Chapter 7
Finite fields

7.1 The order of a finite field

Definition 7.1. The characterisitic of a ring A is the additive order of 1, ie
the smallest integer n > 1 such that

n-l=1+1+4-+1=0,
—_—

n terms

if there is such an integer, or oo if there is not.

Examples: 7.,Q,R, C all have infinite characteristic.
[F, = Z/(p) has characteristic p.

Proposition 7.1. The characteristic of an integral domain A is either a
prime p, or else oo.
In particular, a finite field has prime characteristic.

Proof. Suppose A has characteristic n = ab where a,b > 1. By the distribu-
tive law,
I+ +1=04+---+1)1+---+1).

D2

n ‘:(;ms a tz?ms b tgrrms
Hence
l1+---+1=0o0r 1+4+---+41=0,
—— ——
a terms b terms
contrary to the minimal property of the characteristic. O]

Proposition 7.2. Suppose the finite field F' has characteristic p. Then F
contains p" elements, for some n.

Proof. The elements {0,1,2,...,p — 1} form a subfield of F' isomorphic to
F,. We can consider I as a vector space over this subfield. Let eq,eq,..., ¢,
be a basis for this vector space. Then the elements of F are

T1€1 + Tolg + -+ - + xp€, (0 <my,29,...,2, < D).

Thus the order of F is p™. n
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7.2 On cyclic groups
Let us recall some results from elementary group theory.
Proposition 7.3. The element g' in the cyclic group C,, has ordern/ ged(n, ).

Proof. This follows from

(¢ =1 < nliec < | e.

ged(n, 4)
0

Corollary 7.1. C,, contains ¢(n) generators, namely the elements g* with
0 <i < n for which ged(n, 1) = 1.

Proposition 7.4. The cyclic group C,, = (g) has just one subgroup of each
order d | n, namely the cyclic subgroup Cyq = (g™/?).

Proof. Suppose ¢° € H, where H C C,, is a subgroup of order d, Then
() =g =1 = nlid = n/d|i = ¢ €C,.

Thus H ¢ ¢, = H = C,, since the two subgroups have the same
order. O]

7.3 Mobius inversion

This is a technique which has many applications in number theory and combi-
natorics. Recall that the Mobius function p(n) is defined for positive integers
n by

0 if n has a square factor
p(n) =

(=1)" if n is square-free and has r prime factors

Thus

1.

)

Lop(2) = =1, u(3) = -1, u(4) =0, pu(b5)
p(6) =1, w(7) = —1, p(8) =0, u(9) =0, u(10)

Theorem 7.1. Given an arithmetic function f(n), suppose

g(n) =3 f(n).

dln

Then
) =3 uln/d)g(n).

din
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Proof. Given arithmetic functions u(n),v(n) let us defined the arithmetic
function u o v by

(wov)(n) =Y uld)v(n/d) =Y u(x)o(y).

din n=zxy

(Compare the convolution operation in analysis.) This operation is commu-
tative and associative, ie vou = uowv and (uov)ow = uo (vow). (The
latter follows from

Zu(d)Z{(l) o

otherwise.
dln

Proof. Suppose n = pi*---pS». Then it is clear that only the factors of
p1 - - - pr Will contribute to the sum, so we may assume that n = p;--- p,.

But in this case the terms in the sum correspond to the terms in the
expansion of

(1-11-1)(1-1)

r products

giving 0 unless r =0, ie n = 1. O]

Let us define 6(n), €(n) by

() = {1 ifn =1

0 otherwise,

€(n) =1 for all n

It is easy to see that
sof=f

for all arithmetic functions f. Also the lemma above can be written as
[Loe=7¢,
while the result we are trying to prove is
g=¢cof = f=pog.
This follows since

pog=po(eof)=(noe)of=dof=Ff
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7.4 Primitive roots

Theorem 7.2. The multiplicative group F* = F \ {0} of a finite field F' is
cyclic.

Proof. If F has order p® then F’* has order p" — 1. It follows (by Lagrange’s
Theorem) that all the elements of F* satisfy

1e

Since this polynomial has degree p” — 1, and we have p" —1 roots, it factorizes
completely into linear terms:

Now suppose d | p" — 1. Since
f(@) =2t~ 1| U(x)

it follows that z¢ — 1 factorizes completely into linear terms, say

f@)= 1] (@~ a).

0<i<d

Lemma 7.2. Suppose there are o(d) elements of order d in F*. Then

D ole)=d.

eld

Proof. Any element of order e | d must satisfy the equation f(z) = 0; and
conversely any root of the equation must be of order e | d. The result follows
on adding the elements of each order. O]

D ole) =d.

eld

Lemma 7.3. We have

Proof. Since the function ¢(d) is multiplicative, so (it is easy to see) is
>-ea®(d). Hence it is only necessary to prove the result for d = p", ie
to show that

A7) + (P + -+ o(1) = p,
which follows at once from the fact that ¢(p™) = p" — p"~ L. O
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From the two Lemmas, on applying Mobius inversion,

o(d) = e=9¢(d).

eld

In particular,
o(p" —1)=9o(p" -1) 21,

from which the theorem follows, since any element of this order will generate
F~. O

Remarks:

1. It is not necessary to invoke Md&bius inversion to deduce from the two
Lemmas that o(d) = ¢(d), since it follows by simple induction that if
the result holds for e < d then it holds for d.

2. For a slight variant on this proof, suppose a € F* has order d. Then a
satisfies the equation f(z) = 2¢—1 = 0, as do the d elements a*(0 < i <
d). Moreover any element of order d satisfies this equation. It follows
that the elements of order d are all in the cyclic subgroup Cy = (a).
But we know from elementary group theory that there are just ¢(d)
elements of order d in Cy, namely the elements a’ with ged(i,n) = 1.

It follows that the number o(d) of elements of order d in F'* is either
¢(d) or 0. But since 3, . | #(d) = p" — 1, all the p” — 1 elements of
F* can only be accounted for if o(d) = ¢(d) for all d | p" — 1.

Definition 7.2. A generator of (Z/p)* is called a primitive root mod p.
Example: Take p = 7. Then

23 =1 mod T7;

so 2 has order 3 mod 7, and is not a primitive root.
However,
3?=2mod7, 3*=6=—1mod 7.

Since the order of an element divides the order of the group, which is 6 in
this case, it follows that 3 has order 6 mod 7, and so is a primitive root.
If g generates the cyclic group G then so does g~!. Hence

371 =5mod 7
is also a primitive root mod 7.

Proposition 7.5. There are ¢(p — 1) primitive roots mod p. If w is one
primitive oot then the others are © where 0 < i < p—1 and ged(p—1,1) = 1.

This follows from Proposition 7.3 above.
Ezamples: Suppose p = 11. Then (Z/11)* has order 10, so its elements
have orders 1,2,5 or 10. Now

2° =32=—1mod 11.
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So 2 must be a primitive root mod 11.
There are

¢(10) = 4

primitive roots mod 11, namely
2,23 27 2% mod 11,
ie
2,8,7,6.

Suppose p = 23. Then (Z/23)* has order 22, so its elements have orders
1,2,11 or 28.

Note that since a*? = 1 for all a € (Z/29)%, it follows that a'! = +1.

Working always modulo 23,

2=32=9 = 2=81=12 = 2''=24=1.
So 2 has order 11. Also
3P=2 —= 390=2%=2" — 3'=3.8=1.
So 3 also has order 11. But
=2 = 5Y=2"=9 — 5'l'=45=—1.

Since 52 = 2 = 5* = 22 = 4, we conclude that 5 is a primitive root modulo
23.

7.5 Uniqueness

Theorem 7.3. Two fields F, F' of the same order p™ are necessarily isomor-
phic.

Proof. If a € F* then a?"~! = 1, ie a is a root of the polynomial
Ux) =21~ 1.

Hence

U([E) = H ($ B CI,),

a€eFXx

since the number p” — 1 of elements is equal to the degree of U(z).
Now suppose U(x) factorises over F,, into irreducible polynomials

Ulx) = fi(z)--- fr(2).
We know that F'* is cyclic. Let m be a generator, so that

F={0,1,7,7% .. 72}
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Then 7 is a factor of U(x), and so of one of its irreducible factors, say fi(z).
It follows that if f(z) € F,[z| then

f(m) =0 <= filz) | f().

For otherwise we could find u(z), v(z) such that

f(@)u(z) + fi(z)v(r) = 1;

and this would give a contradiction on setting x = .
Now pass to F”’, where U(x) will factor in the same way. Let 7’ be a root
of fi(z) in F’. Then we claim that the map © : F' — F’ given by

7= 0<r<p'-1)

(together with 0 — 0) is a homomorphism.
It is easy to see that O(zy) = O(z)O(y). It remains to show that O(z +
y) = O(z) + O(y). Suppose & = 7, y = 7°, x+y = 7°. Then 7 satisfies the
equation
f(x) = 2% + 2 — 2*.

It follows that
fi@) | f(z).
On passing to F”,
f(ﬂ_l) -0 — ﬂ_la + 7_{_lb — ﬂ_/c’
as required.

Finally, a homomorphism © : F' — F’ from one field to another is neces-
sarily injective. For if x # 0 then z has an inverse y, and then

O(z) =0 = 6(1) = B(zy) = O(x)O(y) = 0,

contrary to fact that ©(1) = 1. (We are using the fact that © is a homo-
morphism of additive groups, so that ker © = 0 implies that © is injective.)
Since F' and F’ contain the same number of elements, we conclude that © is
bijective, and so an isomorphims. O

7.6 Existence

Theorem 7.4. There exists a field F' of every prime power p™.
Proof. We know that if f(z) € Fylz] is of degree d, then F,[z]/(f(x)) is a

field of order p™. Thus the result will follow if we can show that there exist
irreducible polynomials f(z) € F,[z] of all degrees n > 1.

There are p™ monic polynomials of degree n in F,[z]. Let us associate
to each such polynomial the term ™. Then all these terms add up to the

generating function
n,..n 1
Zp = 1 —pz’

neN
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Now consider the factorisation of each polynomial

f(@) = fil@) - fo(z)™

into irreducible polynomials. If the degree of f;(z) is d; this product corre-

sponds to the power
pdieittdrer

Putting all these terms together, we obtain a product formula analagous to
Euler’s formula. Suppose there are o(n) irreducible polynomials of degree n.
Let d(f) denote the degree of the polynomial f(z). Then

1
S | T N
1- pr irreducible f(x)

1
- H 1 — 240D

irreducible f(x)

=[Ja-an—.

deN

As we have seen, we can pass from infinite products to infinite series by
taking logarithms. When dealing with infinite products of functions it is
usually easier to use logarithmic differentiation:

f(@) =u(z)- - up(z) = fl(x) (o) ()

@ w@ T @)

Extending this to infinite products, and applying it to the product formula

above, -
do(d)z® -
A e

deN deN t>1

(This is justified by the fact that terms on the right after the nth only involve
powers greater than x™.)
Comparing the terms in x"~

Pt = Z do(d).

dln

! on each side,

Applying M6bius inversion,
no(n) = 3 u(n/d)p"
dln

The leading term p" (arising when d = 1) will dominate the remaining
terms. For these will consist of terms +p® for various different e < n. Thus
their absolute sum is

< )y

e<n—1
_p-1
S
<p".

It follows that o(n) > 0. ie there exists at least one irreducible polynomial
of degree n. O]
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Corollary 7.2. The number of irreducible polynomials of degree n over IF,
18

LS /dyp

dn
Examples: The number of polynomials of degree 3 over Fj is

282
— =

(1(1)2° + u(3)2) = 2

W

namely the polynmials 2% + 2% + 1, 23 + z + 1.
The number of polynomials of degree 4 over I, is

24_22

= 3.
4

(p(1)2" + u(3)2° 4 pu(1)2) =

1
4

(Recall that p(4) = 0, since 4 has a square factor.)
The number of polynomials of degree 10 over Fs is

%0(210—25—2%2):

990
0= 99

The number of polynomials of degree 4 over ;5 is

_12_

(3 —5) =

9.
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