
Chapter 8

Fermat’s Little Theorem

8.1 Lagrange’s Theorem
Let us recall (without proof) this basic result of group theory: If G is a finite
group of order n then

gn = 1

for all g ∈ G.
If G is commutative (as all the groups we consider will be) there is a

simple way of proving this: Let

G = {g1, . . . , gn}.

Then
{gg1, gg2, . . . , ggn}

are the same elements, in a different order (unless g = 1). Multiplying these
elements together:

(gg1)(gg2) · · · (ggn) = g1g2 · · · gn,

ie

gn(g1g2 · · · gn) = (g1g2 · · · gn).

Multiplying by (g1g2 · · · gn)−1,

gn = 1.

8.2 Euler’s Theorem
Theorem 8.1 (Euler’s Theorem). For all x coprime to n,

xφ(n) ≡ 1 mod n.

Proof. The group (Z/n)× has order φ(n). The result follows on applying
Lagrange’s Theorem.
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8.3 Fermat’s Little Theorem
As a particular case of Euler’s Theorem, since φ(p) = p− 1 if p is prime, we
have

Theorem 8.2 (Fermat’s Little Theorem). If p is prime then

xp−1 ≡ 1 mod p

for all x coprime to p.

The title ‘Fermat’s Little Theorem’ is sometimes given to the following
variant.

Corollary 8.1. If p is prime then

xp ≡ x mod p

for all x.

Proof. If p - x the result follows on multiplying the congruence in the Theo-
rem by x. If p | x then trivially xp ≡ 0 ≡ x mod p.

8.4 Carmichael numbers
Fermat’s Little Theorem suggests a simple test for the primality of n: Is
xn ≡ x mod n for all x?

This is sometimes known as Fermat’s Primality Test.
Example: Take n = 6, for example. The congruence obviously holds for

x = 0, 1. But for x = 2,
26 = 64 ≡ 4 mod 6,

so the test fails, and we have proved that 6 is not prime.
Unfortunately, it turns out that some composite numbers can satisfy Fer-

mat’s test for all x.

Definition 8.1. We say that n ∈ N is a Carmichael number if n is composite
but

xn ≡ x mod n for all x.

Example: The smallest Carmichael number is

561 = 3 · 11 · 17.

To see that 561 is a Carmichael number, note that 3− 1 = 2, 11− 1 = 10
and 17− 1 = 16 all divide 561− 1 = 560.

Suppose first that x is coprime to 561. By Fermat’s Little Theorem,

x2 ≡ 1 mod 3 =⇒ x560 ≡ 1 mod 3

Similarly,

x10 ≡ 1 mod 11 =⇒ x560 ≡ 1 mod 11,

x16 ≡ 1 mod 17 =⇒ x560 ≡ 1 mod 17.

Putting these together, we deduce that

x560 ≡ 1 mod 3 · 11 · 17 = 561 =⇒ x561 ≡ x mod 561.

But what if x is not coprime to 561, say 17 | x but 3, 11 - x? Then
x = 17y, where gcd(y, 33) = 1.
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The congruence is trivially satisfied mod 17:

(17y)561 ≡ 17y mod 17.

So we only have to show that

(17y)561 ≡ 17y mod 33,

Now φ(33) = 2 · 10 = 20. Since 17 and y are coprime to 33, it follows by
Euler’s Theorem that

1720 ≡ 1 mod 33 and y20 ≡ 1 mod 33.

Hence

(17y)20 ≡ 1 mod 33 =⇒ (17y)560 ≡ 1 mod 33

=⇒ (17y)561 ≡ 17y mod 33.

The other cases where x is divisible by one or more of 3, 11, 17 can be
dealt with similarly.

We shall prove the following result later. The argument is similar to that
above, but requires one more ingredient, which we shall meet in the next
Chapter.

Proposition 8.1. The number n is a Carmichael number if and only if it is
square-free, and

n = p1p2 · · · pr
where r ≥ 2 and

pi − 1 | n− 1

for i = 1, 2, . . . , r.

There are in fact an infinity of Carmichael numbers — this was only
proved about 20 years ago — although they are sparsely distributed. (There
are about N1/3 Carmichael numbers ≤ N .)

Note that if a number fails Fermat’s test then it is certainly composite.
The converse is not true, as we have seen; a number may pass the test but
not be prime.

However, Fermat’s test does provide a reasonable probabilistic algorithm,
for determining “beyond reasonable doubt” if a large number n is prime:
Choose a random number x1 ∈ [2, n− 1], and see if

xn1 ≡ x1 mod n.

If this holds, then the chances of n being prime are certainly much better
than they were before. Far fewer than 1/2 of composite numbers satisfy this
congruence. So one could say that the odds of the number being prime are
at least doubled.

Now repeat the test with a second random number x2 ∈ [2, n − 1] and
repeat the test. There is no reason to suppose that there is any statistical
relation between the two tests; so if the test is passed again, the chances of
the number being prime are at least 4 times as great.

If we repeat the test 20 times, say, and n passes each time, we may say
that the number is “virtually certain” to be prime.

Having said all that, Fermat’s test is never used in practice, because there
is a simple variant which avoids the Carmichael number problem, and has
other advantages as well.
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8.5 The Miller-Rabin test
Suppose p is an odd prime. Let

p− 1 = 2em,

where m is odd.
Suppose p - x. Then we know that

xp−1 = x2
em ≡ 1 mod p.

But this may be written(
x2

e−1m
)2
≡ 1 mod p.

It follows that
x2

e−1m ≡ ±1 mod p;

for Z/(p) is a field; so if x ∈ Z/(p) then

x2 = 1 =⇒ (x− 1)(x+ 1) = 1 =⇒ x = ±1

Now suppose
x2

e−1m ≡ 1 mod p.

Then we can repeat the argument, if e > 1, to see that

x2
e−2m ≡ ±1 mod p.

Continuing in this way, we see that either

x2
im ≡ −1 mod p

for some i ∈ [0, e− 1]. or else

xm ≡ 1 mod p.

That is the Miller-Rabin test. It turns out that if a number n passes the
test for all x coprime to n then it must be prime; there is no analogue of
Carmichael numbers.

But we shall need the results of the next chapter to establish this . . . .

8.6 The AKS algorithm
The Miller-Rabin test (like the Fermat test) is probabilistic. It will only
determine up to a given probability if a number is prime. Just over 10 years
ago, three Indian mathematicians — Agrawal, Kayal and Saxena — found a
deterministic polynomial-time primality algorithm.

This algorithm is based on a simple extension of Fermat’s Little Theorem
to polynomias.

Theorem 8.3. The integer n ≥ 2 is prime if and only if

(x+ a)n ≡ xn + a mod n

for all a.

Remark: Suppose f(x) =
∑
aix

i, g(x) =
∑
bix

i ∈ Z[x]. We say that
f(x) ≡ g(x) mod n if ai ≡ bi mod n for all i.

Proof.
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Lemma 8.1. If p is prime then

p |
(
i

p

)
for i 6= 0, p.

Proof. We have (
i

p

)
=
p(p− 1) · · · (p− i+ 1)

i(i− 1) · · · 1
.

The only term divisible by p is the first term in the numerator.

It follows from this lemma that the relation in the theorem holds if n is
prime.

Suppose n is not prime, say pi ‖ n where p is prime. Then

pi−1 ‖
(
n

p

)
.

For (
n

p

)
=

(
n

n− p

)
=
n(n− 1) · · · (n− p+ 1)

p(p− 1) · · · 1
.

The first term in the numerator is divisible by pi, and the first term in the
numerator is divisible by p. The result follows, since no other terms are
divisible by p.

It is not clear at this point that this result improves on the Miller-Rabin
test, since it is not feasible to test the relation for all a ∈ (0, n). However,
the AKS trio showed that it is only necessary to test

0 < a ≤
√
φ(r) log2 n,

where r is the smallest positive integer such that the order of r mod n is
> (log2 n)

2. The trio showed that r < (log2 n)
5, thus establishing that the

algorithm can be completed in polynomial time; that is, in ≤ P (log2 n) steps,
where P (x) is a polynomial.
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