Chapter 9

Quadratic Residues

9.1 Introduction

Definition 9.1. We say that $a \in \mathbb{Z}$ is a quadratic residue $\bmod n$ if there exists $b \in \mathbb{Z}$ such that

$$
a \equiv b^{2} \bmod n
$$

If there is no such b we say that a is a quadratic non-residue $\bmod n$.
Example: Suppose $n=10$.
We can determine the quadratic residues $\bmod n$ by computing $b^{2} \bmod n$ for $0 \leq b<n$. In fact, since

$$
(-b)^{2} \equiv b^{2} \bmod n
$$

we need only consider $0 \leq b \leq[n / 2]$.
Thus the quadratic residues mod 10 are $0,1,4,9,6,5$; while $3,7,8$ are quadratic non-residues mod 10 .

Proposition 9.1. If a, b are quadratic residues $\bmod n$ then so is $a b$.
Proof. Suppose

$$
a \equiv r^{2}, b \equiv s^{2} \bmod p
$$

Then

$$
a b \equiv(r s)^{2} \bmod p
$$

9.2 Prime moduli

Proposition 9.2. Suppose p is an odd prime. Then the quadratic residues coprime to p form a subgroup of $(\mathbb{Z} / p)^{\times}$of index 2.

Proof. Let Q denote the set of quadratic residues in $(\mathbb{Z} / p)^{\times}$. If $\theta:(\mathbb{Z} / p)^{\times} \rightarrow$ $(\mathbb{Z} / p)^{\times}$denotes the homomorphism under which

$$
r \mapsto r^{2} \bmod p
$$

then

$$
\operatorname{ker} \theta=\{ \pm 1\}, \operatorname{im} \theta=Q
$$

By the first isomorphism theorem of group theory,

$$
|\operatorname{ker} \theta| \cdot|\operatorname{im} \theta|=\left|(\mathbb{Z} / p)^{\times}\right| .
$$

Thus Q is a subgroup of index 2 :

$$
|Q|=\frac{p-1}{2} .
$$

Corollary 9.1. Suppose p is an odd prime; and suppose a, b are coprime to p. Then

1. $1 / a$ is a quadratic residue if and only if a is a quadratic residue.
2. If both of a, b, or neither, are quadratic residues, then ab is a quadratic residue;
3. If one of a, b is a quadratic residue and the other is a quadratic nonresidue then ab is a quadratic non-residue.

9.3 The Legendre symbol

Definition 9.2. Suppose p is a prime; and suppose $a \in \mathbb{Z}$. We set

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{l}
0 \text { if } p \mid a \\
1 \text { if } p \nmid a \text { and } a \text { is a quadratic residue } \bmod p \\
-1 \text { if if } a \text { is a quadratic non-residue } \bmod p
\end{array}\right.
$$

Example: $\left(\frac{2}{3}\right)=-1,\left(\frac{1}{4}\right)=1,\left(\frac{-1}{4}\right)=-1,\left(\frac{3}{5}\right)=-1$.
Proposition 9.3. 1. $\left(\frac{0}{p}\right)=0,\left(\frac{1}{p}\right)=1$;
2. $a \equiv b \bmod p \Longrightarrow\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$;
3. $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

Proof. (1) and (2) follow from the definition, while (3) follows from the Corollary above.

9.4 Euler's criterion

Proposition 9.4. Suppose p is an odd prime. Then

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p
$$

Proof. The result is obvious if $p \mid a$.
Suppose $p \nmid a$. Then

$$
\left(a^{(p-1) / 2}\right)^{2}=a^{p-1} \equiv 1 \bmod p,
$$

by Fermat's Little Theorem. It follows that

$$
\left(\frac{a}{p}\right) \equiv \pm 1 \bmod p
$$

Suppose a is a quadratic residue, say $a \equiv r^{2} \bmod p$. Then

$$
a^{(p-1) / 2} \equiv b^{p-1} \equiv 1 \bmod p
$$

by Fermat's Little Theorem.
These provide all the roots of the polynomial

$$
f(x)=x^{(p-1) / 2}-1
$$

Hence

$$
a^{(p-1) / 2} \equiv-1 \bmod p
$$

if a is a quadratic non-residue.

9.5 Gauss's Lemma

Suppose p is an odd prime. We usually take $r \in[0, p-1]$ as representatives of the residue-classes mod p But it is sometimes more convenient to take $r \in[-(p-1) / 2,(p-1) / 2]$, ie $\{-p / 2<r<p / 2\} /$

Let P denote the strictly positive residues in this set, and N the strictly negative residues:

$$
P=\{1,2, \ldots,(p-1) / 2\}, N=-P=\{-1,-2, \ldots,-(p-1) / 2\} .
$$

Thus the full set of representatives is $N \cup\{0\} \cup P$.
Now suppose $a \in(\mathbb{Z} / p)^{\times}$. Consider the residues

$$
a P=\left\{a, 2 a, \ldots, \frac{p-1}{2} a\right\} .
$$

Each of these can be written as $\pm s$ for some $s \in P$, say

$$
a r=\epsilon(r) \pi(r),
$$

where $\epsilon(r)= \pm 1$. It is easy to see that the map

$$
\pi: P \rightarrow P
$$

is injective; for

$$
\begin{aligned}
\pi(r)=\pi\left(r^{\prime}\right) & \Longrightarrow a r \equiv \pm a r^{\prime} \bmod p \\
& \Longrightarrow r \equiv \pm r^{\prime} \bmod p \\
& \Longrightarrow r \equiv r^{\prime} \bmod p
\end{aligned}
$$

since s and s^{\prime} are both positive.
Thus π is a permutation of P (by the pigeon-hole principle, if you like).
It follows that as r runs over the elements of P so does $\pi(r)$.
Thus if we multiply together the congruences

$$
a r \equiv \epsilon(r) \pi(r) \bmod p
$$

we get

$$
a^{(p-1) / 2} 1 \cdot 2 \cdots(p-1) / 2
$$

on the left, and

$$
\epsilon(1) \epsilon(2) \cdots \epsilon((p-1) / 2) 1 \cdot 2 \cdots(p-1) / 2
$$

on the right. Hence

$$
a^{(p-1) / 2} \equiv \epsilon(1) \epsilon(2) \cdots \epsilon((p-1) / 2) \bmod p .
$$

But

$$
a^{(p-1) / 2} \equiv\left(\frac{a}{p}\right) \bmod p,
$$

by Euler's criterion. Thus we have established
Theorem 9.1. Suppose p is an odd prime; and suppose $a \in \mathbb{Z}$. Consider the residues

$$
a, 2 a, \ldots, a(p-1) / 2 \bmod p,
$$

choosing residues in $[-(p-1) / 2,(p-1) / 2]$. If t of these residues are <0 then

$$
\left(\frac{a}{p}\right)=(-1)^{t} .
$$

Remarks:

1. Note that we could equally well choose the residues in $[1, p-1]$, and define t to be the number of times the residue appears in the second half $(p+1) / 2,(p-1)$.
2. The map $a \mapsto(-1)^{t}$ is an example of the transfer homomorphism in group theory. Suppose H is an abelian subgroup of finite index r in the group G. We know that G is partitioned into H-cosets:

$$
G=g_{1} H \cup \cdots \cup g_{r} H .
$$

If now $g \in G$ then

$$
g g_{i}=g_{j} h_{i}
$$

for $i \in[1, r]$. Now it is easy to see - the argument is similar to the one we gave above - that the product $h=h_{1} \cdots h_{r}$ is independent of the choice of coset representatives g_{1}, \ldots, g_{r}, and the map

$$
\tau: G \rightarrow S
$$

is a homomorphism, known as the transfer homomorphism from G to S.

If G is abelian - which it is in all the cases we are interested in - we can simply multiply together all the equations $g g_{i}=g_{j} h_{i}$, to get

$$
\tau(g)=g^{r}
$$

9.6 Computation of $\left(\frac{-1}{p}\right)$

Proposition 9.5. If p is an odd prime then

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{l}
1 \text { if } p \equiv 1 \bmod 4 \\
-1 \text { if } p \equiv-1 \bmod 4 .
\end{array}\right.
$$

Proof. The result follows at once from Euler's Criterion

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p
$$

But it is instructive to deduce it by Gauss's Lemma.
We have to consider the residues

$$
-1,-2, \ldots,-(p-1) / 2 \bmod p
$$

All these are in the range $N=[-(p-1) / 2,(p-1) / 2]$. It follows that $t=(p-1) / 2$; all the remainders are negative.

Hence

$$
\begin{aligned}
\left(\frac{-1}{p}\right) & =(-1)^{(p-1) / 2} \\
& =\left\{\begin{array}{l}
1 \text { if } p \equiv 1 \bmod 4, \\
-1 \text { if } p \equiv-1 \bmod 4
\end{array}\right.
\end{aligned}
$$

Example: According to this,

$$
\left(\frac{2}{3}\right)=\left(\frac{-1}{3}\right)=-1
$$

(since $3 \equiv-1 \bmod 4$), ie 2 is a quadratic non-residue $\bmod 3$.
Again

$$
\left(\frac{12}{13}\right)=\left(\frac{-1}{13}\right)=1,
$$

since $13 \equiv 1 \bmod 4$. Thus 12 is a quadratic residue $\bmod 13$. In fact it is easy to see that

$$
12 \equiv 25=5^{2} \bmod 13
$$

9.7 Computation of $\left(\frac{2}{p}\right)$

Proposition 9.6. If p is an odd prime then

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{l}
1 \text { if } p \equiv \pm 1 \bmod 8 \\
-1 \text { if } p \equiv \pm 3 \bmod 8
\end{array}\right.
$$

Proof. We have to consider the residues

$$
2,4,6, \ldots,(p-1) \bmod p
$$

We have to determine the number t of these residues in the first half of $[1, p-1]$, and the number in the second. We can describe these two ranges as $\{0<r<p / 2\}$ and $\{p / 2<r<p\}$. Since

$$
p / 2<2 x<p \Longleftrightarrow p / 4<x<p / 2
$$

it follows that

$$
t=\lfloor p / 2\rfloor-\lfloor p / 4\rfloor .
$$

Suppose

$$
p=8 n+r
$$

where $r=1,3,5,7$. Then

$$
\lfloor p / 2\rfloor=4 n+\lfloor r / 2\rfloor,\lfloor p / 4\rfloor=2 n+\lfloor r / 4\rfloor .
$$

Thus

$$
t \equiv\lfloor r / 2\rfloor+\lfloor r / 4\rfloor \bmod 2 .
$$

The result follows easily from the fact that

$$
\lfloor r / 2\rfloor= \begin{cases}0 & \text { for } r=1 \\ 1 & \text { for } r=3 \\ 2 & \text { for } r=5 \\ 3 & \text { for } r=7\end{cases}
$$

while

$$
\lfloor r / 4\rfloor=\left\{\begin{array}{ll}
0 & \text { for } r=1,3 \\
1 & \text { for } r=5,7
\end{array} .\right.
$$

Example: Since $71 \equiv-1 \bmod 8$,

$$
\left(\frac{2}{71}\right)=1,
$$

Can you find the solutions of

$$
x^{2} \equiv 2 \bmod 71 ?
$$

Again Since $19 \equiv 3 \bmod 8$,

$$
\left(\frac{2}{19}\right)=-1
$$

So by Euler's criterion,

$$
2^{9} \equiv-1 \bmod 19 .
$$

Checking,

$$
2^{4} \equiv 3 \Longrightarrow 2^{8} \equiv 9 \Longrightarrow 2^{9} \equiv 18 \bmod 19 .
$$

9.8 Composite moduli

Proposition 9.7. Suppose m, n are coprime; and suppose a is coprime to m and n. Then a is a quadratic residue modulo $m n$ if and only if it is a quadratic residue modulo m and modulo n

Proof. This follows at once from the Chinese Remainder Theorem. For

$$
a \equiv r^{2} \bmod m n \Longrightarrow a \equiv r^{2} \bmod m \text { and } a \equiv r^{2} \bmod n .
$$

Conversely, suppose

$$
a \equiv r^{2} \quad \bmod m \text { and } a \equiv s^{2} \bmod n .
$$

By the Chinese Remainder Theorem, we can find t such that $t \equiv r \bmod m$ and $t \equiv s \bmod n$; and then

$$
t^{2} \equiv r^{2} \equiv a \bmod m \text { and } t^{2} \equiv s^{2} \equiv b \bmod n
$$

9.9 Prime power moduli

Proposition 9.8. Suppose p is an odd prime; and suppose $a \in \mathbb{Z}$ is coprime to p. Then a is a quadratic residue $\bmod p^{e}($ where $e \geq 1)$ if and only if it is quadratic residue $\bmod p$.

Proof. The argument we gave above for quadratic residues modulo p still applies here.

Lemma 9.1. If $\theta:\left(\mathbb{Z} / p^{e}\right)^{\times} \rightarrow\left(\mathbb{Z} / p^{e}\right)^{t}$ imes is the homomorphism under which

$$
t \mapsto t^{2} \bmod p^{e}
$$

then

$$
\operatorname{ker} \theta=\{ \pm\}
$$

Proof. Suppose

$$
a^{2}-1=(a-1)(a+1) \equiv 0 \bmod p^{e} .
$$

Then

$$
p \mid a-1 \text { and } p|a+1 \Longrightarrow p| 2 a \Longrightarrow p \mid a,
$$

which we have excluded. If $p \mid a+1$ then $p^{e} \mid a-1$; and if $p \mid a-1$ then $p^{e} \mid a+1$. Thus

$$
a \equiv \pm 1 \bmod p^{e} .
$$

It follows that the quadratic residues modulo p^{e} coprime to p form a subgroup of index 2 in $\left(\mathbb{Z} / p^{e}\right)^{\times}$, ie just half the elements of $\left(\mathbb{Z} / p^{e}\right)^{\times}$are quadratic residues modulo p^{e}. Since just half are also quadratic residues modulo p, the result follows.

Remark: For an alternative proof, we can argue by induction of e. Suppose a is a quadratic residue $\bmod p^{e}$, say

$$
a \equiv r^{2} \bmod p^{e},
$$

ie

$$
a=r^{2}+t p^{e} .
$$

Set

$$
s=r+x p^{e} .
$$

Then

$$
\begin{aligned}
s^{2} & =r^{2}+2 x p^{e}+x^{2} p^{2 e} \\
& \equiv r^{2}+2 x p^{e} \bmod p^{e+1} \\
& \equiv a+(t+2 x) p^{e} \bmod p^{e+1} \\
& \equiv a p^{e} \bmod p^{e+1}
\end{aligned}
$$

if

$$
t+2 x \equiv 0 \bmod p
$$

ie

$$
x=-t / 2 \bmod p,
$$

using the fact that 2 is invertible modulo an odd prime p.

Corollary 9.2. The number of quadratic residues in $\left(\mathbb{Z} / p^{e}\right)^{\times}$is

$$
\frac{\phi\left(p^{e}\right)}{2}=\frac{(p-1) p^{e-1}}{2} .
$$

The argument above extends to moduli 2^{e} with a slight modification.
Proposition 9.9. Suppose p is an odd prime; and suppose $a \in \mathbb{Z}$ is coprime to p. Then a is a quadratic residue modulo p^{e} (where $e \geq 1$) if and only if it is quadratic residue modulo p.

Proof. The argument we gave above for quadratic residues modulo p still applies here.

Lemma 9.2. If $\theta:\left(\mathbb{Z} / p^{e}\right)^{\times} \rightarrow\left(\mathbb{Z} / p^{e}\right)^{t}$ imes is the homomorphism under which

$$
t \mapsto t^{2} \bmod p^{e}
$$

then

$$
\operatorname{ker} \theta=\{ \pm\}
$$

Proof. Suppose

$$
a^{2}-1=(a-1)(a+1) \equiv 0 \bmod p^{e} .
$$

Then

$$
p \mid a-1 \text { and } p|a+1 \Longrightarrow p| 2 a \Longrightarrow p \mid a,
$$

which we have excluded. If $p \mid a+1$ then $p^{e} \mid a-1$; and if $p \mid a-1$ then $p^{e} \mid a+1$. Thus

$$
a \equiv \pm 1 \bmod p^{e} .
$$

It follows that the quadratic residues modulo p^{e} coprime to p form a subgroup of index 2 in $\left(\mathbb{Z} / p^{e}\right)^{\times}$, ie just half the elements of $\left(\mathbb{Z} / p^{e}\right)^{\times}$are quadratic residues modulo p^{e}. Since just half are also quadratic residues modulo p, the result follows.

Remark: For an alternative proof, we can argue by induction of e. Suppose a is a quadratic residue $\bmod p^{e}$, say

$$
a \equiv r^{2} \bmod p^{e},
$$

ie

$$
a=r^{2}+t p^{e} .
$$

Set

$$
s=r+x p^{e} .
$$

Then

$$
\begin{aligned}
s^{2} & =r^{2}+2 x p^{e}+x^{2} p^{2 e} \\
& \equiv r^{2}+2 x p^{e} \bmod p^{e+1} \\
& \equiv a+(t+2 x) p^{e} \bmod p^{e+1} \\
& \equiv a \bmod p^{e+1}
\end{aligned}
$$

if

$$
t+2 x \equiv 0 \bmod p
$$

ie

$$
x=-t / 2 \bmod p,
$$

using the fact that 2 is invertible modulo an odd prime p.
Corollary 9.3. The number of quadratic residues in $\left(\mathbb{Z} / p^{e}\right)^{\times}$is

$$
\frac{\phi\left(p^{e}\right)}{2}=\frac{(p-1) p^{e-1}}{2} .
$$

The argument above extends to moduli 2^{e} with a slight modification.
Proposition 9.10. Suppose a is an odd integer. Then a is a quadratic residue modulo 2^{e} (where $e \geq 3$) if and only if $a \equiv 1 \bmod 8$
Proof. It is readily verified that 1 is the only odd quadratic residue modulo $8 ; 3,5$ and 7 are quadratic non-residues.

We show by induction on e that if a is an odd quadratic residue modulo 2^{e} then it is a quadratic residue modulo 2^{e+1}. For suppose

$$
a \equiv r^{2} \bmod 2^{e},
$$

say

$$
a=r^{2}+t 2^{e} .
$$

Let

$$
s=r+t 2^{e-1}
$$

Then

$$
\begin{aligned}
s^{2} & \equiv r^{2}+t 2^{e} \bmod 2^{e+1} \\
& =a .
\end{aligned}
$$

Corollary 9.4. The number of quadratic residues in $\left(\mathbb{Z} / 2^{e}\right)^{\times}$(where $e \geq 3$) is

$$
\frac{\phi\left(2^{e}\right)}{4}=2^{e-3} .
$$

Remarks:

1. It is easy to see that p^{f} (where $f<e$) is a quadratic residue modulo p^{e} if and only if f is even. This allows us to determine whether residues that are not coprime to the modulus are quadratic residues or not.
Thus the quadratic residues modulo 24 are $0,1,4,7,17,23$, while the quadratic residues modulo 36 are $0,1,4,9,17,31$ (noting that the quadratic residue modulo 4 are 0,1).
2. The inductive argument above is an example of Hensel's Lemma. In the simplest case this says that if $f(x) \in \mathbb{Z}[x]$ then any solution of $f(a) \equiv 0 \bmod p$ such that $f^{\prime}(a)$ is coprime to p can be extended (in a unique way) to a solution of $f(a) \equiv 0 \bmod p^{e}$ for all $e \geq 1$.
