Chapter 14

Pell's Equation

14.1 Kronecker's Theorem

Diophantine approximation concerns the approximation of real numbers by rationals. Kronecker's Theorem is a major result in this subject, and a very nice application of the Pigeon Hole Principle.

Theorem 14.1. Suppose $\theta \in \mathbb{R}$; and suppose $N \in \mathbb{N}, N \neq 0$. Then there exists $m, n \in \mathbb{Z}$ with $0<n \leq N$ such that

$$
|n \theta-m|<\frac{1}{N}
$$

Proof. If $x \in \mathbb{R}$ we write $\{x\}$ for the fractional part of x, so that

$$
x=[x]+\{x\} .
$$

Consider then $N+1$ fractional parts

$$
0,\{\theta\},\{2 \theta\}, \ldots\{N \theta\}
$$

and consider the partition of $[0,1)$ into N equal parts;

$$
[0,1 / N),[1 / N, 2 / N), \ldots,[(N-1) / N, 1)
$$

By the pigeon-hole principal, two of the fractional parts must lie in the same partition, say

$$
\{i \theta\},\{j \theta\} \in[t / N,(t+1) / N],
$$

where $0 \leq i<j<N$. Setting

$$
[i \theta]=r,[j \theta]=s,
$$

we can write this as

$$
i \theta-r, j \theta-s \in[t / N,(t+1) / N)
$$

Hence

$$
|(j \theta-s)-(i \theta-r)|<1 / N
$$

ie

$$
|n \theta-m|<1 / N
$$

where $n=j-i, m=r-s$ with $0<n \leq N$.
Corollary 14.1. If $\theta \in \mathbb{R}$ is irrational then there are an infinity of rational numbers m / n such that

$$
\left|\theta-\frac{m}{n}\right|<\frac{1}{n^{2}}
$$

Proof. By the Theorem,

$$
\begin{aligned}
\left|\theta-\frac{m}{n}\right| & <\frac{1}{n N} \\
& \leq \frac{1}{n^{2}} .
\end{aligned}
$$

14.2 Pell's Equation

We use Kronecker's Theorem to solve a classic Diophantine equation.
Theorem 14.2. Suppose the number $d \in \mathbb{N}$ is not a perfect square. Then the equation

$$
x^{2}-d y^{2}=1
$$

has an infinity of solutions with $x, y \in \mathbb{Z}$.
Remark: Before we prove the theorem, it may help to bring out the connection with quadratic number fields.

Note first that although d may not be square-free, we can write

$$
d=a^{2} d^{\prime}
$$

where d^{\prime} is square-free (and $d^{\prime} \neq 1$). Pell's equation can then be written

$$
x^{2}-d^{\prime}(a y)^{2}=1,
$$

which in turn gives

$$
\mathcal{N}(z)=1,
$$

where

$$
z=x+a y \sqrt{d^{\prime}} .
$$

Thus z is a unit in the quadratic number field $\mathbb{Q}\left(\sqrt{d^{\prime}}\right.$.
Let us denote the group of units in this number field by U. Every unit $\epsilon \in U$ is not necessarily of this form. Firstly the coefficient of $\sqrt{d^{\prime}}$ must be divisible by a; and secondly, if $d^{\prime} \equiv 1 \bmod 4$ then we are omitting the units of the form $\left(m+n \sqrt{d^{\prime}}\right) / 2$.

But it is not difficult to see that these units form a subgroup $U^{\prime} \subset U$ of finite index in U. It follows that U^{\prime} is infinite if and only if U is infinite.

However, we shall not pursue this line of enquiry, since it is just as easy to work with these numbers in the form

$$
z=x+y \sqrt{d}
$$

In particular, if

$$
z=m+n \sqrt{d}, w=M+N \sqrt{d}
$$

then

$$
z w=(m M+d n N)+(m N+n M) \sqrt{d} ;
$$

and on taking norms (ie multiplying each side by its conjugate),

$$
\left(m^{2}-d n^{2}\right)\left(M^{2}-d N^{2}\right)=(m M+d n N)^{2}-d(m N+n M)^{2}
$$

Similarly,

$$
\begin{aligned}
\frac{z}{w} & =\frac{(m+n \sqrt{d})(M-N \sqrt{d})}{M^{2}-d N^{2}} \\
& =\frac{(m M+d n N)-(m N-n M) \sqrt{d}}{M^{2}-d N^{2}} .
\end{aligned}
$$

On taking norms,

$$
\frac{m^{2}-d n^{2}}{M^{2}-d N^{2}}=u^{2}-d v^{2}
$$

where

$$
u=\frac{m M+d n N}{M^{2}-d N^{2}}, \frac{m N-n M}{M^{2}-d N^{2}}
$$

Now to the proof.
Proof. By the Corollary to Kronecker's Theorem there exist an infinity of $m, n \in \mathbb{Z}$ such that

$$
\left|\sqrt{d}-\frac{m}{n}\right|<\frac{1}{n^{2}} .
$$

Since

$$
\sqrt{d}+\frac{m}{n}=2 \sqrt{d}-\left(\sqrt{d}-\frac{m}{n}\right)
$$

it follows that

$$
\left|\sqrt{d}+\frac{m}{n}\right|<2 \sqrt{d}+1
$$

Hence

$$
\begin{aligned}
\left|d-\frac{m^{2}}{n^{2}}\right| & =\left|\sqrt{d}-\frac{m}{n}\right| \cdot\left|\sqrt{d}+\frac{m}{n}\right| \\
& <\frac{2 \sqrt{d}+1}{n^{2}}
\end{aligned}
$$

Thus

$$
\left|m^{2}-d n^{2}\right|<2 \sqrt{d}+1
$$

It follows that there must be an infinity of m, n satisfying

$$
m^{2}-d n^{2}=t
$$

for some integer t with $|t|<2 \sqrt{d}+1$.
Let $(m, n),(M, N)$ be two such solutions (with $(m, n) \neq \pm(M, N)$.
Note that since

$$
m^{2}-d n^{2}=t=M^{2}-d N^{2}
$$

we have

$$
u^{2}-d v^{2}=1
$$

Of course u, v will not in general be integers, so this does not solve the problem. However, we shall see that by a suitable choice of m, n, M, N we can ensure that $u, v \in \mathbb{Z}$.

Let $T=|t| ;$ and consider $(m, n) \bmod T=(m \bmod T, n \bmod T)$. There are just T^{2} choices for the residues $(m, n) \bmod T$. Since there are an infinity of solutions m, n there must be some residue pair $(r, s) \bmod T$ with the property that there are an infinity of solutions (m, n) with $m \equiv r \bmod T, n \equiv$ $s \bmod T$.

Actually, all we need is two such solutions $(m, n),(M, N)$, so that

$$
m \equiv M \bmod T, n \equiv N \bmod T
$$

For then

$$
\begin{aligned}
m M-d n N & \equiv m^{2}-d n^{2}=t \bmod T \\
& \equiv 0 \bmod T
\end{aligned}
$$

(since $t= \pm T$); and similarly

$$
\begin{aligned}
m N-n M & \equiv m n-n m \bmod T \\
& \equiv 0 \bmod T
\end{aligned}
$$

Thus

$$
T \mid m M-d n N, m N-n M
$$

and so

$$
u, v \in \mathbb{Z}
$$

14.3 Units II: Real quadratic fields

Theorem 14.3. Suppose $d>1$ is square-free. Then there exists a unique unit $\epsilon>1$ in $\mathbb{Q}(\sqrt{d})$ such that the units in this field are

$$
\pm \epsilon^{n}
$$

for $n \in \mathbb{Z}$.
Proof. We know that the equation

$$
x^{2}-d y^{2}=1
$$

has an infinity of solutions. In particular it has a solution $(x, y) \neq(\pm 1,0)$.

Let

$$
\eta=x+y \sqrt{d}
$$

Then

$$
\mathcal{N}(\eta)=1
$$

so η is a unit $\neq \pm 1$.
We may suppose that $\eta>1$; for of the 4 units $\pm \eta, \pm \eta^{-1}$ just one appears in each of the intervals $(-\infty,-1),(-1,0),(0,1),(1, \infty)$.

Lemma 14.1. There are only a finite number of units in $(1, C)$, for any $C>1$.

Proof. Suppose

$$
\epsilon=\frac{m+n \sqrt{d}}{2} \in(1, C)
$$

is a unit. Then

$$
\bar{\epsilon}=\frac{m-n \sqrt{d}}{2}= \pm \epsilon^{-1} .
$$

Thus

$$
-1 \leq \frac{m-n \sqrt{d}}{2} \leq 1
$$

Hence

$$
0<m<C+1 .
$$

Since

$$
m^{2}-d n^{2}= \pm 4
$$

it follows that

$$
n^{2}<m^{2}+4<(C+1)^{2}+4
$$

We have seen that there is a unit $\eta>1$. Since there are only a finite number of units in $(1, \eta]$ there is a least such unit ϵ.

Now suppose $\eta>1$ is a unit. Since $\epsilon>1$,

$$
\epsilon^{n} \rightarrow \infty \text { as } n \rightarrow \infty .
$$

Hence we can find $n \geq 0$ such that

$$
\epsilon^{n} \leq \eta<\epsilon^{n+1}
$$

Then

$$
1 \leq \epsilon^{-n} \eta<\epsilon
$$

Since $\epsilon^{-n} \eta$ is a unit, it follows from the minimality of ϵ that

$$
\epsilon^{-n} \eta=1,
$$

ie

$$
\eta=\epsilon^{n} .
$$

