
Chapter 16

Z[
√
3] and the Lucas-Lehmer test

16.1 The field Q(
√
3)

We have
Q(
√

3) = {x+ y
√

3 : x, y ∈ Q}.

The conjugate and norm of

z = x+ y
√

3

are
z̄ = x− y

√
3, N (z) = zz̄ = x2 − 3y2.

16.2 The ring Z[
√
3]

Since 3 6≡ 1 mod 4,

Z(Q(
√

3)) = Q(
√

3) ∩ Z̄ = {m+ n
√

3 : m,n ∈ Z} = Z[
√

3].

16.3 The units in Z[
√
3]

Evidently
ε = 2 +

√
3

is a unit, since
N (ε) = 22 − 3 · 12 = 1,

Theorem 16.1. The units in Z[φ] are the numbers

±εn (n ∈ Z),

where
ε = 2 +

√
3.

Proof. We have to show that ε is the smallest unit > 1.
Suppose η = m+ n

√
3 is a unit satisfying

1 < η ≤ ε.
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Since N (η) = ηη̄ = ±1,

η̄ = m− n
√

3 = ±η−1 ∈ (−1, 1).

Hence

η − η̄ = 2n
√

3 ∈ (0, 1 + ε),

ie

0 < n < (3 +
√

3)/2
√

3 < 2.

Thus

n = 1.

But now

N (η) = ±1 =⇒ m2 − 3 = ±1

=⇒ m = ±2.

Since −2 +
√

3 < 0, we conclude that m = 2, n = 1, ie

η = ε.

16.4 Unique Factorisation
Theorem 16.2. Z[

√
3] is a Unique Factorisation Domain.

Proof. We hurry through the argument, which we have already given 3 times,
for Z,Γ and Z[φ].

Given z, w ∈ Z[
√

3] we write

z

w
= x+ y

√
3 (x, y ∈ Q),

and choose the nearest integers m,n to x, y, so that

|x−m|, |y −m| ≤ 1

2
.

Then we set
q = m+ n

√
3,

so that
z

w
− q = (x−m) + (y − n)

√
3,

and
N (

z − qw
w

) = (x−m)2 − 3(y − n)2.

Now
−3

4
≤ N (

z − qw
w

) ≤ 1

4
.
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In particular,

|N (
z − qw
w

)| < 1,

ie

|N (z − qw)| < |N (w)|.

This allows the Euclidean Algorithm to be used in Z[
√

3], and as a con-
sequence Eulid’s Lemma holds, and unique factorisation follows.

16.5 The primes in Z[
√
3]

Theorem 16.3. Suppose p ∈ N is a rational prime. Then

1. If p = 2 or 3 then p ramifies in Z[
√

3];

2. If p ≡ ±1 mod 12 then p splits into conjugate primes in Z[
√

3],

p = ±ππ̄;

3. If p ≡ ±5 mod 12 then p remains prime in Z[
√

3].

Proof. To see that 2 ramifies, note that

(1 +
√

3)2 = 2ε,

where epsilon = 2 +
√

3 is a unit. It is evident that 3 =
√

3
2
ramifies.

Suppose p 6= 2, 3.
If p splits, say

p = ππ′,

then
N (p) = p2 = N (π)N (π′).

Hence
N (π) = N (π′) = ±p.

Thus if π = m+ n
√

3 then

m2 − 3n2 = ±p.

In particular,
m2 − 3n2 ≡ 0 mod p.

Now
n ≡ 0 mod p =⇒ m ≡ 0 mod p =⇒ p | π,

which is impossible, Hence

a ≡ mn−1 mod p

satisfies
a2 ≡ 3 mod p.
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It follows that (
3

p

)
= 1.

Now suppose p ≡ 5 mod 12, ie p ≡ 1 mod 4, p ≡ 2 mod 3. By Gauss’
Quadratic Reciprocity Law,(

3

p

)
=

(
p

3

)
=

(
2

3

)
= −1.

Similarly, if p ≡ −5 mod 12, ie p ≡ 3 mod 4, p ≡ 1 mod 3, then by Gauss’
Quadratic Reciprocity Law,(

3

p

)
= −

(
p

3

)
= −

(
1

3

)
= −1.

So we see that p does not split in Z[
√

3] if p ≡ ±5 mod 12.
On the other hand, it follows in the same way that

p ≡ ±1 mod 12 =⇒
(

3

p

)
= 1,

in which case we can find a such that

a2 ≡ 3 mod p,

ie

p | (a2 − 3) = (a−
√

3)(a+
√

3).

If now p does not split then this implies that

p | a−
√

3 or p | a+
√

3.

But both these imply that p | 1, which is absurd.

16.6 The Lucas-Lehmer test for Mersenne pri-
mality

Theorem 16.4. If p is prime then

P = 2p − 1

is prime if and only if
ε2

p−1 ≡ −1 mod P,

where
ε = 2 +

√
3.

16–4



Proof. Suppose P is prime. Then

εP ≡ 2P + (
√

3)P mod P,

since
P |

(
r

P

)
for r 6= 0, P .

But
2P ≡ 2 mod P

by Fermat’s Little Theorem, while

(
√

3)P−1 = 3
P−1
2 ≡

(
3

P

)
mod P

by Euler’s criterion. Thus

εP ≡ 2 +

(
3

P

)√
3.

Now
2p ≡ (−1)p ≡ −1 mod 3 =⇒ P ≡ 1 mod 3,

while
4 | 2p =⇒ P ≡ −1 mod 4.

So by Gauss’ Reciprocity, (
3

P

)
= −

(
P

3

)
= −

(
1

3

)
= −1.

Thus
εP ≡ 2−

√
3 = ε̄ = ε−1.

Hence

εP+1 ≡ 1 mod P,

ie

ε2
p ≡ 1 mod P.

Consequently,
ε2

p−1 ≡ ±1 mod P.

We need a little trick to determine which of these holds; it is based on
the observation that

(1 +
√

3)2 = 4 + 2
√

3 = 2ε.
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As before,

(1 +
√

3)P ≡ 1 + 3(P−1)/2
√

3 mod P

≡ 1−
√

3 mod P.

But now

(1−
√

3)(1 +
√

3) = −2,

and so

1−
√

3 = −2(1 +
√

3)−1.

Thus

(1 +
√

3)P+1 ≡ −2 mod P,

ie

(1 +
√

3)2
p ≡ −2 mod P,

ie

(2ε)2
p−1 ≡ −2 mod P.

To deal with the powers of 2, note that by Euler’s criterion

2(P−1)/2 ≡
(

2

P

)
mod P.

Recall that (
2

P

)
=

{
1 if P ≡ ±1 mod 8,

−1 if P ≡ ±1 mod 8.

In this case,
P = 2p − 1 ≡ −1 mod 8.

Thus

2(P−1)/2 ≡ 1 mod P,

and so

2(P+1)/2 ≡ 2 mod P,

ie

22p−1 ≡ 2 mod P.

So our previous result simplifies to

ε2
p−1 ≡ −1 mod P.
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This was on the assumption that P is prime. Suppose now that P is not
prime, but that the above result holds.

Then P has a prime factor Q ≤
√
P . Also

ε2
p−1 ≡ −1 mod Q.

It follows that the order of ε mod Q is 2p.
But consider the quotient-ring

A = Z[
√

3]/(Q).

This ring contains just Q2 elements, represented by

m+ n
√

5 (0 ≤ m,n < Q).

It follows that the group A× of invertible elements contains < Q2 ele-
ments. Hence any invertible element of A has order < Q2, by Lagrange’s
Theorem. In particular the order or ε mod P is < Q2. Accordingly

2p < Q2,

which is impossible, since

Q2 ≤ P = 2p − 1.

We conclude that P is prime.

As with the weaker result in the last Chapter, there is a more computer-
friendly version of the Theorem, using the fact that

ε2
p−1 ≡ −1 mod P

can be re-written as
ε2

p−2

+ ε−2
p−2 ≡ 0 mod P.

Let
si = ε2

i

+ ε−2
i

Then

s2i = ε2
i+1

+ 2 + ε2
−(i+1)

= si+1 + 2,

ie
si+1 = s2i − 2.

Since
s0 = ε+ ε−1 = 4

it follows that si ∈ N for all i, with the sequence starting 4, 14, 194, . . . .
Now we can re-state our result.

Corollary 16.1. Let the integer sequence si be defined recursively by

si+1 = s2i − 2, s0 = 4.

Then
P = 2p − 1 is prime ⇐⇒ P | sp−2.
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