Chapter 16

$\mathbb{Z}[\sqrt{3}]$ and the Lucas-Lehmer test

16.1 The field $\mathbb{Q}(\sqrt{3})$

We have

$$
\mathbb{Q}(\sqrt{3})=\{x+y \sqrt{3}: x, y \in \mathbb{Q}\} .
$$

The conjugate and norm of

$$
z=x+y \sqrt{3}
$$

are

$$
\bar{z}=x-y \sqrt{3}, \mathcal{N}(z)=z \bar{z}=x^{2}-3 y^{2} .
$$

16.2 The ring $\mathbb{Z}[\sqrt{3}]$

Since $3 \not \equiv 1 \bmod 4$,

$$
\mathbb{Z}(\mathbb{Q}(\sqrt{3}))=\mathbb{Q}(\sqrt{3}) \cap \overline{\mathbb{Z}}=\{m+n \sqrt{3}: m, n \in \mathbb{Z}\}=\mathbb{Z}[\sqrt{3}] .
$$

16.3 The units in $\mathbb{Z}[\sqrt{3}]$

Evidently

$$
\epsilon=2+\sqrt{3}
$$

is a unit, since

$$
\mathcal{N}(\epsilon)=2^{2}-3 \cdot 1^{2}=1,
$$

Theorem 16.1. The units in $\mathbb{Z}[\phi]$ are the numbers

$$
\pm \epsilon^{n} \quad(n \in \mathbb{Z})
$$

where

$$
\epsilon=2+\sqrt{3}
$$

Proof. We have to show that ϵ is the smallest unit >1.
Suppose $\eta=m+n \sqrt{3}$ is a unit satisfying

$$
1<\eta \leq \epsilon
$$

Since $\mathcal{N}(\eta)=\eta \bar{\eta}= \pm 1$,

$$
\bar{\eta}=m-n \sqrt{3}= \pm \eta^{-1} \in(-1,1) .
$$

Hence

$$
\eta-\bar{\eta}=2 n \sqrt{3} \in(0,1+\epsilon)
$$

ie

$$
0<n<(3+\sqrt{3}) / 2 \sqrt{3}<2 .
$$

Thus

$$
n=1 .
$$

But now

$$
\begin{aligned}
\mathcal{N}(\eta)= \pm 1 & \Longrightarrow m^{2}-3= \pm 1 \\
& \Longrightarrow m= \pm 2
\end{aligned}
$$

Since $-2+\sqrt{3}<0$, we conclude that $m=2, n=1$, ie

$$
\eta=\epsilon
$$

16.4 Unique Factorisation

Theorem 16.2. $\mathbb{Z}[\sqrt{3}]$ is a Unique Factorisation Domain.
Proof. We hurry through the argument, which we have already given 3 times, for \mathbb{Z}, Γ and $\mathbb{Z}[\phi]$.

Given $z, w \in \mathbb{Z}[\sqrt{3}]$ we write

$$
\frac{z}{w}=x+y \sqrt{3} \quad(x, y \in \mathbb{Q}),
$$

and choose the nearest integers m, n to x, y, so that

$$
|x-m|,|y-m| \leq \frac{1}{2}
$$

Then we set

$$
q=m+n \sqrt{3}
$$

so that

$$
\frac{z}{w}-q=(x-m)+(y-n) \sqrt{3},
$$

and

$$
\mathcal{N}\left(\frac{z-q w}{w}\right)=(x-m)^{2}-3(y-n)^{2} .
$$

Now

$$
-\frac{3}{4} \leq \mathcal{N}\left(\frac{z-q w}{w}\right) \leq \frac{1}{4} .
$$

In particular,

$$
\left|\mathcal{N}\left(\frac{z-q w}{w}\right)\right|<1,
$$

ie

$$
|\mathcal{N}(z-q w)|<|\mathcal{N}(w)| .
$$

This allows the Euclidean Algorithm to be used in $\mathbb{Z}[\sqrt{3}]$, and as a consequence Eulid's Lemma holds, and unique factorisation follows.

16.5 The primes in $\mathbb{Z}[\sqrt{3}]$

Theorem 16.3. Suppose $p \in \mathbb{N}$ is a rational prime. Then

1. If $p=2$ or 3 then p ramifies in $\mathbb{Z}[\sqrt{3}]$;
2. If $p \equiv \pm 1 \bmod 12$ then p splits into conjugate primes in $\mathbb{Z}[\sqrt{3}]$,

$$
p= \pm \pi \bar{\pi} ;
$$

3. If $p \equiv \pm 5 \bmod 12$ then p remains prime in $\mathbb{Z}[\sqrt{3}]$.

Proof. To see that 2 ramifies, note that

$$
(1+\sqrt{3})^{2}=2 \epsilon,
$$

where epsilon $=2+\sqrt{3}$ is a unit. It is evident that $3=\sqrt{3}^{2}$ ramifies.
Suppose $p \neq 2,3$.
If p splits, say

$$
p=\pi \pi^{\prime}
$$

then

$$
\mathcal{N}(p)=p^{2}=\mathcal{N}(\pi) \mathcal{N}\left(\pi^{\prime}\right)
$$

Hence

$$
\mathcal{N}(\pi)=\mathcal{N}\left(\pi^{\prime}\right)= \pm p
$$

Thus if $\pi=m+n \sqrt{3}$ then

$$
m^{2}-3 n^{2}= \pm p
$$

In particular,

$$
m^{2}-3 n^{2} \equiv 0 \bmod p .
$$

Now

$$
n \equiv 0 \bmod p \Longrightarrow m \equiv 0 \bmod p \Longrightarrow p \mid \pi,
$$

which is impossible, Hence

$$
a \equiv m n^{-1} \bmod p
$$

satisfies

$$
a^{2} \equiv 3 \bmod p
$$

It follows that

$$
\left(\frac{3}{p}\right)=1 .
$$

Now suppose $p \equiv 5 \bmod 12$, ie $p \equiv 1 \bmod 4, p \equiv 2 \bmod 3$. By Gauss' Quadratic Reciprocity Law,

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)=\left(\frac{2}{3}\right)=-1 .
$$

Similarly, if $p \equiv-5 \bmod 12$, ie $p \equiv 3 \bmod 4, p \equiv 1 \bmod 3$, then by Gauss' Quadratic Reciprocity Law,

$$
\left(\frac{3}{p}\right)=-\left(\frac{p}{3}\right)=-\left(\frac{1}{3}\right)=-1 .
$$

So we see that p does not split in $\mathbb{Z}[\sqrt{3}]$ if $p \equiv \pm 5 \bmod 12$.
On the other hand, it follows in the same way that

$$
p \equiv \pm 1 \bmod 12 \Longrightarrow\left(\frac{3}{p}\right)=1
$$

in which case we can find a such that

$$
a^{2} \equiv 3 \bmod p,
$$

ie

$$
p \mid\left(a^{2}-3\right)=(a-\sqrt{3})(a+\sqrt{3}) .
$$

If now p does not split then this implies that

$$
p \mid a-\sqrt{3} \text { or } p \mid a+\sqrt{3} .
$$

But both these imply that $p \mid 1$, which is absurd.

16.6 The Lucas-Lehmer test for Mersenne primality

Theorem 16.4. If p is prime then

$$
P=2^{p}-1
$$

is prime if and only if

$$
\epsilon^{2^{p-1}} \equiv-1 \bmod P,
$$

where

$$
\epsilon=2+\sqrt{3}
$$

Proof. Suppose P is prime. Then

$$
\epsilon^{P} \equiv 2^{P}+(\sqrt{3})^{P} \bmod P,
$$

since

$$
P \left\lvert\,\binom{ r}{P}\right.
$$

for $r \neq 0, P$.
But

$$
2^{P} \equiv 2 \bmod P
$$

by Fermat's Little Theorem, while

$$
(\sqrt{3})^{P-1}=3^{\frac{P-1}{2}} \equiv\left(\frac{3}{P}\right) \bmod P
$$

by Euler's criterion. Thus

$$
\epsilon^{P} \equiv 2+\left(\frac{3}{P}\right) \sqrt{3}
$$

Now

$$
2^{p} \equiv(-1)^{p} \equiv-1 \bmod 3 \Longrightarrow P \equiv 1 \bmod 3
$$

while

$$
4 \mid 2^{p} \Longrightarrow P \equiv-1 \bmod 4
$$

So by Gauss' Reciprocity,

$$
\begin{aligned}
\left(\frac{3}{P}\right) & =-\left(\frac{P}{3}\right) \\
& =-\left(\frac{1}{3}\right) \\
& =-1 .
\end{aligned}
$$

Thus

$$
\epsilon^{P} \equiv 2-\sqrt{3}=\bar{\epsilon}=\epsilon^{-1} .
$$

Hence

$$
\epsilon^{P+1} \equiv 1 \bmod P,
$$

ie

$$
\epsilon^{2^{p}} \equiv 1 \bmod P .
$$

Consequently,

$$
\epsilon^{\epsilon^{p-1}} \equiv \pm 1 \bmod P .
$$

We need a little trick to determine which of these holds; it is based on the observation that

$$
(1+\sqrt{3})^{2}=4+2 \sqrt{3}=2 \epsilon
$$

As before,

$$
\begin{aligned}
(1+\sqrt{3})^{P} & \equiv 1+3^{(P-1) / 2} \sqrt{3} \bmod P \\
& \equiv 1-\sqrt{3} \bmod P
\end{aligned}
$$

But now

$$
(1-\sqrt{3})(1+\sqrt{3})=-2,
$$

and so

$$
1-\sqrt{3}=-2(1+\sqrt{3})^{-1}
$$

Thus

$$
(1+\sqrt{3})^{P+1} \equiv-2 \bmod P,
$$

ie

$$
(1+\sqrt{3})^{2^{p}} \equiv-2 \bmod P,
$$

ie

$$
(2 \epsilon)^{2^{p-1}} \equiv-2 \bmod P .
$$

To deal with the powers of 2, note that by Euler's criterion

$$
2^{(P-1) / 2} \equiv\left(\frac{2}{P}\right) \bmod P .
$$

Recall that

$$
\left(\frac{2}{P}\right)=\left\{\begin{array}{l}
1 \text { if } P \equiv \pm 1 \bmod 8 \\
-1 \text { if } P \equiv \pm 1 \bmod 8
\end{array}\right.
$$

In this case,

$$
P=2^{p}-1 \equiv-1 \bmod 8 .
$$

Thus

$$
2^{(P-1) / 2} \equiv 1 \bmod P,
$$

and so

$$
2^{(P+1) / 2} \equiv 2 \bmod P,
$$

ie

$$
2^{2^{p-1}} \equiv 2 \bmod P .
$$

So our previous result simplifies to

$$
\epsilon^{2^{p-1}} \equiv-1 \bmod P
$$

This was on the assumption that P is prime. Suppose now that P is not prime, but that the above result holds.

Then P has a prime factor $Q \leq \sqrt{P}$. Also

$$
\epsilon^{2^{p-1}} \equiv-1 \bmod Q .
$$

It follows that the order of $\epsilon \bmod Q$ is 2^{p}.
But consider the quotient-ring

$$
A=\mathbb{Z}[\sqrt{3}] /(Q)
$$

This ring contains just Q^{2} elements, represented by

$$
m+n \sqrt{5} \quad(0 \leq m, n<Q)
$$

It follows that the group A^{\times}of invertible elements contains $<Q^{2}$ elements. Hence any invertible element of A has order $<Q^{2}$, by Lagrange's Theorem. In particular the order or $\epsilon \bmod P$ is $<Q^{2}$. Accordingly

$$
2^{p}<Q^{2}
$$

which is impossible, since

$$
Q^{2} \leq P=2^{p}-1
$$

We conclude that P is prime.
As with the weaker result in the last Chapter, there is a more computerfriendly version of the Theorem, using the fact that

$$
\epsilon^{\epsilon^{p-1}} \equiv-1 \bmod P
$$

can be re-written as

$$
\epsilon^{2^{p-2}}+\epsilon^{-2^{p-2}} \equiv 0 \bmod P .
$$

Let

$$
s_{i}=\epsilon^{2^{i}}+\epsilon^{-2^{i}}
$$

Then

$$
\begin{aligned}
s_{i}^{2} & =\epsilon^{2^{i+1}}+2+\epsilon^{2^{-(i+1)}} \\
& =s_{i+1}+2,
\end{aligned}
$$

ie

$$
s_{i+1}=s_{i}^{2}-2
$$

Since

$$
s_{0}=\epsilon+\epsilon^{-1}=4
$$

it follows that $s_{i} \in \mathbb{N}$ for all i, with the sequence starting $4,14,194, \ldots$.
Now we can re-state our result.
Corollary 16.1. Let the integer sequence s_{i} be defined recursively by

$$
s_{i+1}=s_{i}^{2}-2, s_{0}=4
$$

Then

$$
P=2^{p}-1 \text { is prime } \Longleftrightarrow P \mid s_{p-2}
$$

