Chapter 13

Quadratic fields and quadratic number rings

12.1 Quadratic number fields

Definition 12.1. A quadratic number field is a number field of degree 2.
The integer $d \in \mathbb{Z}$ is said to be square-free if it has no square factor, ie

$$
a^{2} \mid d \Longrightarrow a= \pm 1
$$

Thus the square-free integers are

$$
\pm 1, \pm 2, \pm 3, \pm 5, \ldots
$$

Proposition 12.1. Suppose $d \neq 1$ is square-free. Then the numbers

$$
x+y \sqrt{d} \quad(x, y \in \mathbb{Q})
$$

form a quadratic number field $\mathbb{Q}(\sqrt{d}$.
Moreover, every quadratic number field is of this form; and different square-free integers $d, d^{\prime} \neq 1$ give rise to different quadratic number fields.
Proof. Recall the classic proof that \sqrt{d} is irrational;

$$
\sqrt{d}=\frac{m}{n} \Longrightarrow n^{2} d=m^{2}
$$

and if any prime factor $p \mid d$ divides the left hand side to an odd power, and the right to an even power.

It is trivial to see that the numbers $x+y \sqrt{d}$ form a commutative ring, while

$$
\begin{aligned}
\frac{1}{x+y \sqrt{d}} & =\frac{x-y \sqrt{d}}{(x-y \sqrt{d})(x+y \sqrt{d})} \\
& =\frac{x-y \sqrt{d}}{x^{2}-d y^{2}}
\end{aligned}
$$

where $x^{2}-d y^{2} \neq 0$ since $\sqrt{d} \notin \mathbb{Q}$.

It follows that these numbers form a field; and the degree of the field is 2 since $1, \sqrt{d}$ form a basis for the vector space.

Conversely, suppose F is a quadratic number field. Let $1, \theta$ be a basis for the vector space. Then $1, \theta, \theta^{2}$ are linearly independent, ie θ satisfies a quadratic equation

$$
a \theta^{2}+b \theta+c=0 \quad(a, b, c \in \mathbb{Q}) .
$$

Since F is of degree $2, a \neq 0$, and we can take $a=1$. Thus

$$
\theta=\frac{-b \pm \sqrt{D}}{2}
$$

with $D=b^{2}-4 c$.
Now

$$
D=a^{2} d
$$

where d is a square-free integer (with $a \in \mathbb{Q}$). It follows easily that

$$
F=\mathbb{Q}(\sqrt{d})
$$

Finally if $d \neq d^{\prime}$ then $\mathbb{Q}(\sqrt{d}) \neq \mathbb{Q}\left(\sqrt{d^{\prime}}\right)$. For otherwise

$$
\sqrt{d^{\prime}}=x+y \sqrt{d}
$$

for some $x, y \in \mathbb{Q}$; and so, on squaring,

$$
d^{\prime 2}=x^{2}+d y^{2}+2 x y \sqrt{d}
$$

But this implies that $\sqrt{d} \in \mathbb{Q}$ if $x y \neq 0$; while $y=0 \Longrightarrow \sqrt{d}=x \in \mathbb{Q}$, and

$$
x=0 \Longrightarrow d^{\prime}=d y^{2}
$$

which is easily seen to be incompatible with d, d^{\prime} being square-free.

12.2 Conjugacy

We suppose in the rest of the Chapter that we are working in a specific quadratic number field $\mathbb{Q}(\sqrt{d})$.

Definition 12.2. We define the conjugate of

$$
z=x+y \sqrt{d}
$$

to be

$$
\bar{z}=x-y \sqrt{d}
$$

If $d<0$ then this coincides with the complex conjugate; but if $d>0$ then both z and \bar{z} are real; and

$$
z=\bar{z} \Longleftrightarrow z \in \mathbb{Q}
$$

Proposition 12.2. The map

$$
z \mapsto \bar{z}: \mathbb{Q}(\sqrt{d}) \rightarrow \mathbb{Q}(\sqrt{d})
$$

is an automorphism of $\mathbb{Q}(\sqrt{d})$. In fact it is the only such automorphism apart from the trivial map $z \mapsto z$.

The proof is identical to that we gave for gaussian numbers.
Definition 12.3. The norm of $z=x+y \sqrt{d} \in \mathbb{Q}(\sqrt{d})$ is

$$
\mathcal{N}(z)=z \bar{z}=x^{2}-d y^{2} .
$$

Proposition 12.3. 1. $\mathcal{N}(z) \in \mathbb{Q}$;
2. $\mathcal{N}(z)=0 \Longleftrightarrow z=0$;
3. $\mathcal{N}(z w)=\mathcal{N}(z) \mathcal{N}(w) ;$
4. If $a \in \mathbb{Q}$ then $\mathcal{N}(a)=a^{2}$;

Again, the proof is identical to that we gave for the corresponding result for gaussian numbers.

12.3 Quadratic number rings

We want to determine the number ring

$$
A=\mathbb{Q}(\sqrt{d}) \cap \overline{\mathbb{Z}}
$$

associated to the number field $\mathbb{Q}(\sqrt{d})$, ie we want to find which numbers $x+y \sqrt{d}$ are algebraic integers.

Theorem 12.1. Suppose

$$
z=x+y \sqrt{d} \in \mathbb{Q}(\sqrt{d}) .
$$

Then

1. If $d \not \equiv 1 \bmod 4$

$$
z \in \overline{\mathbb{Z}} \Longleftrightarrow z=m+n \sqrt{d}
$$

where $m, n \in \mathbb{Z}$.
2. If $d \equiv 1 \bmod 4$ then

$$
z \in \overline{\mathbb{Z}} \Longleftrightarrow z=\frac{m+n \sqrt{d}}{2},
$$

where $m, n \in \mathbb{Z}$ and $m \equiv n \bmod 2$.

Proof. If

$$
z=x+y \sqrt{d} \in \overline{\mathbb{Z}}
$$

then

$$
\bar{z}=x \in y \sqrt{d} \in \overline{\mathbb{Z}}
$$

since z and \bar{z} satisfy the same polynomials over \mathbb{Q}. Hence

$$
z+\bar{z}=2 x \in \overline{\mathbb{Z}} \cap \mathbb{Q}=\mathbb{Z}
$$

Also

$$
\mathcal{N}(z)=z \bar{z}=x^{2}-d y^{2} \in \mathbb{Z}
$$

It follows that

$$
4 d y^{2}=d(2 y)^{2} \in \mathbb{Z} \Longrightarrow 2 y \in \mathbb{Z}
$$

since d is square-free. (For suppose $2 y=m / n$, where $\operatorname{gcd}(m, n)=1$. Then $d m^{2} / n^{2} \in \mathbb{Z}$. If the prime $p \mid n$ then

$$
p^{2}\left|d m^{2} \Longrightarrow p^{2}\right| d
$$

which is impossible since d is square-free.)
Thus

$$
z=\frac{m+n \sqrt{d}}{2},
$$

where $m, n \in \mathbb{Z}$. Now

$$
\mathcal{N}(z)=\frac{m^{2}-d n^{2}}{4} \in \mathbb{Z}
$$

ie

$$
m^{2} \equiv d n^{2} \bmod 4
$$

If n is even then so is m; and if m is even then so is n, since $4 \nmid d$. On the other hand if m, n are both odd then

$$
m^{2} \equiv n^{2} \equiv 1 \bmod 4
$$

It follows that

$$
d \equiv 1 \bmod 4
$$

In other words, if $d \not \equiv 1 \bmod 4$ then m, n are even, and so

$$
z=a+b \sqrt{d}
$$

with $a, b \in \mathbb{Z}$.
On the other hand, if $d \equiv 1 \bmod 4$ then m, n are both even or both odd.
It only remains to show that if $d \equiv 1 \bmod 4$ and m, n are both odd then

$$
z=\frac{m+n \sqrt{d}}{2} \in \overline{\mathbb{Z}}
$$

It is sufficient to show that

$$
\theta=\frac{1+\sqrt{d}}{2} \in \overline{\mathbb{Z}}
$$

since

$$
z=(a+b \sqrt{d})+\theta
$$

where

$$
a=(m-1) / 2, b=(n-1) / 2 \in \mathbb{Z}
$$

But

$$
(\theta-1 / 2)^{2}=d / 4
$$

ie

$$
\theta^{2}-\theta+(1-d) / 4
$$

But $(1-d) / 4 \in \mathbb{Z}$ if $d \equiv 1 \bmod 4$. Hence

$$
\theta \in \overline{\mathbb{Z}}
$$

12.4 Units I: Imaginary quadratic fields

Suppose F is a number field, with associated number ring A (the algebraic integers in F). By 'abuse of language', as the French say, we shall speak of the units of F when we are really referring to the units in A.

Proposition 12.4. Suppose $z \in \mathbb{Q}(\sqrt{d})$ is an algebraic integer. Then

$$
z \text { is a unit } \Longleftrightarrow \mathcal{N}(z)= \pm 1 \text {. }
$$

Proof. Suppose z is a unit, say

$$
z w=1,
$$

where w is also an integer. Then

$$
\mathcal{N}(z w)=\mathcal{N}(z) \mathcal{N}(w)=\mathcal{N}(1)=1^{2}=1
$$

Since $\mathcal{N}(z), \mathcal{N}(w) \in \mathbb{Z}$ it follows that

$$
\mathcal{N}(z)=\mathcal{N}(w)= \pm 1
$$

On the other hand, if

$$
\mathcal{N}(z)=z \bar{z}= \pm 1
$$

then

$$
z^{-1}= \pm \bar{z} \in \overline{\mathbb{Z}}
$$

Theorem 12.2. Suppose d is square-free and $d<0$. Then the group of units is finite. More precisely,

1. If $d=-1$ there are 4 units: $\pm 1, \pm i$;
2. if $d=-3$ there are 6 units: $\pm 1, \pm \omega, \pm \omega^{2}$, where $\omega=(1+\sqrt{-3}) / 2$;
3. in all other cases, there are just 2 units: ± 1.

Proof. Suppose ϵ is a unit.
If $d \not \equiv 1 \bmod 4$ then

$$
\epsilon=m+n \sqrt{d} \quad(m, n \in \mathbb{Z}) .
$$

Thus

$$
\mathcal{N}(\epsilon)=m^{2}+d n^{2}=1
$$

If $d<-1$ then it follows that $m= \pm 1, n=0$. If $d=-1$ then there are the additional solutions $m=0, n= \pm 1$, as we know.

If $d \equiv 1 \bmod 4$ then

$$
\epsilon=\frac{m+n \sqrt{d}}{2},
$$

where $m, n \in \mathbb{Z}$ with $m \equiv n \bmod 2$. In this case,

$$
\mathcal{N}(\epsilon)=\frac{m^{2}-d n^{2}}{4}=1,
$$

ie

$$
m^{2}-d n^{2}=4
$$

If $d \leq-7$ then this implies that $m= \pm 1, n=0$. This only leaves the case $d=-3$, where

$$
m^{2}+3 n^{2}=4
$$

This has 6 solutions: $m= \pm 2, n=0$, giving $\epsilon= \pm 1$; and $m= \pm 1, n= \pm 1$, giving $\epsilon= \pm \omega, \pm \omega^{2}$.

Units in real quadratic fields (where $d>0$) have a very different character, requiring a completely new idea from the theory of diophantine approximation; we leave this to another Chapter.

