
Chapter 9

Quadratic Residues

9.1 Introduction
Definition 9.1. We say that a ∈ Z is a quadratic residue mod n if there
exists b ∈ Z such that

a ≡ b2 mod n.

If there is no such b we say that a is a quadratic non-residue mod n.

Example: Suppose n = 10.
We can determine the quadratic residues mod n by computing b2 mod n

for 0 ≤ b < n. In fact, since

(−b)2 ≡ b2 mod n,

we need only consider 0 ≤ b ≤ [n/2].
Thus the quadratic residues mod 10 are 0, 1, 4, 9, 6, 5; while 3, 7, 8 are

quadratic non-residues mod 10.

Proposition 9.1. If a, b are quadratic residues mod n then so is ab.

Proof. Suppose
a ≡ r2, b ≡ s2 mod p.

Then
ab ≡ (rs)2 mod p.

9.2 Prime moduli
Proposition 9.2. Suppose p is an odd prime. Then the quadratic residues
coprime to p form a subgroup of (Z/p)× of index 2.

Proof. Let Q denote the set of quadratic residues in (Z/p)×. If θ : (Z/p)× →
(Z/p)× denotes the homomorphism under which

r 7→ r2 mod p
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then
ker θ = {±1}, im θ = Q.

By the first isomorphism theorem of group theory,

|kerθ| · | im θ| = |(Z/p)×|.

Thus Q is a subgroup of index 2:

|Q| = p− 1

2
.

Corollary 9.1. Suppose p is an odd prime; and suppose a, b are coprime to
p. Then

1. 1/a is a quadratic residue if and only if a is a quadratic residue.

2. If both of a, b, or neither, are quadratic residues, then ab is a quadratic
residue;

3. If one of a, b is a quadratic residue and the other is a quadratic non-
residue then ab is a quadratic non-residue.

9.3 The Legendre symbol
Definition 9.2. Suppose p is a prime; and suppose a ∈ Z. We set

(
a

p

)
=


0 if p | a
1 if p - a and a is a quadratic residue mod p

−1 if if a is a quadratic non-residue mod p.

Example:
(
2

3

)
= −1,

(
1

4

)
= 1,

(
−1
4

)
= −1,

(
3

5

)
= −1.

Proposition 9.3. 1.
(
0

p

)
= 0,

(
1

p

)
= 1;

2. a ≡ b mod p =⇒
(
a

p

)
=

(
b

p

)
;

3.
(
ab

p

)
=

(
a

p

) (
b

p

)
.

Proof. (1) and (2) follow from the definition, while (3) follows from the Corol-
lary above.
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9.4 Euler’s criterion
Proposition 9.4. Suppose p is an odd prime. Then(

a

p

)
≡ a(p−1)/2 mod p.

Proof. The result is obvious if p | a.
Suppose p - a. Then(

a(p−1)/2
)2

= ap−1 ≡ 1 mod p,

by Fermat’s Little Theorem. It follows that(
a

p

)
≡ ±1 mod p.

Suppose a is a quadratic residue, say a ≡ r2 mod p. Then

a(p−1)/2 ≡ bp−1 ≡ 1 mod p

by Fermat’s Little Theorem.
These provide all the roots of the polynomial

f(x) = x(p−1)/2 − 1.

Hence
a(p−1)/2 ≡ −1 mod p

if a is a quadratic non-residue.

9.5 Gauss’s Lemma
Suppose p is an odd prime. We usually take r ∈ [0, p− 1] as representatives
of the residue-classes mod p But it is sometimes more convenient to take
r ∈ [−(p− 1)/2, (p− 1)/2], ie {−p/2 < r < p/2}/

Let P denote the strictly positive residues in this set, and N the strictly
negative residues:

P = {1, 2, . . . , (p− 1)/2}, N = −P = {−1,−2, . . . ,−(p− 1)/2}.

Thus the full set of representatives is N ∪ {0} ∪ P .
Now suppose a ∈ (Z/p)×. Consider the residues

aP = {a, 2a, . . . , p− 1

2
a}.

Each of these can be written as ±s for some s ∈ P , say

ar = ε(r)π(r),
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where ε(r) = ±1. It is easy to see that the map

π : P → P

is injective; for

π(r) = π(r′) =⇒ ar ≡ ±ar′ mod p

=⇒ r ≡ ±r′ mod p

=⇒ r ≡ r′ mod p,

since s and s′ are both positive.
Thus π is a permutation of P (by the pigeon-hole principle, if you like).

It follows that as r runs over the elements of P so does π(r).
Thus if we multiply together the congruences

ar ≡ ε(r)π(r) mod p

we get
a(p−1)/21 · 2 · · · (p− 1)/2

on the left, and

ε(1)ε(2) · · · ε((p− 1)/2)1 · 2 · · · (p− 1)/2

on the right. Hence

a(p−1)/2 ≡ ε(1)ε(2) · · · ε((p− 1)/2) mod p.

But
a(p−1)/2 ≡

(
a

p

)
mod p,

by Euler’s criterion. Thus we have established

Theorem 9.1. Suppose p is an odd prime; and suppose a ∈ Z. Consider the
residues

a, 2a, . . . , a(p− 1)/2 mod p,

choosing residues in [−(p − 1)/2, (p − 1)/2]. If t of these residues are < 0
then (

a

p

)
= (−1)t.

Remarks:

1. Note that we could equally well choose the residues in [1, p − 1], and
define t to be the number of times the residue appears in the second
half (p+ 1)/2, (p− 1).

2. The map a 7→ (−1)t is an example of the transfer homomorphism in
group theory. Suppose H is an abelian subgroup of finite index r in
the group G. We know that G is partitioned into H-cosets:

G = g1H ∪ · · · ∪ grH.
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If now g ∈ G then
ggi = gjhi

for i ∈ [1, r]. Now it is easy to see — the argument is similar to the
one we gave above — that the product h = h1 · · ·hr is independent of
the choice of coset representatives g1, . . . , gr, and the map

τ : G→ S

is a homomorphism, known as the transfer homomorphism from G to
S.

If G is abelian — which it is in all the cases we are interested in — we
can simply multiply together all the equations ggi = gjhi, to get

τ(g) = gr.

9.6 Computation of
(
−1
p

)
Proposition 9.5. If p is an odd prime then(

−1
p

)
=

{
1 if p ≡ 1 mod 4,

−1 if p ≡ −1 mod 4.

Proof. The result follows at once from Euler’s Criterion(
a

p

)
≡ a(p−1)/2 mod p.

But it is instructive to deduce it by Gauss’s Lemma.
We have to consider the residues

−1,−2, . . . ,−(p− 1)/2 mod p.

All these are in the range N = [−(p − 1)/2, (p − 1)/2]. It follows that
t = (p− 1)/2; all the remainders are negative.

Hence (
−1
p

)
= (−1)(p−1)/2

=

{
1 if p ≡ 1 mod 4,

−1 if p ≡ −1 mod 4.

Example: According to this,(
2

3

)
=

(
−1
3

)
= −1

9–5



(since 3 ≡ −1 mod 4), ie 2 is a quadratic non-residue mod 3.
Again (

12

13

)
=

(
−1
13

)
= 1,

since 13 ≡ 1 mod 4. Thus 12 is a quadratic residue mod13. In fact it is easy
to see that

12 ≡ 25 = 52 mod 13.

9.7 Computation of
(
2

p

)
Proposition 9.6. If p is an odd prime then(

2

p

)
=

{
1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8.

Proof. We have to consider the residues

2, 4, 6, . . . , (p− 1) mod p.

We have to determine the number t of these residues in the first half of
[1, p − 1], and the number in the second. We can describe these two ranges
as {0 < r < p/2} and {p/2 < r < p}. Since

p/2 < 2x < p ⇐⇒ p/4 < x < p/2

it follows that
t = bp/2c − bp/4c.

Suppose
p = 8n+ r,

where r = 1, 3, 5, 7. Then

bp/2c = 4n+ br/2c, bp/4c = 2n+ br/4c.

Thus
t ≡ br/2c+ br/4c mod 2.

The result follows easily from the fact that

br/2c =


0 for r = 1

1 for r = 3

2 for r = 5

3 for r = 7,

while

br/4c =

{
0 for r = 1, 3

1 for r = 5, 7
.
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Example: Since 71 ≡ −1 mod 8,(
2

71

)
= 1,

Can you find the solutions of

x2 ≡ 2 mod 71?

Again Since 19 ≡ 3 mod 8, (
2

19

)
= −1.

So by Euler’s criterion,
29 ≡ −1 mod 19.

Checking,
24 ≡ 3 =⇒ 28 ≡ 9 =⇒ 29 ≡ 18 mod 19.

9.8 Composite moduli
Proposition 9.7. Suppose m,n are coprime; and suppose a is coprime to
m and n. Then a is a quadratic residue modulo mn if and only if it is a
quadratic residue modulo m and modulo n

Proof. This follows at once from the Chinese Remainder Theorem. For

a ≡ r2 mod mn =⇒ a ≡ r2 mod m and a ≡ r2 mod n.

Conversely, suppose

a ≡ r2 mod m and a ≡ s2 mod n.

By the Chinese Remainder Theorem, we can find t such that t ≡ r mod m
and t ≡ s mod n; and then

t2 ≡ r2 ≡ a mod m and t2 ≡ s2 ≡ b mod n.

9.9 Prime power moduli
Proposition 9.8. Suppose p is an odd prime; and suppose a ∈ Z is coprime
to p. Then a is a quadratic residue modpe (where e ≥ 1) if and only if it is
quadratic residue modp.

Proof. The argument we gave above for quadratic residues modulo p still
applies here.
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Lemma 9.1. If θ : (Z/pe)× → (Z/pe)times is the homomorphism under
which

t 7→ t2 mod pe

then
ker θ = {±}.

Proof. Suppose
a2 − 1 = (a− 1)(a+ 1) ≡ 0 mod pe.

Then
p | a− 1 and p | a+ 1 =⇒ p | 2a =⇒ p | a,

which we have excluded. If p | a + 1 then pe | a − 1; and if p | a − 1 then
pe | a+ 1. Thus

a ≡ ±1 mod pe.

It follows that the quadratic residues modulo pe coprime to p form a
subgroup of index 2 in (Z/pe)×, ie just half the elements of (Z/pe)× are
quadratic residues modulo pe. Since just half are also quadratic residues
modulo p, the result follows.

Remark: For an alternative proof, we can argue by induction of e. Sup-
pose a is a quadratic residue modpe, say

a ≡ r2 mod pe,

ie

a = r2 + tpe.

Set
s = r + xpe.

Then

s2 = r2 + 2xpe + x2p2e

≡ r2 + 2xpe mod pe+1

≡ a+ (t+ 2x)pe mod pe+1

≡ ape mod pe+1

if

t+ 2x ≡ 0 mod p,

ie

x = −t/2 mod p,

using the fact that 2 is invertible modulo an odd prime p.
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Corollary 9.2. The number of quadratic residues in (Z/pe)× is

φ(pe)

2
=

(p− 1)pe−1

2
.

The argument above extends to moduli 2e with a slight modification.

Proposition 9.9. Suppose p is an odd prime; and suppose a ∈ Z is coprime
to p. Then a is a quadratic residue modulo pe (where e ≥ 1) if and only if it
is quadratic residue modulo p.

Proof. The argument we gave above for quadratic residues modulo p still
applies here.

Lemma 9.2. If θ : (Z/pe)× → (Z/pe)times is the homomorphism under
which

t 7→ t2 mod pe

then
ker θ = {±}.

Proof. Suppose
a2 − 1 = (a− 1)(a+ 1) ≡ 0 mod pe.

Then
p | a− 1 and p | a+ 1 =⇒ p | 2a =⇒ p | a,

which we have excluded. If p | a + 1 then pe | a − 1; and if p | a − 1 then
pe | a+ 1. Thus

a ≡ ±1 mod pe.

It follows that the quadratic residues modulo pe coprime to p form a
subgroup of index 2 in (Z/pe)×, ie just half the elements of (Z/pe)× are
quadratic residues modulo pe. Since just half are also quadratic residues
modulo p, the result follows.

Remark: For an alternative proof, we can argue by induction of e. Sup-
pose a is a quadratic residue modpe, say

a ≡ r2 mod pe,

ie

a = r2 + tpe.

Set
s = r + xpe.

Then

s2 = r2 + 2xpe + x2p2e

≡ r2 + 2xpe mod pe+1

≡ a+ (t+ 2x)pe mod pe+1

≡ a mod pe+1
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if

t+ 2x ≡ 0 mod p,

ie

x = −t/2 mod p,

using the fact that 2 is invertible modulo an odd prime p.

Corollary 9.3. The number of quadratic residues in (Z/pe)× is

φ(pe)

2
=

(p− 1)pe−1

2
.

The argument above extends to moduli 2e with a slight modification.

Proposition 9.10. Suppose a is an odd integer. Then a is a quadratic
residue modulo 2e (where e ≥ 3) if and only if a ≡ 1 mod 8

Proof. It is readily verified that 1 is the only odd quadratic residue modulo
8; 3,5 and 7 are quadratic non-residues.

We show by induction on e that if a is an odd quadratic residue modulo
2e then it is a quadratic residue modulo 2e+1. For suppose

a ≡ r2 mod 2e,

say

a = r2 + t2e.

Let
s = r + t2e−1.

Then

s2 ≡ r2 + t2e mod 2e+1

= a.

Corollary 9.4. The number of quadratic residues in (Z/2e)× (where e ≥ 3)
is

φ(2e)

4
= 2e−3.

Remarks:

1. It is easy to see that pf (where f < e) is a quadratic residue modulo pe
if and only if f is even. This allows us to determine whether residues
that are not coprime to the modulus are quadratic residues or not.
Thus the quadratic residues modulo 24 are 0, 1, 4, 7, 17, 23, while the
quadratic residues modulo 36 are 0, 1, 4, 9, 17, 31 (noting that the quadratic
residue modulo 4 are 0, 1).

2. The inductive argument above is an example of Hensel’s Lemma. In
the simplest case this says that if f(x) ∈ Z[x] then any solution of
f(a) ≡ 0 mod p such that f ′(a) is coprime to p can be extended (in a
unique way) to a solution of f(a) ≡ 0 mod pe for all e ≥ 1.
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