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Attempt 5 questions. All carry the same mark.

1. State and prove the Fundamental Theorem of Arithmetic (for N).
Prove that there are an infinity of primes = 3 mod 4.
What can you say about primes = 1 mod 47

Answer:

(a) The integer p > 1 is said to be prime if its only factors are 1 and
p itself.
Theorem. Each integer n > 1 is expressible as a product of
primes,
n=pi...Pr,

and the expression is unique up to order.

Proof. We say that m,n € Z are coprime if the only common
factor they have is 1.

Lemma. Ifm,n are coprime then we can find x,y € Z such that

mx +ny = 1.

Proof. The result is trivial if m = 0 or n = 0, so we may assume
m,n > 0. Consider the set of integers

S={mx+ny:xyel}
Let d be the smallest integer > 0 in this set. Divide m by d:
m = qd +r,

where 0 < r < d.
Then r € S. Hence r = 0 by the minimality of d, ie d | m.

Similarly d | n. Hence d = 1 since m,n are coprime. O



Lemma. [Fuclid’s Lemma/ Suppose p is prime, and a,b € 7.
Then
plab = plaorplb.

Proof. Suppose p t a. Then a,p are coprime, and so there exist
x,y € Z such that
ar +py = 1.

Multiplying by b,

abr +pby =b = p| b,
since p divides both terms on the left. O
Lemma. Fveryn > 1 is a product of primes.

Proof by induction on n. Suppose n is not a prime. Then n = ab,
with 1 < a,b < n. Both a and b are expressible as products of
primes, by the inductive hypothesis. Hence so is n. O

Lemma. The expression for n > 1 as a product of primes is
unique up to order.

Proof by induction on n. Suppose
n:plprqu.qs

are two expressions for n as products of primes. By repeated
application of Euclid’s Lemma,

P1|Qj

for some j. Since g; is prime, it follows that

P1 = ¢qj.
Thus
n
— =P2"Pr =41 Gj-145+1 " " " Gs;
n
and the result follows from the inductive hypothesis. n



(b) Suppose the only primes = 3 mod 4 are

Piy--yPr-

Let
N=4p,---p, — 1.

Note that
N = 3 mod 4.

By the Fundamental Theorem,
N = qi1---gs

where the q’s are primes.
Then one (at least) of these primes, q; say, must be = 3 mod 4.

For
Gn=-=¢g=1mod4 = N =1mod 4.
Thus
4j = Di
for some i. But this implies that
pZ|N7

which is impossible since
N = —1 mod p;.

(¢) By Dirichlet’s Theorem, there are an infinity of primes = 1 mod 4.

In fact, if m(n), m3(n) are the number of primes p < n congruent,
respectively, to 1 and 3 mod4 then
n

m(n) ~ )~ i,

as n — 0.

2. Given m,n € N with ged(m,n) = 1 and r,s € Z, prove that there
exists x € Z such that

r=rmodm, 1z =smodn.

Find the smallest positive integer x such that

r=3modbH, xrx=T7mod 11, z =12 mod 13.

Find the largest integer x not expressible in the form
xr="Ta+ 11b
with a,b > 0.

Answer:



(a) Consider the group homomorphism
© : x mod mn — (z mod m,z mod n) : Z/(mn) — Z/(m)xZ/(n).
This homomorphism is injective; for

reker® = m|z, nlx
= mn |z
= x = 0 mod mn.

Since Z./(mn) and Z/(m) x Z/(n) both contain mn elements, ©
15 bijective.
In particular, it is surjective; and so we can find x € Z/(mn) such
that

O(x) = (r mod m, s mod n).

(b) Let us find u,v,w such that

u=1mod 5, u=0mod 11, u =0 mod 13;
v=0mod 5, v =1mod 11, v =0 mod 13.w =0 mod 5, w =0mod 11, w =1 mod 1

For the first,
1113 =143 = 3 mod 5,
so we can take
u=2-11-13 = 286.
For the second,
5-13=65= —1mod 11,
so we can take
v=—5-13 = —65.
For the third,
5-11 =55 =4 mod 13,
so we can take

w=—-3-5-11 = —165.



(c)

Thus a solution to the 3 simultaneous congruences is
T =3u—4v —w,
= 858 4 260 + 165
= 1283.
The general solution is
1283 45 - 11 - 13t = 1283 4 715¢.
Thus the smallest positive solution is
x = 1283 — 715 = 568.
Since ged(7,11) = 1 we can find x,y € Z such that
Tr+ 11y = 1.

In fact
7-3=21=—1mod 11,

so we can take
r=-3,y=2.

Thus for any n,
n="7(—3n) + 11(2n).

The general solution to
n="Tu+1lv
18
n="T7(—=3n+ 11t) + 11(2n — 7t),
with t € Z.

If now
n>7-11

then we can choose t so that
0 < —-3n+ 11t < 11,
and then
7(=3n+11t) <7-11 = 2n—"T7t > 0.
We have shown therefore that the equation
n="7a-+ 11b

has a solution with a,b > 0 if n > 7-11. Obviously there is no such
solution if n = 1, so the greatest n with no solution lies between 1
and 76.



3. Show that if
M=a"—-1 (a,e>1)

is prime then a = 2 and e is prime.

Find the smallest number
M=2°—-1
(with p prime) that is not prime.
Answer:
(a) Suppose a > 2. We know that
x—1|2°—1
In fact
= 1=(x— D@+ +---1)
Substituting x = a we see that
a—1]a—1.
Now suppose e is not a prime, say
e = cd,

where ¢,d > 1.

Then as above,
r—1]z%—1.

Substituting x = a°,
a*—1] (@) —-1=a°—1.
(b) Evidently,
22 -1=3,2-1=722-1=31,2"-1=127

are all prime.

Since 2'° = 1024,
ot 1 =2047.

If this is prime then
a?™® = 1 mod 2047

for a = 1,2,...,2046. by Fermat’s Little Theorem. In other
words, the order of a mod 2047 must divide 2046.

But the order of 2 mod 2047 s 11, which does not divide 2046.
Hence
Mll - 211 - 1

18 not prime.



4. Prove that if p is an odd prime, then the multiplicative group (Z/p)*
is cyclic.

Find the orders of all the elements of (Z/17)*.
Answer:
(a) Recall that the exponent e of a finite group G is the smallest num-

ber e > 1 such that g¢ = 1 for all g € G. In other words, e is the
lem of the orders of the elements of G.

By Lagrange’s Theorem, e | n, the order of G.

Lemma. If A is a finite abelian group, and the elements a,b € A
have coprime orders m,n then the order of ab is mn.

Proof. Suppose the order of ab is d. Then
d | mn

since

On the other hand,

(ab) =1 = (ab)™ =1
— o =1
= o™ =1
= m|dn
= m|d,
since m,n are coprime. Similarly
n|d.
Hence
mn | d,
since m,n are coprime.
Thus
d=mn

]

Lemma. If the exponent of the finite abelian group A is e then
there is an element a € A of exponent e.



Proof. Suppose
e:pil ...pir'

For each 7, 1 <17 < n, there must be an element a; whose order is
divisible by pi*. (Otherwise the lem of the orders would contain
p; to a lower power.)

Suppose the order of a; is p;'q;. Then the order of
bi = CL;-]i

is pi.

Hence by the last Lemma, the order of
a=0by D,
is e. [

Lemma. If F is a finite field of order n then the exponent e of
the multiplicative group F™* satisfies

e=n—1.
Proof. We have
=1
for all x # 0 in F'. Thus the polynomial
flz)=2°—1

of degree e in F[z] has at least n — 1 distinct roots.
But a polynomial of degree e has at most e roots. Hence

e<n-—1.
On the other hand,
eln—1
by Lagrange’s Theorem.
Hence
e=n—1.

]

It follows from the last Lemma that the exponent of (Z/p)* is p—1.

But then, from the previous Lemma, there is an element in the
group of order p — 1. Hence the group is cyclic.



(b) Recall that if A is a cyclic group of order n, and d | n, then:

i. There is just one subgroup of order d, it is cyclic, and consists
of all elements of order r | n;

ii. There are ¢(d) elements of order d in A.

iii. If g generates A then g generates A if and only if ged(n,r) =
1.

The order of each element of (Z/17)* divides 17—1 = 16, in other
words the order is 1,2,4,8 or 16.

Evidently
2= _1mod 17 = 2° =1 mod 17.

Hence 2 has order 8.

Thus the elements of orders 1,2,/ and § are the powers of 2, and
the remaining elements are of order 16, ie they are primitive roots.

So there is 1 element of order 1, namely 1 mod 17; and there is 1
element of order 2, namely —1 = 16 mod 17.

There are ¢(4) = 2 elements of order 4, namely

2%2 = 4 47  mod 17 = +4 mod 17 = 4, 13 mod 17.
There are ¢(8) = 4 elements of order 8, namely
2tl 933 — 9 8 8 —2mod 17 =2.8,9,15 mod 17.
The remaining ¢(16) — 8 elements, namely
3,5,6,7,10,11,12,14 mod 17

are of order 16.

[Note that
2.3%2=1mod 17.

Hence
32 =271 mod 17.

Since 271 is of order 8, like 2, it follows that 3 is of order 16.]

5. State and prove Gauss’ Law of Quadratic Reciprocity.

Does there exist an integer x such that
2* = 17 mod 307

If there is, find the least such integer > 0.

Answer:



(a)

(b)

If p is a prime, and a € Z is coprime to p, we set

—1 if there is no such x.

(a) B {1 if there is an x € Z such that a = z* mod p,
p

Theorem. If p, g are distinct odd primes then

(p) (q) _J-1 ifp=g=3mod4,
q)\p) |-1 otherwise.

There are many proofs of the Quadratic Reciprocity Theorem.
Here is Zolotarev’s proof, based on the parity (even or odd) of
a permutation.

Recall that a permutation m € S, is even or odd according as it
transforms the alternating polynomial

A==
i<j
mto £A. We set

+1 if ™ is even
e(m) = L
—1 if 7™ s odd.

Evidently the map
T —e(m): (Z/p)" — {£1}

18 a homomorphism.

We know that every permutation m can be expressed as a product
of transpositions. It is easy to see that 7 is even or odd according
as the number of transpositions is even or odd. Also, an even cycle
1s odd, and an odd cycle is even.

Lemma. Suppose p is an odd prime, and a is coprime to p. Let
7 denote the permutation

x— armodp: (Z/p)" — (Z/p)*.

G-

Then



Proof. Recall Eisenstein’s Criterion:

(E) = a2 mod p.
p

It follows that (2) = +1 according as the order of a mod p does

p
or does not divide (p — 1)/2.

Suppose the order of a is d. Then the permutation 7 divides into
(p—1)/d cycles of length d.

Ifd|(p—1)/2 then (p —1)/d is even, and so e(7) = 1.

If dt (p—1)/2 then (p — 1)/d is odd, and d is even, and so
e(m) = —1. O

Let us arrange the elements 0,1,2,...,pq — 1. in the form of a
p X q matriz:

0 1 q—1
q qg+1 2qg —1
p—1)qg (p—1)g+1 pg—1

Thus the matriz contains the element qj + i in position (i, j).
For each r € [0,pq) let p(r) denote the remainder of r mod ¢, ie

p(r)=rmodqg (0 < p(r) <q).
Now let us permute each row in the above matriz, sending
qj +1i— qj + p(pi).

Thus the matrixz becomes

0 P q—17
q g+ 2 —p'
(p—1)q (p—1)g+7p pq—

where p' = 11(p)
Each row has been permuted in the same way, and we have seen

above that the signature of this permutation is P). Since there

q
are an odd number of rows, it follows that the permutation of the
matrix elements has signature

(-0)



Notice that each column in the permuted matriz above appears in
correct cyclic order, ie if the first element in the ith column is
i" = p(pi) then the subsequent elements are q+1', 2q+7d,...,(p—
1)g+1i'. Since one of these elements is pi, we can perform a cyclic
permutation of the column to bring the elements to pi, q+pi, 2q+
pi,...,(p—1)qg+ pi (where we are taking all elements modpq).

As there are an odd number of elements in each column, each of
these cyclic permutations will be even. So the new permutation

0 1 qg—1 0 D 2p
- q q+1 21 q q+p q+2p
(p—1)gq (p—1g+1 pg—1 P=1gq (p—Dg+p (p—1)g+2r

will still have signature

e(Pi) = (g)

It follows in the same way, on swapping p and q, that the permu-
tation of the g X p matrices

0 1 p—1 0 q 2q
- P p+1 2p—1 P P+q P+ 2q
(¢—1p (¢g—Lp+1 pg—1 (¢—Dp (¢—=Lp+q (¢—1)p+ 2

has signature

Evidently the “target” matrices in the two cases are transposes
of one another. So we have to determine the signature of the
permutation
O:qj+i—pi+]

defined by the transposition.
We know that the signature of a permutation © of {1,2,...,n} is
(—=1)", where r is the number of inversions, ie the number of u,v
with

u<v<n and w(u) > w(v).

In our case

(i,))=qi+j<@,j)=q¢' +7 ifi<i ori=1 andj <j.



We have to determine in these cases if
i) =pi+i<li,j]=pj +7.
Thus we have to determine the number of i, j with
i< and j > j'.
This number is
(p=D+@=2)++1)) (=D +(¢=2)+--+9) =pp—1)/2-q(¢—1)/2.
Since p,q are odd, it follows that
€(0) = (_1)(p—1)/2-(q—1)/2.

Since
II' =110,

the result follows:

1€

(}%) _ (%) (—1)o-V/2a-1/2,
(%) . (%) — (—1)F-D/2a-1)/2,

By the Chinese Remainder Theorem there will exist such an inte-
ger if each of the congruences

1€

z? = 17 mod 2,
y* = 17 mod 3,
2> =17 mod 5,

15 soluble. The second s not soluble, since
17 = 2 mod 3,

and

Hence the given congruence is not soluble.



6. Prove that the ring I' of gaussian integers m + n: is a Unique Factori-
sation Domain, and determine the units and primes in this domain.

Show that an integer n > 0 can be expressed in the form
n=a+b (a,b€eN)

if and only if each prime p = 3 mod 4 divides n to an even power.
In how many ways can 1 million be expressed as a sum of two squares?

Answer:
a) If z=x + yi, where x,y € R, we set Zz=x — yi, and
(a)
N(z) =22 =2 + %

It is readily established that

i. N(z) € Qy

iw. N(2) >0 and N(z) =0 <= 2=0;
iii. If 2 € T then N(z) € N.

w. N(zw) = N(2)N(w);

v. If a € Q then N (a) = a?

Lemma. Suppose z,w € F, with w # 0. Then we can find
q,r € I' such that

<

Z=qw +r,
with
N(r) < N(w).
Proof. Suppose
Z =ty
w

where z,y € Q.

Let m,n € Z be the nearest integers to x,y, respectively. Then

1
o —m| <5, ly—n|<

l\DI»—

Set
q=m++1in.

Then
z

E—q:(x—m)%—i(y—n).



Thus

1 1 1
But
z B zZ— quw
N(E—l)—/\/( ” )
~ N —qu)
 N(w)
Hence

N(Z _qw> <N(U)),
from which the result follows on setting
r=2z—qu.
O

Lemma. Any two numbers z,w € I' have a greatest common
divisor ¢ such that
d | z,w

and
8 z,w = & |4

Also, ¢ is uniquely defined up to multiplication by a unit.
Moreover, there exists u,v € I' such that

uz +vw = 0.

Proof. We follow the classic Euclidean Algorithm, except that we
use N (z) in place of |n|.
We start by dividing 2z by w:

z=qow+ry, N(rg) <N(w).

If ro = 0, we are done. Otherwise we divide w by 7rg:
w=qro+r, N(r) <N(r).

f r; = 0, we are done. Otherwise we continue in this way. Since

N(w) > N(rg) > N(ry) >+,



and the norms are all positive integers, the algorithm must end,
say
ri = qiTi-1, Tit1 = 0.

Setting
5 =T,
we see successively that
J | Ti—1,Ti—-25-.-,T0, W, 2.
Conversely, if ¢’ | z,w then
!
8| z,w,ro, 1, ... 1 =0

The last part of the Lemma follows as in the classic Euclidean
Algorithm; we see successively that r{,79,...,7; = 0 are each ex-
pressible as linear combinations of z, w with coefficients in I'. [

Theorem. [I'is a Unique Factorisation Domain.

Proof. First we show that any z € I' is a product of irreducibles,
by induction on N (2).
If z is a unit or irreducible, we are done. If not, suppose
z = wt,
where neither w nor ¢ is a unit. Then

N(z) = NN () = N(w),N(t) < N(2).

Hence w,t are products of prime elements, and the result follows.

To see that the expression is unique, we must establish the ana-
logue of Euclid’s Lemma. The proof is identical to the classic
case.

Lemma. Ifr7 el is prime element and z,w € I" then

T|zw = 7|z orm|w.

Proof. If w1 z then
ged(m, z) = 1.

Hence there exist u, v such that

ur +vz = 1.



(b)

Multiplying by w, Multiplying by w,
UTwW + vzw = w.
Since 7 divides both terms on the left,
7| w.
O

Now the proof is as before. Again, we argue by induction on N'(z).
Suppose

/

z=¢€p1--pr=¢€p...p,
Then

/
™ |

for some 7. Hence
7rl’- ~ T,

Now we can divide both sides by m; and apply the inductive hy-
pothesis. O

Lemma. e €T is a unit if and only if M(e) = 1.
Proof. If e is a unit, ie ef = 1 for some f € I', then
Nef)=1 = N(e)=N(f)=1.

Conversely, if A'(e¢) = 1 then e = 1, and so e is a unit, since
eel. O

It follows that e = m + ni s a unit if and only if
m? +n?=1.

FEvidently the only solutions to this are (m,n) = (£1,0), (0, £1).
Thus the only units in I' are +1, +1.

Lemma. An odd prime p € N splits in I if and only if p =
1 mod 4.

Proof. Suppose p splits, say

Then



(d)

It follows (from prime factorization in N) that » = 2 and
N(m) = N(m) =p.

Let m = m = m + ni. Then
N(m) =m®+n® =p.

Clearly n is coprime to p. So if n~! denotes the inverse of n modulo
p then
(mn~ 1% +1=0mod p.

Hence —1 is a quadratic residue modulo p. But we know (from
Euler’s Criterion) that this holds if and only if p = 1 mod 4. So p
remains prime in I' if p = 3 mod 4.

Suppose p = 1 mod 4. Then there is an r such that
r?2 4+ 1= 0mod p,
ie
(r+i)(r—1)=pm.
If p does not split then
plrti = p|1,
which is absurd. O

Finally,
2 =i(1—1i)%
Thus 2 ramifies in T, ie splits into two equal primes.

These give all the primes in I'; for if m is a prime and
N(m)=n=pi-pr

then | p; for some i.
Suppose
n = a®+ b,

and suppose p = 3 mod 4 divides n. Then it follows from the
argument above that p | a,b; for otherwise —1 would be a quadratic
residue modulo p. Thus p? | n, and

n/p® = (a/p)* + (b/p).



We deduce, on repeating this argument, that p divides n to an even
power.

Now suppose

7‘2 S
n:26p§1..-piq1f1---q§f7

where p; = 1 mod 4, ¢; = 3 mod 4. If now

pi = T

set

z=a+ib=(1—i)x - mlrglt .. gl

Then
N(2) = a* +b* =n.
(e) Suppose
1000000 = 265° = % + 1°.

We shall assume that a,b > 0, and that a > b. By the above
argument

a+ib= f(1—1i)%2414)%(2—1)",
where f is a unit and r+s = 6. The unit f is uniquely defined by
the conditions a,b > 0, a > b, Hence there are 7 different ways of
expressing 10000000 as a sum of two squares.

7. Define an algebraic number and an algebraic integer.

Show that the algebraic numbers form a field, and the algebraic integers
form a commutative ring.

Prove that (\/5 + \/3) /2 is not an algebraic integer.

Answer:

(a) We say that o € C is an algebraic number if it satisfies an equation
2"+ a4+ +a, =0

with aq,...,a, € Q.

(b) We say that « is an algebraic integer if it satisfies an equation
"+ a" ot a, =0

with ay,...,a, € Z.

(¢) Lemma. Suppose
aV CV,

where V' C C is a finite-dimensional vector space. Then « is an
algebraic number.



(d)

Proof. Let ey, ..., e, be a basis for V. Then

ae1 = @11€1 + - -+ + A1pCn,

ey = Qo161 + -+ - + G2peyp,

e, = a11€1 + - -+ + A1p€yp,

where a;; € Q.
It follows that « satisfies the polynomial equation

det(zl — A) = 0.
This has rational coefficients. Hence « is algebraic. O
Now suppose a, 5 are algebraic, satisfying the equations

™ +a ™+ 4 a,, =0,

2+ b -+ b, =0.

Consider the vector subspace V- C C over Q spanned by the mn
numbers o
o' (1<i<m, 1<j<n).

It is readily verified that

aVCcV, gV cV.

It follows that
(a+p)V CV, (af)V CV.

Hence a + 8, af are algebraic.

1

Since it is easy to see that o~ 1is algebraic, it follows that the

algebraic numbers form a field.

Lemma. Suppose
aA C A,

where A C C is a finitely-generated abelian group Then « is an
algebraic integer.

Proof. This follows in the same way as the last Lemma, with «
satisfying an equation

det(zl — A) =0,

where now the coefficients are integers. O



(e) Suppose

a=(V2+V3)/2

1 an algebraic integer.
We know that v/2 and /3 are algebraic integers. Hence so is

V23,

and so therefore is
1

Suppose —1/2 satisfies the equation
"+ a" ot a, =0
with ay,...,a, € Z. Multiplying by 2",
1—|—2a1+4a2+--~+2"an:0 == 2 | 1.
8. Show that the ring Z[v/3] formed by the numbers m +n\/3 (m,n € 7Z)
is a Unique Factorisation Domain.
Determine the units and primes in this domain.

Is Z[v/6] a Unique Factorisation Domain?
Answer:
(a) Let
A=Z[V3] = {m+nV3:mn €7}
The numbers {x +yv/3 : z,y € Q} form a field Q(\/3). (Recall
that A is the ring of algebraic integers in this field.) If z = x+y/3

we set
z=x—yV3,

and

N(()z) = 22 = 2* — 3y°.

Lemma. Given z,w € A with w # 0 we can find ¢,r € A such
that
Z=qw-+r
with
N (Or)| < IN(Oa)] -



(b)

Proof. Let
z
— =T+ y\/ga
w

with z,y € Q. We can find m,n € Z such that

‘ ‘<1 ’ |<1
r—1m - —n —-.
_27 y _2

Choose
qg=m-+n
Then 3 )
z
_2 < Z_)< =
TSNS - <

It follows from the multiplicative property of the norm that
3
N0z —qw)l < 7 IN (@)l
and the result follows on setting r = z — quw. m

This Lemma allows us to set up the Fuclidean Algorithm in A,
and so define

ged(z,w) =46
for z, winA.

Moreover, it follows by reversing the algorithm that we can find
u,v € A such that
uz +vw = 0.

The analogue of Euclid’s Lemma follows: if m € T' is irreducible
then
T|zw = 7|z orm|w.

Any z € T can be expressed as a product of irreducibles. For
z=wiwy - w, = N(()2) = N(Quwi)N(OQws) - -- N(OQwy),

so the number of w; in such a product is limited by the number of

factors of N(()z).

Finally, the uniqueness of the factorisation into irreducibles (up
to order) follows in the familiar way from Fuclid’s Lemma.

It is easy to see that z = m +nv/3 is a unit in A if and only if
N(()z) = £1.

For

2w =1 = N()DN(w) = N((1) = 1 = N(()2) = N((w) = L.



Euvidently
e=2+4+3

is a unit, since 22 — 3 = 1.
It follows that

+e"
are units, for alln € Z.

These are in fact the only units. For suppose n is a unit # 1. We
may assume that
n>1,

since just one of
+n,£n' € (0,00).

Suppose
ETL S 77 < ETL+1‘
Then
0=ne"ell,n).
Suppose

0 =m + nv3,

where m,n € Z. Then

m—nvV3=+0"".

Thus
1<m+nV/3<2+ \/5,

—1<m-nV3<1.
Adding,

0<m<(1++3)/2
Thus

m =20 or 1.

Since

m? —3n? = +1

it follows that



(¢c) Having established unique factorisation in A we may refer to ir-
reducibles as primes.

Suppose p € 7 is a rational prime. Then p factorizes into at most
2 primes in A, since

p=m-m = N(Om) - N(Om) = N(Op) = 1,

and [N (()m;)| > 1 since IN(()z)| = 1 implies that z is a unit.
Conversely, each prime m € A is a factor of a unique rational
prime p. For if
N(Om) =77 =p1---p,
then 7 divides one of the p;; and it cannot divide two different
rational primes p,q since we can find x,y € Z such that
pr+qy =1,
and so
T|pg = 7|1,
which is absurd.
Also, if a rational prime p splits in I' then
p = *£nT,
1e p splits into conjugate primes. For
p=rr" = N(OmN((7') = Norm(p) = p*
= N((n) =77 = +p.

Thus we have to determine which rational primes p € N split in

A.

Theorem.
i. 3 ramifies (ie splits into two equal primes) in A:
3=(V3)2
ii.
Lemma. Suppose p € N is a rational prime. Then we can find

z € 7Z such that
z? = 3 mod p

if and only if either p = 2 or 3, or

p=+1mod 12.



(d)

Proof. The result is trivial if p = 2 or 3. If p # 2,3, then by
Gauss’ Quadratic Reciprocity Law,

() - (5) o=t

p —(%) if p=3mod 4
(p)_ 1 ifp=1mod3
3/ |-1 ifp=2mod3’

Suppose p is a rational prime. If p = 3 mod 4 then p cannot split
inT. Forif p splits then p = N (()7) from above; but if 7 = m~+ni
then

and

]

p=N(r) =m?+n?
and this is impossible if p = 3 mod 4 since m?,n?> = 0 or 1 mod 4.
On the other hand, if p = 1 mod 4 then it does split. For we know

in this case that .
<—_) 1
p

ie we can find n € Z such that
p|n?+1.
But
n*+1=(n+i)(n—i

in I'. Thus if p remained prime in I" we would have
pln+iorp|n—i,

both of which are impossible.
Finally,
2=—i(1+1)>
Thus 2 ramifies in T, ie splits into 2 equal (or associated) primes.

Lemma. The integer n € N is expressible as a sum of squares
if and only if each prime factor p = 3 mod 4 occurs to an even
power in n

Thus
99 =32.11



is not expressible as a sum of 2 squares, since 11 = 3 mod 4 and
this occurs only once.
Similarly

999 = 3° - 37

is not expressible as a sum of 2 squares, since 3 occurs 3 times.

Again, 2010 is divisible by 3 but not by 9, and so is not expressible
as a sum of 2 squares.

Finally, 2317 = 7 - 331 is not expressible as a sum of 2 squares,

since 7 occurs only once. (Note that it is not necessary to know
that 331 is prime; it is sufficient to observe that it is not divisible

by 7.)



