Course 2316 - Sample Paper 1

Timothy Murphy

April 20, 2015

Attempt 5 questions. All carry the same mark.

1. State and prove the Fundamental Theorem of Arithmetic (for \mathbb{N}).

Prove that there are an infinity of primes $\equiv 3 \bmod 4$.
What can you say about primes $\equiv 1 \bmod 4$?
2. Given $m, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1$ and $r, s \in \mathbb{Z}$, prove that there exists $x \in \mathbb{Z}$ such that

$$
x \equiv r \bmod m, \quad x \equiv s \bmod n .
$$

Find the smallest positive integer x such that

$$
x \equiv 3 \bmod 5, x \equiv 7 \bmod 11, x \equiv 12 \bmod 13 .
$$

Find the largest integer x not expressible in the form

$$
x=7 a+11 b
$$

with $a, b \geq 0$.
3. Show that if

$$
M=a^{e}-1 \quad(a, e>1)
$$

is prime then $a=2$ and e is prime.
Find the smallest number

$$
M=2^{p}-1
$$

(with p prime) that is not prime.
4. Prove that if p is an odd prime, then the multiplicative group $(\mathbb{Z} / p)^{\times}$ is cyclic.
Find the orders of all the elements of $(\mathbb{Z} / 17)^{\times}$.
5. State and prove Gauss' Law of Quadratic Reciprocity.

Does there exist an integer x such that

$$
x^{2} \equiv 17 \bmod 30 ?
$$

If there is, find the least such integer ≥ 0.
6. Prove that the ring Γ of gaussian integers $m+n i$ is a Unique Factorisation Domain, and determine the units and primes in this domain.

Show that an integer $n>0$ can be expressed in the form

$$
n=a^{2}+b^{2} \quad(a, b \in \mathbb{N})
$$

if and only if each prime $p \equiv 3 \bmod 4$ divides n to an even power.
In how many ways can 1 million be expressed as a sum of two squares?
7. Define an algebraic number and an algebraic integer.

Show that the algebraic numbers form a field, and the algebraic integers form a commutative ring.
Prove that $(\sqrt{2}+\sqrt{3}) / 2$ is not an algebraic integer.
8. Show that the ring $\mathbb{Z}[\sqrt{3}]$ formed by the numbers $m+n \sqrt{3}(m, n \in \mathbb{Z})$ is a Unique Factorisation Domain.
Determine the units and primes in this domain.
Is $\mathbb{Z}[\sqrt{6}]$ a Unique Factorisation Domain?

