
Chapter 17

Continued fractions

17.1 Finite continued fractions
Definition 17.1. A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an

,

where ai ∈ Z with a1, . . . , an ≥ 1. We denote this fraction by

[a0, a1, . . . , an].

Example: The continued fraction

[2, 1, 3, 2] = 2 +
1

1 +
1

3 +
1

2

represents the rational number

2 +
1

1 +
2

7

= 2 +
7

9

=
25

9
.

Conversely, suppose we start with a rational number, say

57

33
.

To convert this to a continued fraction:

57

33
= 1 +

14

33
.
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Now invert the remainder:

33

14
= 2 +

5

14
.

Again:

14

5
= 2 +

4

5
,

and again:

5

4
= 1 +

1

4
,

and finally:

4

1
= 4.

Thus
57

33
= [1, 2, 2, 1, 4].

Note that the numbers 1, 2, 2, 1, 4 in the continued fraction are precisely
the quotients that would arise if we used the Euclidean Algorithm to compute
gcd(57, 33).

We can consider continued fractions — particularly when we come to in-
finite continued fractions — as a generalisation or extension of the Euclidean
Algorithm.

17.2 The p’s and q’s
We can consider

[a0, a1, a2, . . . , an]

as a function of the variables a0, a1, . . . , an. Evidently

[a0, a1, a2, . . . , an] =
P

Q
,

where P,Q are polynomials in a0, a1, . . . , an with integer coefficients. This
does not define P,Q precisely; but we shall give a precise recursive definition
below, using induction on the length n of the continued fraction.

We start with the continued fraction

[a0] = a0 =
a0
1
,

setting
p = a0, q = 1,

Now suppose that we have defined p, q for continued fractions of length
< n; and suppose that under this definition

α1 = [a1, a2, . . . , an] =
p′

q′
.
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Then

α = a0 +
1

α1

= a0 +
q′

p′

=
a0p
′ + q′

p′
.

So we set
p = a0p

′ + q′, q = p′

as the definition of p, q for a continued fraction of length n. We set this out
formally in

Definition 17.2. The ‘canonical representation’ of a continued fraction

[a0, a1, a2, . . . , an] =
p

q

is defined by induction on n, setting

p = a0p
′ + q′, q = p′,

where
[a1, a2, . . . , an] =

p′

q′

is the canonical representation for a continued fraction of length n− 1. The
induction is started by setting

[a0] =
a0
1
.

Henceforth if we write

[a0, a1, a2, . . . , an] =
p

q
,

then p, q will refer to the canonical representation defined above.

17.3 Successive approximants
Definition 17.3. If

α = [a0, a1, . . . , an]

then we call
[a0, a1, . . . , ai] =

pi
qi

the ith convergent or approximant to α (for 0 ≤ i ≤ n).

Example: Continuing the previous example, the successive approximants
to

57

33
= [1, 2, 2, 1, 4]
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are

p0
q0

= [1] =
1

1
,

p1
q1

= [1, 2] = 1 +
1

2
=

3

2
,

p2
q2

= [1, 2, 2] = [1, 5/2] = 1 +
2

5
=

5

7
,

p3
q3

= [1, 2, 2, 1] = [1, 2, 3] = [1, 7/3] = 1 +
3

7
=

10

7
,

p4
q4

= [1, 2, 2, 1, 4] = [1, 2, 2, 5/4] = [1, 2, 14/5] = [1, 33/14] =
57

33
.

Note that while we normally assume that the entries an in continued
fractions are integers (with an ≥ 1 for n ≥ 1), it makes sense to use fractional
(or even variable) entries, using our recursive formulae for pn, qn as functions
of a0, a1. . . . . Usually this will only involve the last entry, where

[a0, . . . , an−1, an, x] = [a0, . . . , an−1, an + 1/x].

Note too that
p0
q0
<
p2
q2
<
p4
q4
<
p3
q3
<
p1
q1
;

first we get the even convergents, increasing, and then the odd convergents,
in reverse order, with the actual number sandwiched in between.

As we shall see, this is the general situation; moreover, the successive
convergents are very good approximants to the given number.

Theorem 17.1. If
α = [a0, a1, . . . , an]

then

pi = aipi−1 + pi−2,

qi = aiqi−1 + qi−2,

for i = 2, 3, . . . , n.

Proof. We argue by induction on n.
The result follows by induction for i 6= n, since the convergents involved

are — or can be regarded as — convergents to

[a0, a1, . . . , an−1],

covered by our inductive hypothesis.
It remains to prove the result for i = n. In this case, by the inductive

definition of p, q,

pn = a0p
′
n−1 + q′n−1,

pn−1 = a0p
′
n−2 + q′n−2,

pn−2 = a0p
′
n−3 + q′n−3.
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But now by our inductive hypothesis,

p′n−1 = anp
′
n−2 + p′n−3, q

′
n−1 = anq

′
n−2 + q′n−3,

since
a′n−1 = an,

ie the (n− 1)th entry in α′ is the nth entry in α.
Hence

pn = a0p
′
n−1 + q′n−1,

= a0(anp
′
n−2 + p′n−3) + (anq

′
n−2 + q′n−3),

= an(a0p
′
n−2 + q′n−2) + (a0p

′
n−3 + q′n−3),

= anpn−1 + pn−2;

with the second result
qn = anqn−1 + qn−2

following in exactly the same way.

We can regard this as a recursive definition of pi
qi
, starting with

p0
q0

=
a0
1
,
p1
q1

=
a0a1 + 1

a1
,

and defining
p2
q2
,
p3
q3
,
p4
q4
, . . .

successively.
Actually, we can go back two futher steps.

Proposition 17.1. If we set

p−2 = 1, q−2 = 0,

p−1 = 0, q−1 = 1,

then

pi = aipi−1 + pi−2,

qi = aiqi−1 + qi−2,

for all i ≥ 0.

One more or less obvious result.

Proposition 17.2. Both the p’s and q’s are strictly increasing:

0 < q0 < q1 · · · < qn,

p0 < p1 · · · < pn.

Proof. This follows at once by repeated application of the recursive identities

pi = aipi−1 + pi−2, qi = aiqi−1 + qi−2,

since a1, a2, . . . , an > 0 and q0 = 1, q1 = a1,.
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17.4 Uniqueness
Consider the continued fraction for a rational number x. If n > 0 and an > 1
then

[a0, a1, . . . , an] = [a0, a1, . . . , an − 1, 1].

And if n = 0, ie x ∈ Z, then

[x0] = [x0 − 1, 1].

Thus with our example above,

57

33
= [1, 2, 2, 1, 4] = [1, 2, 2, 1, 3, 1].

So there are at least 2 ways of expressing x as a continued fraction.

Proposition 17.3. A rational number x ∈ Q has just two representations
as a continued fraction: one with n = 0 or n > 1, an > 1, and the other with
n > 0 and an = 1.

Proof. It is sufficient to show that x has just one representation of the first
kind. Suppose

x = [a0, a1, . . . , am] = [b0, b1, . . . , bn],

We may assume that m ≤ n.
We argue by induction on n. The result is trivial if m = n = 0.

Lemma 17.1. If n > 0 and an > 1 then

a0 < [a0, a1, a2, . . . , an] < a0 + 1.

Proof. We argue, as usual, by induction on n. This tells us that

[a1, a2, . . . , an] > 1,

from which the result follows, since

[a0, a1, a2, . . . , an] = a0 +
1

[a1, a2, . . . , an]
.

It follows that
[x] = a0 = b0.

Thus

x−a0 =
1

[a1, a2, . . . , am]
=

1

[b1, b2, . . . , bn]
=⇒ [a1, a2, . . . , am] = [b1, b2, . . . , bn],

from which the result follows by induction.

We will take the first form for the continued fraction of a rational number
as standard, ie we shall assume that the last entry an > 1 unless the contrary
is stated.
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17.5 A fundamental identity
Theorem 17.2. Successive convergents pi/qi, pi+1/qi+1 to the continued frac-
tion [a0, a1, . . . , an] satisfy the identity

piqi+1 − qipi+1 = (−1)i+1.

Proof. We argue by induction on i, using the relations

pi = aipi−1 + pi−2,

qi = aiqi−1 + qi−2.

Thus

piqi+1 − qipi+1 = pi(ai+1qi + qi−1) = qi(ai+1pi + pi−1)

= piqi−1 − qipi−1
= −(pi−1qi − qi−1pi)
= −(−1)i

= (−1)i+1.

The result holds for i = −2 since

p−2q−1 − q−2p−1 = 0 · 0− 1 · 1
= (−1)−1.

We conclude that the result holds for all i ≥ 0.

Proposition 17.4. The even convergents are monotonically increasing, while
the odd convergents are monotonically decreasing:

p0
q0
<
p2
q2
< · · · ≤ x ≤ · · · < p3

q3
<
p1
q1
.

Proof. By the last Proposition, if i is even then
pi+1

qi+1

− pi
qi

=
pi+1qi − piqi+1

qiqi+1

=
1

qiqi+1

.

Thus
pi
qi
<
pi+1

qi+1

.

Moreover,
pi+1

qi+1

− pi+2

qi+2

=
pi+1qi+2 − pi+2qi+1

qi+2qi+1

=
1

qi+2qi+1

<
1

qi+2qi+1

.

It follows that pi+2/qi+2 is closer than pi/qi to pi+1/qi+1. Hence
pi
qi
<
pi+2

qi+2

<
pi+1

qi+1

.

So the even convergents are increasing; and similarly the odd convergents are
decreasing.

Also, any even convergent is less than any odd convergent; for if i is even
and j is odd then

pi
qi
<
pi+j−1
qi+j−1

<
pi+j
qi+j

<
pj
qj
.

And since x is equal to the last convergent, it must be sandwiched between
the even and odd convergents.
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17.6 Infinite continued fractions
So far we have been considering continued fraction expansions of rational
numbers. But the concept extends to any real number α ∈ R.

Suppose α is irrational. We set

a0 = [α],

and let

α1 =
1

α− a0
.

Then we define a1, a2, . . . , successively, setting

a1 = [α1],

α2 =
1

α1 − a1
,

a2 = [α2],

α3 =
1

α2 − a2
,

and so on.

Proposition 17.5. Suppose

a0, a1, a2, · · · ∈ Z with a1, a2, · · · > 0.

Let
[a0, a1, . . . , ai] =

pi
qi
.

Then the sequence of convergents converges:
pi
qi
→ x as i→∞.

Proof. It follows from the finite case that the even convergents are increasing,
and the odd convergents are decreasing, with the former bounded by the
latter, and conversely:

p0
q0
<
p2
q2
<
p4
q4
< · · · < p5

q5
<
p3
q3
<
p1
q1
.

It follows that the even convergents must converge, to α say, and the odd
convergents must also converge, to β say.

But if i is even,
pi
qi
− pi+1

qi+1

=
1

qiqi+1

.

Since
pi
qi
< α ≤ β <

pi+1

qi+1

,

it follows that
0 ≤ β − α < 1

qiqi+1

<
1

q2i
.

Hence
α = β,

ie the convergents tend to a limit α ∈ R.
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Proposition 17.6. Each irrational number α ∈ R has a unique expression
as an infinite continued fraction

α = [a0, a1, a2, . . . ].

Proof. One could argue that this follows from the algorithm above for con-
structing the continued fractions of α.

Express each rational numbers x < α as a continued fraction. For sim-
plicity, let us choose the version with final entry an > 1.

Lemma 17.2. Suppose

α = [a0, a1, . . . , ], β = [b0, b1, . . . , ];

and suppose
a0 = b0, . . . , an−1 = bn−1, an < bn.

Then

α < β if n is even,
α > β if n is odd.

Proof. This follows easily from the fact that even convergents are increasing,
odd convergents decreasing.

Now let a0 be the largest first entry among rational x < α; let a1 be the
least second entry among those rationals with a0 as first entry; let a2 be the
largest third entry among those rationals with a0, a1 as first two entries; and
so on. Then it is a simple exercise to show that

α = [a0, a1, a2, dots].

(Note that if the an (with given a0, . . . , an−1) at the (n+ 1)th stage were
unbounded then it would follow that α is rational, since

[a0, . . . , an−1, x]→ [a0, . . . , an−1]

if x→∞.)

17.7 Diophantine approximation
Theorem 17.3. If pn/qn is a convergent to α = [a0, a1, a2, . . . ] then

|α− pn
qn
| ≤ 1

q2n
.

Proof. Recall that α lies between successive convergents pn/qn, pn+1/qn+1.
Hence

|α− pn
qn
| ≤ |pn+1

qn+1

− pn
qn
|

=
1

qnqn+1

≤ 1

q2n
.

17–9



Remarks:

1. There is in fact inequality in the theorem except in the very special case
where α is rational, pn/qn is the last but one convergent, and an+1 = 1;
for except in this case qn < qn+1.

2. Since
1

qnqn+1

=
1

qn(anqn + qn−1)
≤ 1

anq2n
,

if an > 1 then
|α− pn

qn
| ≤ 1

2q2n
.

In particular, if α is irrational then there are an infinity of convergents
satisfying

|α− p

q
| ≤ 1

2q2

unless an = 1 for all n ≥ N .

In this case

α = [a0, a1, . . . , an, φ]

=
pnφ+ pn−1
qnφ+ qn−1

∈ Q(
√
5).

We have seen that the convergents are good approximations to α. The
next result shows that, conversely, good approximations are necessarily con-
vergents.

Theorem 17.4. If

|α− p

q
| ≤ 1

2q2

then p/q is a convergent to α.

Proof. Let us express p/q as a continued fraction:
p

q
=
pn
qn

= [a0, a1, . . . , an].

We want to express α in the form

α = [a0, . . . , an, x] = [a0, . . . , an +
1

x
].

In this case
α =

pn + pn−1x

qn + qn−1x
.

Solving for x,

x = − qnα− pn
qn−1α− pn−1

= − α− pn/qn
α− pn−1/qn−1
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We want to ensure that x > 0. This will be the case if

(α− pn
qn

) and (α− pn−1
qn−1

)

are of opposite sign, ie α lies between the two convergents.
At first this seems a matter of good or bad luck. But recall that there

are two ways of representing p/q as a continued fraction, one of even length
and one odd. (One has last entry an > 1, and the other has last entry 1.)

We can at least ensure in this way that α lies on the same side of pn/qn
as pn−1/qn−1, since even convergents are < odd convergents; so if α > p/q
then we choose n to be even, while if α < p/q we choose n to be odd.

This ensures that x > 0. Now we must show that x ≥ 1; for then if

x = [b0, b1, b2, . . . ]

we have
α = [a0, . . . , an, b0, b1, b2, . . . ],

and
p

q
= [a0, . . . , an]

is a convergent to α, as required.
But now

|α− pn
qn
| ≤ 1

2q2n
;

and since
|pn
qn
− pn−1
qn−1
| = 1

qnqn−1

it follows that

|α− pn−1
qn−1
| ≥ |pn

qn
− pn−1
qn−1
| − |α− pn

qn
|

≥ 1

qnqn−1
− 1

2q2n

≥ 1

q2n
− 1

2q2n

=
1

2q2n
,

and so
|x| = |α− pn/qn|

|α− pn−1/qn−1|
≥ 1.

17.8 Quadratic surds and periodic continued
fractions

Recall that a quadratic surd is an irrational number of the form

α = x+ y
√
d,
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where x, y ∈ Q, and d > 1 is square-free. In other words,

α ∈ Q(
√
d) \Q

for some quadratic field Q(
√
d).

Theorem 17.5. The continued fraction of α ∈ R is periodic if and only if x
is a quadratic surd.

Proof. Suppose first that α has periodic continued fraction:

α = [a0, . . . , am, b0, . . . , bn, b0, . . . , bn, . . . ].

Let

β = [b0, . . . , bn, β]

=
βp′n + p′n−1
βq′n + q′n−1

be the purely periodic part. Then β satisfies the quadratic equation

p′n−1β
2 + (q′n−1 − p′n)β − q′n = 0,

and so is a quadratic surd. And since

α = [a0, . . . , am, β]

=
βpm + pm−1
βqm + qm−1

,

it too is a quadratic surd.
The converse is more difficult. Suppose

α = [a0, a1, . . . ]

satisfies the quadratic equation

F (x) ≡ Ax2 + 2Bx+ C = 0 (A,B,C ∈ Z).

Let
αn = [an, an+1, . . . ].

We have to show that
αm+n = αn

for some m,n ∈ N, m > 0.
We shall do this by showing that αn satisfies a quadratic equation with

bounded coefficients.
Writing θ for an+1, for simplicity,

α = [a0, . . . , an, θ]

=
θpn + pn−1
θqn + qn−1

.

Thus

A(θpn + pn−1)
2 + 2B(θpn + pn−1)(θqn + qn−1) + C(θqn + qn−1)

2 = 0,

17–12



ie

A′θ2 + 2B′θ + C ′,

where

A′ = Ap2n + 2Bpnqn + Cq2n,

B′ = Apnpn−1 + 2B(pnqn−1 + pn−1qn) + Cqnqn−1,

C ′ = Ap2n−1 + 2Bpn−1qn−1 + Cq2n−1.

Now
A′ = q2nF (pn/qn).

Since F (α) = 0 and pn/qn is close to α, F (pn/qn) is small.
More precisely, since

|α− pn
qn
| ≤ 1

q2n
,

it follows by the Mean Value Theorem that

F (pn/qn) = −(F (α)− F (pn/qn))
= −F ′(t)(α− pn/qn),

where t ∈ [α, α + pn/qn].
Thus if we set

M = max
t∈[α−1,α+1]

|F ′(t)|

then

|F (pn/qn)| ≤
M

q2n

and so

|A′| ≤M.

Similarly
|C ′| ≤M.

Much the same argument applies to

B′ = qnqn−1F
+(pn/qn, pn−1/qn−1,

where
F+(x, y) = Axy +B(x+ y) + C

is the ‘polarised’ form of the quadratic form F (x).
Note that

F (x2)− F+(x, y) = (x− y)(Ax+B) =
1

2
(x− y)F ′(x).

Hence

F (pn/qn)− F+(pn/qn, pn−1/qn−1) =
1

2
(pn/qn − pn−1/qn−1)F ′(pn/qn),
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and so

|F (pn/qn)− F+(pn/qn, pn−1/qn−1)| ≤
M

2qnqn−1
.

Since
|F (pn/qn)| ≤

M

q2n
<

M

qnqn−1
,

we conclude that

|B′| = qnqn−1|F+(pn/qn, pn−1/qn−1| ≤
3

2
M.

Thus A′, B′, C ′ are bounded for all n. We conclude that one (at least) of
these equations occurs infinitely often; and so one of the αn occurs infinitely
often, ie α is periodic.

Example: Let us determine the continued fraction for
√
3. We have

√
3 = 1 + (

√
3− 1),

1√
3− 1

=

√
3 + 1

2
= 1 +

√
3− 1

2
,

2√
3− 1

=
√
3 + 1 = 2 + (

√
3− 1),

1√
3− 1

= 1 +

√
3− 1

2
,

. . .

Thus √
3 = [1, 1, 2],

where we have overlined the periodic part.
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