
Chapter 11

Gaussian Integers

11.1 Gaussian Numbers
Definition 11.1. A gaussian number is a number of the form

z = x+ iy (x, y ∈ Q).

If x, y ∈ Z we say that z is a gaussian integer.

Proposition 11.1. The gaussian numbers form a field.
The gaussian integers form a commutative ring.

Proof. The only part that is not, perhaps, obvious is that the inverse of a
gaussian number z = x+ iy is a gaussian number. In fact

1

z
=

1

x+ iy

=
x− iy

(x+ iy)(x− iy)

=
x

x2 + y2
− i y

x2 + y2
.

We denote the gaussian numbers by Q(i), and the gaussian integers by
Z[i] or Γ. (We will be mainly interested in this ring.)

11.2 Conjugates and norms
Definition 11.2. The conjugate of the gaussian number

z = x+ iy ∈ Q(i)

is
z̄ = x− iy.
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Proposition 11.2. The map

z 7→ z̄ : Q(i)→ Q(i)

is an automorphism of Q(i). In fact it is the only automorphism apart from
the trivial map z 7→ z.

Proof. It is evident that z 7→ z̄ preserves addition. To see that it preserves
multiplication, note that

(x+ iy)(u+ iv) = (xu− yv) + i(xv + yu) 7→ (xu− yv)− i(xv + yu),

while

(x− iy)(u− iv) = (xu− yv)− i(xv + yu).

Suppose θ is an automorphism of Q(i). By definition,

θ(0) = 0, θ(1) = 1.

Hence
θ(n) = 1 + · · ·+ 1 = n

for n ∈ N. It follows easily that θ(n) = n for n ∈ Z, and that if q = n/d ∈ Q
then

θ(q) = θ(n)/θ(d) = n/d.

Also
θ(i)2 = θ(i2) = θ(−1) = −1 =⇒ θ(i) = ±i.

Evidently
θ(i) = i =⇒ θ(z) = z

for all z ∈ Q(i), while

θ(i) = −i =⇒ θ(z) = z̄.

Definition 11.3. The norm of z = x+ iy ∈ Q(i) is

N (z) = zz̄ = x2 + y2.

Proposition 11.3. 1. N (z) ∈ Q;

2. N (z) ≥ 0 and N (z) = 0 ⇐⇒ z = 0;

3. If z ∈ Γ then N (z) ∈ N.

4. N (zw) = N (z)N (w);

5. If a ∈ Q then N (a) = a2;

Proof. All is clear except perhaps the fourth part, where

N (zw) = (zw)(zw)

= zwz̄w̄

= (zz̄)(ww̄)

= N (z)N (w).
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11.3 Units
Recall that an element ε of a ring A is said to be a unit if it is invertible, ie
if there exists an element η ∈ A such that

εη = 1 = ηε.

The units in A form a group A×.
Evidently Z× = {±1}.

Proposition 11.4. The units in Γ are: ±1,±i

Proof. Evidently ±1,±i are units.

Lemma 11.1. If ε ∈ Γ then

ε is a unit ⇐⇒ N (ε) = 1.

Proof. Suppose ε is a unit, say

εη = 1.

Then

εη = 1 =⇒ N (ε)N (η) = N(1) = 1

=⇒ N (ε) = N (η) = 1.

Suppose ε = m+ in ∈ Γ is a unit. Then

N (ε) = m2 + n2 = 1.

Evidently the only solutions to this are

(m,n) = (±1, 0) or (0,±1),

giving ±1,±i.

11.4 Division in Γ

Proposition 11.5. Suppose z, w ∈ Γ, with w 6= 0. Then we can find q, r ∈ Γ
such that

z = qw + r,

with
N (r) < N (w).
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Proof. Suppose
z

w
= x+ iy,

where x, y ∈ Q.
Let m,n ∈ Z be the nearest integers to x, y, respectively. Then

|x−m| ≤ 1

2
, |y − n| ≤ 1

2
.

Set
q = m+ in.

Then
z

w
− q = (x−m) + i(y − n).

Thus
N (

z

w
− 1) = (x−m)2 + (y − n)2 ≤ 1

4
+

1

4
=

1

2
< 1.

But

N (
z

w
− 1) = N (

z − qw
w

)

=
N (z − qw)

N (w)
.

Hence
N (z − qw) < N (w),

from which the result follows on setting

r = z − qw.

11.5 The Euclidean Algorithm in Γ

Proposition 11.6. Any two numbers z, w ∈ Γ have a greatest common
divisor δ such that

δ | z, w

and
δ′ | z, w =⇒ δ′ | δ.

Also, δ is uniquely defined up to multiplication by a unit.
Moreover, there exists u, v ∈ Γ such that

uz + vw = δ.

Proof. We follow the Euclidean Algorithm as in Z, except that we use N (z)
in place of |n|.

We start by dividing z by w:

z = q0w + r0, N (r0) < N (w).
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If r0 = 0, we are done. Otherwise we divide w by r0:

w = q1r0 + r1, N (r1) < N (r0).

If r1 = 0, we are done. Otherwise we continue in this way. Since

N (w) > N (r0) > N (r1) > · · · ,

and the norms are all positive integers, the algorithm must end, say

ri = qiri−1, ri+1 = 0.

Setting
δ = ri,

we see successively that

δ | ri−1, ri−2, . . . , r0, w, z.

Conversely, if δ′ | z, w then

δ′ | z, w, r0, r1, . . . , ri = δ.

The last part of the Proposition follows as in the classic Euclidean Algo-
rithm; we see successively that r1, r2, . . . , ri = δ are each expressible as linear
combinations of z, w with coefficients in Γ.

11.6 Unique factorisation
If A is an integral domain, we say that a ∈ A is a prime element if

a = bc =⇒ b is a unit, or c is a unit.

(We often just say “a is prime” if that cannot cause confusion.) We say that
two prime elementsπ, π′ are equivalent, and we write π ∼ π′, if

π′ = επ

for some unit ε.

Definition 11.4. We say that an integral domain A is a Unique Factori-
sation Domain (UFD) if each non-zero element a ∈ A is expressible in the
form

a = εp1 · · · pr,

where ε is a unit, and p1, . . . , pr are prime elements, and if moreover this
expression is unique up to order and multiplication by units, ie if

a = ε′p′1 . . . p
′
s

then r = s, and after re-ordering if necessary,

p′i ∼ pi.
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If r ≥ 1 we could of course combine ε with one of the prime elements,
and write

a = p1 · · · pr,

Theorem 11.1. Γ is a Unique Factorisation Domain.

Proof. First we show that any z ∈ Γ is a product of irreducibles, by induction
on N (z).

If z is a unit or irreducible, we are done. If not, suppose

z = wt,

where neither w nor t is a unit. Then

N (z) = N (w)N (t) =⇒ N (w),N (t) < N (z).

Hence w, t are products of prime elements, and the result follows.
To see that the expression is unique, we must establish the analogue of

Euclid’s Lemma. The proof is identical to the classic case.

Lemma 11.2. If π ∈ Γ is prime element and z, w ∈ Γ then

π | zw =⇒ π | z or π | w.

Proof. If π - z then
gcd(π, z) = 1.

Hence there exist u, v such that

uπ + vz = 1.

Multiplying by w,
uπw + vzw = w.

Since π divides both terms on the left,

π | w.

Now the proof is as before. Again, we argue by induction on N (z).
Suppose

z = εp1 · · · pr = ε′p′1 . . . p
′
s.

Then
π1 | π′i

for some i. Hence
π′i ∼ π.

Now we can divide both sides by π1 and apply the inductive hypothesis.

Definition 11.5. If A is a unique factorisation domain we use the term
prime for a prime element, with the understanding that equivalent prime
elements define the same prime.

More precisely perhaps, a prime is a set {επ : ε ∈ A×} of equivalent prime
elements.
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11.7 Gaussian primes
Having established unique factorisation in Γ, we must identify the primes.

Proposition 11.7. Each prime π in Γ divides just one rational prime p.

Proof. Let us factorise N (π) in N:

N (π) = ππ̄ = p1 . . . pr.

On factorising both sides in Γ, it follows that

π | pi

for some i.
Now suppose π divides two primes p, q. Since p, q are coprime, we can

find u, v ∈ Z such that
up+ vq = 1.

But now
π | p, q =⇒ π | 1,

which is absurd.

Proposition 11.8. Each rational prime p splits into at most 2 primes in Γ.

Proof. Suppose
p = π1 · · · πr.

Then
N (p) = p2 = N (π1) · · · N (πr).

Since N (πi) > 1, it follows that

r ≤ 2.

Proposition 11.9. If the rational prime p splits in Γ, say

p = π1π2,

then
N (π1) = N (π2) = p.

Proof. This follows at once from the fact that

N (p) = p2 = N (π1)N (π2).

We must determine which rational primes do split in Γ.

Proposition 11.10. If p ≡ 3 mod 4 (where p is a rational prime) then p
does not split in Γ.
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Proof. Suppose p does split, and

π = m+ in

is a prime factor. Then

N (π) = p = m2 + n2.

Thus
m2 + n2 ≡ 3 mod 4.

But this is impossible, since

a2 ≡ 0 or 1 mod 4.

Proposition 11.11. If p ≡ 1 mod 4 (where p is a rational prime) then p
splits in Γ into two distinct but conjugate primes:

p = ππ̄.

Proof. This is more subtle. We know that(
−1

p

)
= 1.

Thus there exists an r such that

r2 ≡ −1 mod p,

where we may suppose that 0 < r < p. Then

r2 + 1 ≡ 0 mod p

ie

p | r2 + 1 = (r + i)(r − i).

If p does not split in Γ then

p | r + i or p | r − i.

But either implies that
p | 1,

which is absurd.
Thus

p = πσ,

where π, σ are primes. But then

N (π) = ππ̄ = p,

ie p is the product of two conjugate primes in Γ.
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Finally,
π 6∼ π̄.

For
π̄ = επ =⇒ p = N (π) = ππ̄ = επ2.

But if π = m+ in this implies that

m2 + n2 = ε(m2 − n2 + 2imn).

The coefficient of i on the right must vanish. If ε = ±1 this gives mn = 0,
which is absurd. If ε = ±i it gives

m2 − n2 = 0 =⇒ m = ±n =⇒ p = 2m2 =⇒ p = 2.

The rational prime 2 has a special property in Γ.

Proposition 11.12. The rational prime 2 ramifies in Γ, ie it splits into 2
equal (or equivalent) primes.

Proof. Since
1 + i = i(1− i),

1− i ∼ 1 + i; and

2 = (1 + i)(1− i) = (−i)(1 + i)2.

11.8 Sums of squares
Proposition 11.13. The number n ∈ N is expressible as a sum of two
squares if and only if each rational prime p ≡ 3 mod 4 occurs to an even
power in n.

Proof. Suppose first n is the sum of two squares. We show by induction on
n that it must have the stated form.

Suppose
n = x2 + y2 = (x+ iy)(x− iy);

and suppose p | n, where p ≡ 3 mod 4. Then

p | x+ iy or p | x− iy.

In either case
p | x and p | y.

But p2 | n and we can divide the equation by p2:

n/p2 = (x/p)2 + (y/p)2.

But now the result for n follows from that for n/p2.
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Now suppose that n has this form, say

n = 2epe11 · · · perr q
2f1
1 . . . q2fss ,

where p1, . . . , pr are primes ≡ 1 mod 4 and q1, . . . , qs are primes ≡ 3 mod 4.
Each rational prime pi splits into conjugate primes, say

p = πiπ̄i.

Let
θ = m+ in = (1 + i)eπe1

1 · · · πer
r q

f1
1 · · · qfss .

Then

N (θ) = m2 + n2

= N (1 + i)eN (1 + i)eN (π1)
e1 · · · N (πr)

erN (q1)
f1 · · · N (qs)

fs

= 2epe11 · · · perr q
2f1
1 . . . q2fss

= n.

Example: Since
2317 = 7 · 331,

7 occurs just once in 2317. So 2317 is not the sum of two squares.
But

2009 = 7 · 7 · 41.

Here 7 occurs twice, while 41 ≡ 1 mod 4. Hence 2009 is the sum of two
squares.

Our argument shows that if

2009 = m2 + n2

then
7 | m,n.

If we set
m = 7a, n = 7b,

then
41 = a2 + b2.

Now it is easy to see that a, b = 5, 7 (if we restrict to positive solutions), ie

2009 = 352 + 402.

The argument also gives the number of ways of expressing a number as
the sum of two squares.
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Proposition 11.14. Suppose

n = 2epe11 · · · perr q
2f1
1 . . . q2fss ,

where p1, . . . , pr are primes ≡ 1 mod 4 and q1, . . . , qs are primes ≡ 3 mod 4.
Then n can be expressed as

n = m2 + n2 (m,n ≥ 0)

in
(e1 + 1)(e2 + 1) · · · (er + 1)

different ways. (Note that we count m2+n2 and n2+m2 as different solutions
if m 6= n.)

Proof. For each rational prime p ≡ 1 mod 4, suppose

p = ππ̄.

We can factor pe in e+ 1 ways

πe
1, π

e−1
1 π̄, . . . , π̄e.
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