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Attempt 5 questions. All carry the same mark.

1. State and prove the Fundamental Theorem of Arithmetic (for N).

Prove that there are an infinity of primes ≡ 3 mod 4.

What can you say about primes ≡ 1 mod 4?

Answer:

(a) The integer p > 1 is said to be prime if its only factors are 1 and
p itself.

Theorem. Each integer n > 1 is expressible as a product of
primes,

n = p1 . . . pr,

and the expression is unique up to order.

Proof. We say that m,n ∈ Z are coprime if the only common
factor they have is 1.

Lemma. If m,n are coprime then we can find x, y ∈ Z such that

mx+ ny = 1.

Proof. The result is trivial if m = 0 or n = 0, so we may assume
m,n > 0. Consider the set of integers

S = {mx+ ny : x, y ∈ Z}.

Let d be the smallest integer > 0 in this set. Divide m by d:

m = qd+ r,

where 0 ≤ r < d.

Then r ∈ S. Hence r = 0 by the minimality of d, ie d | m.

Similarly d | n. Hence d = 1 since m,n are coprime.



Lemma. [Euclid’s Lemma] Suppose p is prime, and a, b ∈ Z.
Then

p | ab =⇒ p | a or p | b.

Proof. Suppose p - a. Then a, p are coprime, and so there exist
x, y ∈ Z such that

ax+ py = 1.

Multiplying by b,

abx+ pby = b =⇒ p | b,

since p divides both terms on the left.

Lemma. Every n > 1 is a product of primes.

Proof by induction on n. Suppose n is not a prime. Then n = ab,
with 1 < a, b < n. Both a and b are expressible as products of
primes, by the inductive hypothesis. Hence so is n.

Lemma. The expression for n > 1 as a product of primes is
unique up to order.

Proof by induction on n. Suppose

n = p1 · · · pr = q1 · · · qs

are two expressions for n as products of primes. By repeated
application of Euclid’s Lemma,

p1 | qj

for some j. Since qj is prime, it follows that

p1 = qj.

Thus
n

p1
= p2 · · · pr = q1 · · · qj−1qj+1 · · · qs;

and the result follows from the inductive hypothesis.



(b) Suppose the only primes ≡ 3 mod 4 are

p1, . . . , pr.

Let
N = 4p1 · · · pr − 1.

Note that
N ≡ 3 mod 4.

By the Fundamental Theorem,

N = q1 · · · qs
where the q’s are primes.

Then one (at least) of these primes, qj say, must be ≡ 3 mod 4.
For

q1 ≡ · · · ≡ qs ≡ 1 mod 4 =⇒ N ≡ 1 mod 4.

Thus
qj = pi

for some i. But this implies that

pi|N,

which is impossible since

N ≡ −1 mod pi.

(c) By Dirichlet’s Theorem, there are an infinity of primes ≡ 1 mod 4.

In fact, if π1(n), π3(n) are the number of primes p ≤ n congruent,
respectively, to 1 and 3 mod4 then

π1(n) ∼ π3(n) ∼ n

2 lnn
as n→∞.

2. Given m,n ∈ N with gcd(m,n) = 1 and r, s ∈ Z, prove that there
exists x ∈ Z such that

x ≡ r mod m, x ≡ s mod n.

Find the smallest positive integer x such that

x ≡ 3 mod 5, x ≡ 7 mod 11, x ≡ 12 mod 13.

Find the largest integer x not expressible in the form

x = 7a+ 11b

with a, b ≥ 0.

Answer:



(a) Consider the group homomorphism

Θ : x mod mn→ (x mod m,x mod n) : Z/(mn)→ Z/(m)×Z/(n).

This homomorphism is injective; for

x ∈ ker Θ =⇒ m | x, n | x
=⇒ mn | x
=⇒ x = 0 mod mn.

Since Z/(mn) and Z/(m) × Z/(n) both contain mn elements, Θ
is bijective.

In particular, it is surjective; and so we can find x ∈ Z/(mn) such
that

Θ(x) = (r mod m, s mod n).

(b) Let us find u, v, w such that

u ≡ 1 mod 5, u ≡ 0 mod 11, u ≡ 0 mod 13;

v ≡ 0 mod 5, v ≡ 1 mod 11, v ≡ 0 mod 13.w ≡ 0 mod 5, w ≡ 0 mod 11, w ≡ 1 mod 13;

For the first,

11 · 13 = 143 ≡ 3 mod 5,

so we can take

u = 2 · 11 · 13 = 286.

For the second,

5 · 13 = 65 ≡ −1 mod 11,

so we can take

v = −5 · 13 = −65.

For the third,

5 · 11 = 55 ≡ 4 mod 13,

so we can take

w = −3 · 5 · 11 = −165.



Thus a solution to the 3 simultaneous congruences is

x = 3u− 4v − w,
= 858 + 260 + 165

= 1283.

The general solution is

1283 + 5 · 11 · 13t = 1283 + 715t.

Thus the smallest positive solution is

x = 1283− 715 = 568.

(c) Since gcd(7, 11) = 1 we can find x, y ∈ Z such that

7x+ 11y = 1.

In fact
7 · 3 = 21 ≡ −1 mod 11,

so we can take
x = −3, y = 2.

Thus for any n,
n = 7(−3n) + 11(2n).

The general solution to

n = 7u+ 11v

is
n = 7(−3n+ 11t) + 11(2n− 7t),

with t ∈ Z.

If now
n ≥ 7 · 11

then we can choose t so that

0 ≤ −3n+ 11t < 11,

and then

7(−3n+ 11t) < 7 · 11 =⇒ 2n− 7t > 0.

We have shown therefore that the equation

n = 7a+ 11b

has a solution with a, b ≥ 0 if n ≥ 7·11. Obviously there is no such
solution if n = 1, so the greatest n with no solution lies between 1
and 76.



3. Show that if
M = ae − 1 (a, e > 1)

is prime then a = 2 and e is prime.

Find the smallest number

M = 2p − 1

(with p prime) that is not prime.

Answer:

(a) Suppose a > 2. We know that

x− 1 | xe − 1.

In fact
xe − 1 = (x− 1)(xe−1 + xe−2 + · · · 1)

Substituting x = a we see that

a− 1 | ae − 1.

Now suppose e is not a prime, say

e = cd,

where c, d > 1.

Then as above,
x− 1 | xd − 1.

Substituting x = ac,

ac − 1 | (ac)d − 1 = ae − 1.

(b) Evidently,

22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127

are all prime.

Since 210 = 1024,
211 − 1 = 2047.

If this is prime then

a2046 ≡ 1 mod 2047

for a = 1, 2, . . . , 2046. by Fermat’s Little Theorem. In other
words, the order of a mod 2047 must divide 2046.

But the order of 2 mod 2047 is 11, which does not divide 2046.
Hence

M11 = 211 − 1

is not prime.



4. Prove that if p is an odd prime, then the multiplicative group (Z/p)×
is cyclic.

Find the orders of all the elements of (Z/17)×.

Answer:

(a) Recall that the exponent e of a finite group G is the smallest num-
ber e > 1 such that ge = 1 for all g ∈ G. In other words, e is the
lcm of the orders of the elements of G.

By Lagrange’s Theorem, e | n, the order of G.

Lemma. If A is a finite abelian group, and the elements a, b ∈ A
have coprime orders m,n then the order of ab is mn.

Proof. Suppose the order of ab is d. Then

d | mn

since
(ab)mn = amnbmn = 1.

On the other hand,

(ab)d = 1 =⇒ (ab)dn = 1

=⇒ adnbdn = 1

=⇒ adn = 1

=⇒ m | dn
=⇒ m | d,

since m,n are coprime. Similarly

n | d.

Hence
mn | d,

since m,n are coprime.

Thus
d = mn.

Lemma. If the exponent of the finite abelian group A is e then
there is an element a ∈ A of exponent e.



Proof. Suppose
e = pe11 · · · perr .

For each i, 1 ≤ i ≤ n, there must be an element ai whose order is
divisible by peii . (Otherwise the lcm of the orders would contain
pi to a lower power.)

Suppose the order of ai is peii qi. Then the order of

bi = aqii

is pqii .

Hence by the last Lemma, the order of

a = b1 · · · br

is e.

Lemma. If F is a finite field of order n then the exponent e of
the multiplicative group F ∗ satisfies

e = n− 1.

Proof. We have
xe = 1

for all x 6= 0 in F . Thus the polynomial

f(x) = xe − 1

of degree e in F [x] has at least n− 1 distinct roots.

But a polynomial of degree e has at most e roots. Hence

e ≤ n− 1.

On the other hand,
e | n− 1

by Lagrange’s Theorem.

Hence
e = n− 1.

It follows from the last Lemma that the exponent of (Z/p)∗ is p−1.

But then, from the previous Lemma, there is an element in the
group of order p− 1. Hence the group is cyclic.



(b) Recall that if A is a cyclic group of order n, and d | n, then:

i. There is just one subgroup of order d, it is cyclic, and consists
of all elements of order r | n;

ii. There are φ(d) elements of order d in A.

iii. If g generates A then gr generates A if and only if gcd(n, r) =
1.

The order of each element of (Z/17)∗ divides 17−1 = 16, in other
words the order is 1,2,4,8 or 16.

Evidently

24 ≡ −1 mod 17 =⇒ 28 ≡ 1 mod 17.

Hence 2 has order 8.

Thus the elements of orders 1,2,4 and 8 are the powers of 2, and
the remaining elements are of order 16, ie they are primitive roots.

So there is 1 element of order 1, namely 1 mod 17; and there is 1
element of order 2, namely −1 = 16 mod 17.

There are φ(4) = 2 elements of order 4, namely

2±2 = 4, 4−1 mod 17 = ±4 mod 17 = 4, 13 mod 17.

There are φ(8) = 4 elements of order 8, namely

2±1, 2±3 = 2,−8, 8,−2 mod 17 = 2, 8, 9, 15 mod 17.

The remaining φ(16)− 8 elements, namely

3, 5, 6, 7, 10, 11, 12, 14 mod 17

are of order 16.

[Note that
2 · 32 ≡ 1 mod 17.

Hence
32 ≡ 2−1 mod 17.

Since 2−1 is of order 8, like 2, it follows that 3 is of order 16.]

5. State and prove Gauss’ Law of Quadratic Reciprocity.

Does there exist an integer x such that

x2 ≡ 17 mod 30?

If there is, find the least such integer ≥ 0.

Answer:



(a) If p is a prime, and a ∈ Z is coprime to p, we set(
a

p

)
=

{
1 if there is an x ∈ Z such that a ≡ x2 mod p,

−1 if there is no such x.

Theorem. If p, q are distinct odd primes then(
p

q

)(
q

p

)
=

{
−1 if p ≡ q ≡ 3 mod 4,

−1 otherwise.

(b) There are many proofs of the Quadratic Reciprocity Theorem.
Here is Zolotarev’s proof, based on the parity (even or odd) of
a permutation.

Recall that a permutation π ∈ Sn is even or odd according as it
transforms the alternating polynomial

A =
∏
i<j

(xi − xj)

into ±A. We set

ε(π) =

{
+1 if π is even

−1 if π is odd.

Evidently the map

π → ε(π) : (Z/p)∗ → {±1}

is a homomorphism.

We know that every permutation π can be expressed as a product
of transpositions. It is easy to see that π is even or odd according
as the number of transpositions is even or odd. Also, an even cycle
is odd, and an odd cycle is even.

Lemma. Suppose p is an odd prime, and a is coprime to p. Let
π denote the permutation

x→ ax mod p : (Z/p)∗ → (Z/p)∗.

Then (
a

p

)
= ε(π).



Proof. Recall Eisenstein’s Criterion:(
a

p

)
≡ a(p−1)/2 mod p.

It follows that

(
a

p

)
= ±1 according as the order of a mod p does

or does not divide (p− 1)/2.

Suppose the order of a is d. Then the permutation π divides into
(p− 1)/d cycles of length d.

If d | (p− 1)/2 then (p− 1)/d is even, and so ε(π) = 1.

If d - (p − 1)/2 then (p − 1)/d is odd, and d is even, and so
ε(π) = −1.

Let us arrange the elements 0, 1, 2, . . . , pq − 1. in the form of a
p× q matrix:

0 1 · · · q − 1
q q + 1 · · · 2q − 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(p− 1)q (p− 1)q + 1 · · · pq − 1


Thus the matrix contains the element qj + i in position (i, j).

For each r ∈ [0, pq) let µ(r) denote the remainder of r mod q, ie

µ(r) ≡ r mod q (0 ≤ µ(r) < q).

Now let us permute each row in the above matrix, sending

qj + i→ qj + µ(pi).

Thus the matrix becomes
0 p′ · · · q − p′
q q + p′ · · · 2q − p′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(p− 1)q (p− 1)q + p′ · · · pq − p′

 ,

where p′ = µ(p)

Each row has been permuted in the same way, and we have seen

above that the signature of this permutation is

(
p

q

)
. Since there

are an odd number of rows, it follows that the permutation of the
matrix elements has signature(

p

q

)p

=

(
p

q

)
.



Notice that each column in the permuted matrix above appears in
correct cyclic order, ie if the first element in the ith column is
i′ = µ(pi) then the subsequent elements are q+ i′, 2q+ i′, . . . , (p−
1)q+ i′. Since one of these elements is pi, we can perform a cyclic
permutation of the column to bring the elements to pi, q+pi, 2q+
pi, . . . , (p− 1)q + pi (where we are taking all elements modpq).

As there are an odd number of elements in each column, each of
these cyclic permutations will be even. So the new permutation

Π :


0 1 · · · q − 1
q q + 1 · · · 2q − 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(p− 1)q (p− 1)q + 1 · · · pq − 1

→


0 p 2p · · ·
q q + p q + 2p · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(p− 1)q (p− 1)q + p (p− 1)q + 2p · · ·

 ,

will still have signature

ε(Pi) =

(
p

q

)
.

It follows in the same way, on swapping p and q, that the permu-
tation of the q × p matrices

Π′ :


0 1 · · · p− 1
p p+ 1 · · · 2p− 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(q − 1)p (q − 1)p+ 1 · · · pq − 1

→


0 q 2q · · ·
p p+ q p+ 2q · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(q − 1)p (q − 1)p+ q (q − 1)p+ 2q · · ·

 ,

has signature

ε(Pi′) =

(
q

p

)
.

Evidently the “target” matrices in the two cases are transposes
of one another. So we have to determine the signature of the
permutation

Θ : qj + i 7→ pi+ j

defined by the transposition.

We know that the signature of a permutation π of {1, 2, . . . , n} is
(−1)r, where r is the number of inversions, ie the number of u, v
with

u < v ≤ n and π(u) > π(v).

In our case

(i, j) = qi+ j < (i′, j′) = qi′ + j′ if i < i′ or i = i′ and j < j′.



We have to determine in these cases if

[i, j] = pj + i < [i′, j′] = pj′ + i′.

Thus we have to determine the number of i, j with

i < i′ and j > j′.

This number is

((p− 1) + (p− 2) + · · ·+ 1)) ((q − 1) + (q − 2) + · · ·+ q)) = p(p−1)/2·q(q−1)/2.

Since p, q are odd, it follows that

ε(Θ) = (−1)(p−1)/2·(q−1)/2.

Since
Π′ = ΠΘ,

the result follows:

ε(Π′) = ε(Π)ε(Θ),

ie (
q

p

)
=

(
q

p

)
(−1)(p−1)/2·(q−1)/2,

ie (
q

p

)
·
(
q

p

)
= (−1)(p−1)/2·(q−1)/2.

(c) By the Chinese Remainder Theorem there will exist such an inte-
ger if each of the congruences

x2 ≡ 17 mod 2,

y2 ≡ 17 mod 3,

z2 ≡ 17 mod 5,

is soluble. The second is not soluble, since

17 ≡ 2 mod 3,

and (
2

3

)
= −1.

Hence the given congruence is not soluble.



6. Prove that the ring Γ of gaussian integers m+ ni is a Unique Factori-
sation Domain, and determine the units and primes in this domain.

Show that an integer n > 0 can be expressed in the form

n = a2 + b2 (a, b ∈ N)

if and only if each prime p ≡ 3 mod 4 divides n to an even power.

In how many ways can 1 million be expressed as a sum of two squares?

Answer:

(a) If z = x+ yi, where x, y ∈ R, we set z̄ = x− yi, and

N (z) = zz̄ = x2 + y2.

It is readily established that

i. N (z) ∈ Q;

ii. N (z) ≥ 0 and N (z) = 0 ⇐⇒ z = 0;

iii. If z ∈ Γ then N (z) ∈ N.

iv. N (zw) = N (z)N (w);

v. If a ∈ Q then N (a) = a2;

Lemma. Suppose z, w ∈ Γ, with w 6= 0. Then we can find
q, r ∈ Γ such that

z = qw + r,

with
N (r) < N (w).

Proof. Suppose
z

w
= x+ iy,

where x, y ∈ Q.

Let m,n ∈ Z be the nearest integers to x, y, respectively. Then

|x−m| ≤ 1

2
, |y − n| ≤ 1

2
.

Set
q = m+ in.

Then
z

w
− q = (x−m) + i(y − n).



Thus

N (
z

w
− 1) = (x−m)2 + (y − n)2 ≤ 1

4
+

1

4
=

1

2
< 1.

But

N (
z

w
− 1) = N (

z − qw
w

)

=
N (z − qw)

N (w)
.

Hence
N (z − qw) < N (w),

from which the result follows on setting

r = z − qw.

Lemma. Any two numbers z, w ∈ Γ have a greatest common
divisor δ such that

δ | z, w

and
δ′ | z, w =⇒ δ′ | δ.

Also, δ is uniquely defined up to multiplication by a unit.

Moreover, there exists u, v ∈ Γ such that

uz + vw = δ.

Proof. We follow the classic Euclidean Algorithm, except that we
use N (z) in place of |n|.
We start by dividing z by w:

z = q0w + r0, N (r0) < N (w).

If r0 = 0, we are done. Otherwise we divide w by r0:

w = q1r0 + r1, N (r1) < N (r0).

f r1 = 0, we are done. Otherwise we continue in this way. Since

N (w) > N (r0) > N (r1) > · · · ,



and the norms are all positive integers, the algorithm must end,
say

ri = qiri−1, ri+1 = 0.

Setting
δ = ri,

we see successively that

δ | ri−1, ri−2, . . . , r0, w, z.

Conversely, if δ′ | z, w then

δ′ | z, w, r0, r1, . . . , ri = δ.

The last part of the Lemma follows as in the classic Euclidean
Algorithm; we see successively that r1, r2, . . . , ri = δ are each ex-
pressible as linear combinations of z, w with coefficients in Γ.

Theorem. Γ is a Unique Factorisation Domain.

Proof. First we show that any z ∈ Γ is a product of irreducibles,
by induction on N (z).

If z is a unit or irreducible, we are done. If not, suppose

z = wt,

where neither w nor t is a unit. Then

N (z) = N (w)N (t) =⇒ N (w),N (t) < N (z).

Hence w, t are products of prime elements, and the result follows.

To see that the expression is unique, we must establish the ana-
logue of Euclid’s Lemma. The proof is identical to the classic
case.

Lemma. If π ∈ Γ is prime element and z, w ∈ Γ then

π | zw =⇒ π | z or π | w.

Proof. If π - z then
gcd(π, z) = 1.

Hence there exist u, v such that

uπ + vz = 1.



Multiplying by w, Multiplying by w,

uπw + vzw = w.

Since π divides both terms on the left,

π | w.

Now the proof is as before. Again, we argue by induction on N (z).
Suppose

z = εp1 · · · pr = ε′p′1 . . . p
′
s.

Then
π1 | π′i

for some i. Hence
π′i ∼ π.

Now we can divide both sides by π1 and apply the inductive hy-
pothesis.

(b) Lemma. e ∈ Γ is a unit if and only if N (e) = 1.

Proof. If e is a unit, ie ef = 1 for some f ∈ Γ, then

N (ef) = 1 =⇒ N (e) = N (f) = 1.

Conversely, if N (e) = 1 then eē = 1, and so e is a unit, since
ē ∈ Γ.

It follows that e = m+ ni is a unit if and only if

m2 + n2 = 1.

Evidently the only solutions to this are (m,n) = (±1, 0), (0,±1).
Thus the only units in Γ are ±1,±i.

(c) Lemma. An odd prime p ∈ N splits in Γ if and only if p ≡
1 mod 4.

Proof. Suppose p splits, say

p = π1 · · · πr.

Then
p2 = N (p) = N (p1) · · · N (pir).



It follows (from prime factorization in N) that r = 2 and

N (π1) = N (π2) = p.

Let π = π1 = m+ ni. Then

N (π) = m2 + n2 = p.

Clearly n is coprime to p. So if n−1 denotes the inverse of n modulo
p then

(mn−1)2 + 1 ≡ 0 mod p.

Hence −1 is a quadratic residue modulo p. But we know (from
Euler’s Criterion) that this holds if and only if p ≡ 1 mod 4. So p
remains prime in Γ if p ≡ 3 mod 4.

Suppose p ≡ 1 mod 4. Then there is an r such that

r2 + 1 ≡ 0 mod p,

ie

(r + i)(r − i) = pm.

If p does not split then

p | r ± i =⇒ p | 1,

which is absurd.

Finally,
2 = i(1− i)2.

Thus 2 ramifies in Γ, ie splits into two equal primes.

These give all the primes in Γ; for if π is a prime and

N (π) = n = p1 · · · pr

then π | pi for some i.

(d) Suppose
n = a2 + b2,

and suppose p ≡ 3 mod 4 divides n. Then it follows from the
argument above that p | a, b; for otherwise −1 would be a quadratic
residue modulo p. Thus p2 | n, and

n/p2 = (a/p)2 + (b/p)2.



We deduce, on repeating this argument, that p divides n to an even
power.

Now suppose
n = 2epe11 · · · perr q

2f1
1 · · · q2fss ,

where pi ≡ 1 mod 4, qj ≡ 3 mod 4. If now

pi = πiπ̄i.

set
z = a+ ib = (1− i)eπe1

1 · · · πer
r q

f1
1 · · · qfrs .

Then
N (z) = a2 + b2 = n.

(e) Suppose
1000000 = 2656 = a2 + b2.

We shall assume that a, b ≥ 0, and that a ≥ b. By the above
argument

a+ ib = f(1− i)6(2 + i)s(2− i)t,

where f is a unit and r+ s = 6. The unit f is uniquely defined by
the conditions a, b ≥ 0, a ≥ b, Hence there are 7 different ways of
expressing 10000000 as a sum of two squares.

7. Define an algebraic number and an algebraic integer.

Show that the algebraic numbers form a field, and the algebraic integers
form a commutative ring.

Prove that (
√

2 +
√

3)/2 is not an algebraic integer.

Answer:

(a) We say that α ∈ C is an algebraic number if it satisfies an equation

xn + a1x
n−1 + · · ·+ an = 0

with a1, . . . , an ∈ Q.

(b) We say that α is an algebraic integer if it satisfies an equation

xn + a1x
n−1 + · · ·+ an = 0

with a1, . . . , an ∈ Z.

(c) Lemma. Suppose
αV ⊂ V,

where V ⊂ C is a finite-dimensional vector space. Then α is an
algebraic number.



Proof. Let e1, . . . , en be a basis for V . Then

αe1 = a11e1 + · · ·+ a1nen,

αe2 = a21e1 + · · ·+ a2nen,

. . .

αen = a11e1 + · · ·+ a1nen,

where aij ∈ Q.

It follows that α satisfies the polynomial equation

det(xI − A) = 0.

This has rational coefficients. Hence α is algebraic.

Now suppose α, β are algebraic, satisfying the equations

xm + a1x
m−1 + · · ·+ am = 0,

xn + b1x
n−1 + · · ·+ bn = 0.

Consider the vector subspace V ⊂ C over Q spanned by the mn
numbers

αiβj (1 ≤ i ≤ m, 1 ≤ j ≤ n).

It is readily verified that

αV ⊂ V, βV ⊂ V.

It follows that
(α + β)V ⊂ V, (αβ)V ⊂ V.

Hence α + β, αβ are algebraic.

Since it is easy to see that α−1 is algebraic, it follows that the
algebraic numbers form a field.

(d) Lemma. Suppose
αA ⊂ A,

where A ⊂ C is a finitely-generated abelian group Then α is an
algebraic integer.

Proof. This follows in the same way as the last Lemma, with α
satisfying an equation

det(xI − A) = 0,

where now the coefficients are integers.



(e) Suppose
α = (

√
2 +
√

3)/2

is an algebraic integer.

We know that
√

2 and
√

3 are algebraic integers. Hence so is

√
2−
√

3;

and so therefore is

α(
√

2−
√

3) = −1

2
.

Suppose −1/2 satisfies the equation

xn + a1x
n−1 + · · ·+ an = 0

with a1, . . . , an ∈ Z. Multiplying by 2n,

1 + 2a1 + 4a2 + · · ·+ 2nan = 0 =⇒ 2 | 1.

8. Show that the ring Z[
√

3] formed by the numbers m+ n
√

3 (m,n ∈ Z)
is a Unique Factorisation Domain.

Determine the units and primes in this domain.

Is Z[
√

6] a Unique Factorisation Domain?

Answer:

(a) Let
A = Z[

√
3] = {m+ n

√
3 : m,n ∈ Z}.

The numbers {x + y
√

3 : x, y ∈ Q} form a field Q(
√

3). (Recall
that A is the ring of algebraic integers in this field.) If z = x+y

√
3

we set
z̄ = x− y

√
3,

and
N (()z) = zz̄ = x2 − 3y2.

Lemma. Given z, w ∈ A with w 6= 0 we can find q, r ∈ A such
that

z = qw + r

with
|N (()r)| < |N (()q)| .



Proof. Let
z

w
= x+ y

√
3,

with x, y ∈ Q. We can find m,n ∈ Z such that

|x−m| ≤ 1

2
, |y − n| ≤ 1

2
.

Choose
q = m+ ni.

Then

−3

4
≤ N (()

z

w
− q) ≤ 1

4
.

It follows from the multiplicative property of the norm that

|N (()z − qw)| ≤ 3

4
|N (q)| ,

and the result follows on setting r = z − qw.

This Lemma allows us to set up the Euclidean Algorithm in A,
and so define

gcd(z, w) = δ

for z, winA.

Moreover, it follows by reversing the algorithm that we can find
u, v ∈ A such that

uz + vw = δ.

The analogue of Euclid’s Lemma follows: if π ∈ Γ is irreducible
then

π | zw =⇒ π | z or π | w.

Any z ∈ Γ can be expressed as a product of irreducibles. For

z = w1w2 · · ·wr =⇒ N (()z) = N (()w1)N (()w2) · · · N (()wr),

so the number of wi in such a product is limited by the number of
factors of N (()z).

Finally, the uniqueness of the factorisation into irreducibles (up
to order) follows in the familiar way from Euclid’s Lemma.

(b) It is easy to see that z = m+ n
√

3 is a unit in A if and only if

N (()z) = ±1.

For

zw = 1 =⇒ N (()z)N (()w) = N (()1) = 1 =⇒ N (()z) = N (()w) = ±1.



Evidently
ε = 2 +

√
3

is a unit, since 22 − 3 = 1.

It follows that
±εn

are units, for all n ∈ Z.

These are in fact the only units. For suppose η is a unit 6= 1. We
may assume that

η > 1,

since just one of
±η,±η−1 ∈ (0,∞).

Suppose
εn ≤ η < εn+1.

Then
θ = ηε−n ∈ [1, η).

Suppose
θ = m+ n

√
3,

where m,n ∈ Z. Then

m− n
√

3 = ±θ−1.

Thus

1 ≤ m+ n
√

3 < 2 +
√

3,

−1 ≤ m− n
√

3 ≤ 1.

Adding,
0 ≤ m < (1 +

√
3)/2.

Thus
m = 0 or 1.

Since
m2 − 3n2 = ±1

it follows that
m = 1, n = 0 =⇒ θ = 1.



(c) Having established unique factorisation in A we may refer to ir-
reducibles as primes.

Suppose p ∈ Z is a rational prime. Then p factorizes into at most
2 primes in A, since

p = π1 · · · πr =⇒ N (()π1) · · · N (()πr) = N (()p) = p2,

and |N (()πi)| > 1 since |N (()z)| = 1 implies that z is a unit.

Conversely, each prime π ∈ A is a factor of a unique rational
prime p. For if

N (()π) = ππ = p1 · · · pr
then π divides one of the pi; and it cannot divide two different
rational primes p, q since we can find x, y ∈ Z such that

px+ qy = 1,

and so
π | p, q =⇒ π | 1,

which is absurd.

Also, if a rational prime p splits in Γ then

p = ±ππ̄,

ie p splits into conjugate primes. For

p = ππ′ =⇒ N (()π)N (()π′) = Norm(p) = p2

=⇒ N (()π) = ππ = ±p.

Thus we have to determine which rational primes p ∈ N split in
A.

Theorem.

i. 3 ramifies (ie splits into two equal primes) in A:

3 = (
√

3)2.

ii.

Lemma. Suppose p ∈ N is a rational prime. Then we can find
x ∈ Z such that

x2 ≡ 3 mod p

if and only if either p = 2 or 3, or

p ≡ ±1 mod 12.



Proof. The result is trivial if p = 2 or 3. If p 6= 2, 3, then by
Gauss’ Quadratic Reciprocity Law,

(
3

p

)
=


(
p

3

)
if p ≡ 1 mod 4

−
(
p

3

)
if p ≡ 3 mod 4

and (
p

3

)
=

{
1 if p ≡ 1 mod 3

−1 if p ≡ 2 mod 3
.

Suppose p is a rational prime. If p ≡ 3 mod 4 then p cannot split
in Γ. For if p splits then p = N (()π) from above; but if π = m+ni
then

p = N (()π) = m2 + n2,

and this is impossible if p ≡ 3 mod 4 since m2, n2 ≡ 0 or 1 mod 4.

On the other hand, if p ≡ 1 mod 4 then it does split. For we know
in this case that (

−1

p

)
= 1,

ie we can find n ∈ Z such that

p | n2 + 1.

But
n2 + 1 = (n+ i)(n− i)

in Γ. Thus if p remained prime in Γ we would have

p | n+ i or p | n− i,

both of which are impossible.

Finally,
2 = −i(1 + i)2.

Thus 2 ramifies in Γ, ie splits into 2 equal (or associated) primes.

(d) Lemma. The integer n ∈ N is expressible as a sum of squares
if and only if each prime factor p ≡ 3 mod 4 occurs to an even
power in n

Thus
99 = 32 · 11



is not expressible as a sum of 2 squares, since 11 ≡ 3 mod 4 and
this occurs only once.

Similarly
999 = 33 · 37

is not expressible as a sum of 2 squares, since 3 occurs 3 times.

Again, 2010 is divisible by 3 but not by 9, and so is not expressible
as a sum of 2 squares.

Finally, 2317 = 7 · 331 is not expressible as a sum of 2 squares,
since 7 occurs only once. (Note that it is not necessary to know
that 331 is prime; it is sufficient to observe that it is not divisible
by 7.)


