m-1} & =q_{m+1} r_{m},
\end{aligned}
$$

with

$$
\left|\mathcal{N}\left(r_{1}\right)\right|>\left|\mathcal{N}\left(r_{2}\right)\right|>\left|\mathcal{N}\left(r_{3}\right)\right|>\cdots .
$$

The process must end, since the $|\mathcal{N}(r)|$ are decreasing positive integers; and we have

$$
\operatorname{gcd}(u, v)=r_{m} .
$$

Also, working backwards, we can find $x, y \in \mathbb{Z}[\sqrt{2}]$ such that

$$
u x+v y=\operatorname{gcd}(u, v) .
$$

From this, we deduce the analogue of Euclid's Lemma: If $\pi \in$ $\mathbb{Z}[\sqrt{2}]$ is irreducible then

$$
\pi|u v \Longrightarrow \pi| u \text { or } \pi \mid v
$$

for $u, v \in \mathbb{Z}[\sqrt{2}]$.
Lemma. The element $\epsilon \in \mathbb{Z}[\sqrt{2}]$ is a unit, ie is invertible in this ring, if and only if

$$
\mathcal{N}(\epsilon)= \pm 1
$$

Any non-unit $u \in \mathbb{Z}[\sqrt{2}]$ is expressible as a product of irreducibles. For

$$
u=v w \Longrightarrow|\mathcal{N}(u)|=|\mathcal{N}(v)||\mathcal{N}(w)|
$$

with

$$
|\mathcal{N}(v)|,|\mathcal{N}(w)|<|\mathcal{N}(u)|,
$$

so the factorisation must end after a finite number of divisions.
Finally, it follows easily from Euclid's Lemma that the factorisation is unique, up to order and multiplication by units.
(b) From the Lemma above, $u=m+n \sqrt{2}$ is a unit if and only if

$$
m^{2}-2 n^{2}= \pm 1
$$

One solution to this is

$$
1^{2}-2 \cdot 1^{2}=-1,
$$

giving the unit

$$
\eta=1+\sqrt{2}
$$

In fact the units consist of the numbers

$$
\pm \eta^{n}
$$

where $n \in \mathbb{Z}$. For suppose ϵ is a unit $\neq \pm 1$. Then the 4 units

$$
\pm \epsilon, \pm \epsilon^{-1}
$$

lie in the 4 regions $(-\infty,-1),(-1,0),(0,1),(1, \infty)$.
We may suppose therefore that $\epsilon>1$. Since $\eta>1$, we can find $n \geq 0$ such that

$$
\eta^{n} \leq \epsilon<\eta^{n+1}
$$

Let

$$
\theta=\eta^{-n} \epsilon
$$

Then

$$
1 \leq \theta<\eta .
$$

Suppose

$$
\theta=m+n \sqrt{2} .
$$

Then

$$
\mathcal{N}(\theta)=(m+n \sqrt{2})(m-n \sqrt{2})= \pm 1 .
$$

It follows that

$$
m-n \sqrt{2} \in[-1,1] .
$$

Hence, by addition,

$$
0 \leq 2 m<\eta+1=2+\sqrt{2}<4
$$

ie

$$
m=0 \text { or } 1 .
$$

It follows that

$$
\theta=1,
$$

and so the primes are just the numbers

$$
\pm \eta^{n} \quad(n \in \mathbb{Z}) .
$$

(c) Suppose

$$
\pi=m+n \sqrt{2}
$$

is a prime in $\mathbb{Z}[\sqrt{2}]$, ie a non-unit irreducible.
Let

$$
\mathcal{N}(\pi)= \pm p_{1} \cdots p_{r}
$$

Then since there is unique factorisation,

$$
\pi \mid p
$$

for some rational prime $p=p_{i}$.
Suppose

$$
p=\pi \sigma .
$$

Then

$$
\mathcal{N}(\pi) \mathcal{N}(\sigma)=\mathcal{N}(p)=p^{2}
$$

Thus either

$$
N(\sigma)= \pm 1,
$$

in which case σ is a unit, and p remains a prime in $\mathbb{Z}[\sqrt{2}]$, or else

$$
\mathcal{N}(\pi)=\mathcal{N}(\sigma)= \pm p
$$

In the second case,

$$
\mathcal{N}(\pi)=m^{2}-2 n^{2} \equiv 0 \bmod p,
$$

and so 2 is a quadratic residue $\bmod p$. But we know that if p is an odd prime then

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv \pm 1 \bmod 8 \\ -1 & \text { if } p \equiv \pm 3 \bmod 8\end{cases}
$$

Thus p remains a prime if $p \equiv \pm 3 \bmod 8$.
If $p \equiv \pm 1 \bmod 8$ then 2 is a quadratic residue, so

$$
2 \equiv a^{2} \bmod p
$$

for some a, ie

$$
p \mid a^{2}-2=(a-\sqrt{2})(a+\sqrt{2}) .
$$

If p remains a prime $\mathbb{Z}[\sqrt{2}]$ then (since there is unique factorisation)

$$
p \mid a-\sqrt{2} \text { or } p \mid a+\sqrt{2},
$$

either of which implies that $p \mid 1$, which is absurd.
Hence p splits in $\mathbb{Z}[\sqrt{2}]$ if $p \equiv \pm 1 \bmod 8$. Also

$$
\pi \mid p \Longrightarrow \mathcal{N}(\pi)= \pm p
$$

so p splits into two prime factors, π and $\bar{\pi}$ (or the associated prime, $-\bar{\pi}$.
Could π and $\bar{\pi}$ be associated, ie

$$
\bar{\pi}=\epsilon \pi ?
$$

In that case

$$
p \mid \pi^{2}=(m+n \sqrt{2})^{2}=\left(m^{2}+2 n^{2}\right)+2 m n \sqrt{2} .
$$

It follows that

$$
p\left|m^{2}+2 n^{2}, p\right| 2 m n .
$$

Since p is odd, this implies that

$$
p|m, n \Longrightarrow p| \pi,
$$

which is absurd.
Finally,

$$
2=(\sqrt{2})^{2}
$$

ie 2 splits into two equal primes (or ramifies).
In summary: 2 splits into two equal primes in $\mathbb{Z}[\sqrt{2}]$, while the rational primes $p \equiv \pm 3 \bmod 8$ remain prime, and the rational primes $p \equiv \pm 1 \bmod 8$ split into 2 distinct primes. Moreover these give all the primes in $\mathbb{Z}[\sqrt{2}]$.

