
Chapter 7

Finite fields

7.1 The order of a finite field
Definition 7.1. The characterisitic of a ring A is the additive order of 1, ie
the smallest integer n > 1 such that

n · 1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

= 0,

if there is such an integer, or ∞ if there is not.

Examples: Z,Q,R,C all have infinite characteristic.
Fp = Z/(p) has characteristic p.

Proposition 7.1. The characteristic of an integral domain A is either a
prime p, or else ∞.

In particular, a finite field has prime characteristic.

Proof. Suppose A has characteristic n = ab where a, b > 1. By the distribu-
tive law,

1 + · · ·+ 1︸ ︷︷ ︸
n terms

= (1 + · · ·+ 1︸ ︷︷ ︸
a terms

)(1 + · · ·+ 1︸ ︷︷ ︸
b terms

).

Hence
1 + · · ·+ 1︸ ︷︷ ︸

a terms

= 0 or 1 + · · ·+ 1︸ ︷︷ ︸
b terms

= 0,

contrary to the minimal property of the characteristic.

Proposition 7.2. Suppose the finite field F has characteristic p. Then F
contains pn elements, for some n.

Proof. The elements {0, 1, 2, . . . , p − 1} form a subfield of F isomorphic to
Fp. We can consider F as a vector space over this subfield. Let e1, e2, . . . , en
be a basis for this vector space. Then the elements of F are

x1e1 + x2e2 + · · ·+ xnen (0 ≤ x1, x2, . . . , xn < p).

Thus the order of F is pn.
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7.2 On cyclic groups
Let us recall some results from elementary group theory.

Proposition 7.3. The element gi in the cyclic group Cn has order n/ gcd(n, i).

Proof. This follows from

(gi)e = 1 ⇐⇒ n | ie ⇐⇒ n

gcd(n, i)
| e.

Corollary 7.1. Cn contains φ(n) generators, namely the elements gi with
0 ≤ i < n for which gcd(n, i) = 1.

Proposition 7.4. The cyclic group Cn = 〈g〉 has just one subgroup of each
order d | n, namely the cyclic subgroup Cd = 〈gn/d〉.

Proof. Suppose gi ∈ H, where H ⊂ Cn is a subgroup of order d, Then

(gi)d = gid = 1 =⇒ n | id =⇒ n/d | i =⇒ gi ∈ Cn.

Thus H ⊂ Cn =⇒ H = Cn, since the two subgroups have the same
order.

7.3 Möbius inversion
This is a technique which has many applications in number theory and combi-
natorics. Recall that the Möbius function µ(n) is defined for positive integers
n by

µ(n) =

{
0 if n has a square factor
(−1)r if n is square-free and has r prime factors

Thus

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1,

µ(6) = 1, µ(7) = −1, µ(8) = 0, µ(9) = 0, µ(10) = 1.

Theorem 7.1. Given an arithmetic function f(n), suppose

g(n) =
∑
d|n

f(n).

Then
f(n) =

∑
d|n

µ(n/d)g(n).
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Proof. Given arithmetic functions u(n), v(n) let us defined the arithmetic
function u ◦ v by

(u ◦ v)(n) =
∑
d|n

u(d)v(n/d) =
∑
n=xy

u(x)v(y).

(Compare the convolution operation in analysis.) This operation is commu-
tative and associative, ie v ◦ u = u ◦ v and (u ◦ v) ◦ w = u ◦ (v ◦ w). (The
latter follows from

((u ◦ v) ◦ w)(n) =
∑
n=xyz

u(x)v(y)w(z).)

Lemma 7.1. We have

∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise.

Proof. Suppose n = pe11 · · · penn . Then it is clear that only the factors of
p1 · · · pr will contribute to the sum, so we may assume that n = p1 · · · pr.

But in this case the terms in the sum correspond to the terms in the
expansion of

(1− 1)(1− 1) · · · (1− 1)︸ ︷︷ ︸
r products

giving 0 unless r = 0, ie n = 1.

Let us define δ(n), ε(n) by

δ(n) =

{
1 if n = 1

0 otherwise,

ε(n) = 1 for all n

It is easy to see that
δ ◦ f = f

for all arithmetic functions f . Also the lemma above can be written as

µ ◦ ε = δ,

while the result we are trying to prove is

g = ε ◦ f =⇒ f = µ ◦ g.

This follows since

µ ◦ g = µ ◦ (ε ◦ f) = (µ ◦ ε) ◦ f = δ ◦ f = f.
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7.4 Primitive roots
Theorem 7.2. The multiplicative group F× = F \ {0} of a finite field F is
cyclic.

Proof. If F has order pb then F× has order pn− 1. It follows (by Lagrange’s
Theorem) that all the elements of F× satisfy

xp
n−1 = 1,

ie

U(x) = xp
n−1 − 1 = 0.

Since this polynomial has degree pn−1, and we have pn−1 roots, it factorizes
completely into linear terms:

U(x) =
∏
a∈F×

(x− a).

Now suppose d | pn − 1. Since

f(x) = xd − 1 | U(x)

it follows that xd − 1 factorizes completely into linear terms, say

f(x) =
∏

0≤i<d

(x− ai).

Lemma 7.2. Suppose there are σ(d) elements of order d in F×. Then∑
e|d

σ(e) = d.

Proof. Any element of order e | d must satisfy the equation f(x) = 0; and
conversely any root of the equation must be of order e | d. The result follows
on adding the elements of each order.

Lemma 7.3. We have ∑
e|d

φ(e) = d.

Proof. Since the function φ(d) is multiplicative, so (it is easy to see) is∑
e|d φ(d). Hence it is only necessary to prove the result for d = pn, ie

to show that
φ(pd) + φ(pd−1) + · · ·+ φ(1) = pd,

which follows at once from the fact that φ(pn) = pn − pn−1.
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From the two Lemmas, on applying Möbius inversion,

σ(d) =
∑
e|d

e = φ(d).

In particular,
σ(pn − 1) = φ(pn − 1) ≥ 1,

from which the theorem follows, since any element of this order will generate
F×.

Remarks:

1. It is not necessary to invoke Möbius inversion to deduce from the two
Lemmas that σ(d) = φ(d), since it follows by simple induction that if
the result holds for e < d then it holds for d.

2. For a slight variant on this proof, suppose a ∈ F× has order d. Then a
satisfies the equation f(x) = xd−1 = 0, as do the d elements ai(0 ≤ i <
d). Moreover any element of order d satisfies this equation. It follows
that the elements of order d are all in the cyclic subgroup Cd = 〈a〉.
But we know from elementary group theory that there are just φ(d)
elements of order d in Cd, namely the elements ai with gcd(i, n) = 1.

It follows that the number σ(d) of elements of order d in F× is either
φ(d) or 0. But since

∑
d|pn−1 φ(d) = pn − 1, all the pn − 1 elements of

F× can only be accounted for if σ(d) = φ(d) for all d | pn − 1.

Definition 7.2. A generator of (Z/p)× is called a primitive root mod p.

Example: Take p = 7. Then

23 ≡ 1 mod 7;

so 2 has order 3 mod 7, and is not a primitive root.
However,

32 ≡ 2 mod 7, 33 ≡ 6 ≡ −1 mod 7.

Since the order of an element divides the order of the group, which is 6 in
this case, it follows that 3 has order 6 mod 7, and so is a primitive root.

If g generates the cyclic group G then so does g−1. Hence

3−1 ≡ 5 mod 7

is also a primitive root mod 7.

Proposition 7.5. There are φ(p − 1) primitive roots mod p. If π is one
primitive root then the others are πi where 0 ≤ i < p−1 and gcd(p−1, i) = 1.

This follows from Proposition 7.3 above.
Examples: Suppose p = 11. Then (Z/11)× has order 10, so its elements

have orders 1,2,5 or 10. Now

25 = 32 ≡ −1 mod 11.
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So 2 must be a primitive root mod 11.
There are

φ(10) = 4

primitive roots mod 11, namely

2, 23, 27, 29 mod 11,

ie

2, 8, 7, 6.

Suppose p = 23. Then (Z/23)× has order 22, so its elements have orders
1,2,11 or 28.

Note that since a22 = 1 for all a ∈ (Z/29)×, it follows that a11 = ±1.
Working always modulo 23,

25 = 32 ≡ 9 =⇒ 210 ≡ 81 ≡ 12 =⇒ 211 ≡ 24 ≡ 1.

So 2 has order 11. Also

32 ≡ 25 =⇒ 310 ≡ 225 ≡ 23 =⇒ 311 ≡ 3 · 8 ≡ 1.

So 3 also has order 11. But

52 ≡ 2 =⇒ 510 ≡ 25 ≡ 9 =⇒ 511 ≡ 45 ≡ −1.

Since 52 ≡ 2 =⇒ 54 ≡ 22 = 4, we conclude that 5 is a primitive root modulo
23.

7.5 Uniqueness
Theorem 7.3. Two fields F, F ′ of the same order pn are necessarily isomor-
phic.

Proof. If a ∈ F× then apn−1 = 1, ie a is a root of the polynomial

U(x) = xp
n−1 − 1.

Hence
U(x) =

∏
a∈F×

(x− a),

since the number pn − 1 of elements is equal to the degree of U(x).
Now suppose U(x) factorises over Fp into irreducible polynomials

U(x) = f1(x) · · · fr(x).

We know that F× is cyclic. Let π be a generator, so that

F = {0, 1, π, π2, . . . , πp
n−2}.
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Then π is a factor of U(x), and so of one of its irreducible factors, say f1(x).
It follows that if f(x) ∈ Fp[x] then

f(π) = 0 ⇐⇒ f1(x) | f(x).

For otherwise we could find u(x), v(x) such that

f(x)u(x) + f1(x)v(x) = 1;

and this would give a contradiction on setting x = π.
Now pass to F ′, where U(x) will factor in the same way. Let π′ be a root

of f1(x) in F ′. Then we claim that the map Θ : F → F ′ given by

πr 7→ π′r (0 ≤ r < pn − 1)

(together with 0 7→ 0) is a homomorphism.
It is easy to see that Θ(xy) = Θ(x)Θ(y). It remains to show that Θ(x+

y) = Θ(x) + Θ(y). Suppose x = πa, y = πb, x+ y = πc. Then π satisfies the
equation

f(x) = xa + xb − xx.

It follows that
f1(x) | f(x).

On passing to F ′,
f(π′) = 0 =⇒ π′a + π′b = π′c,

as required.
Finally, a homomorphism Θ : F → F ′ from one field to another is neces-

sarily injective. For if x 6= 0 then x has an inverse y, and then

Θ(x) = 0 =⇒ Θ(1) = Θ(xy) = Θ(x)Θ(y) = 0,

contrary to fact that Θ(1) = 1. (We are using the fact that Θ is a homo-
morphism of additive groups, so that ker Θ = 0 implies that Θ is injective.)
Since F and F ′ contain the same number of elements, we conclude that Θ is
bijective, and so an isomorphims.

7.6 Existence
Theorem 7.4. There exists a field F of every prime power pn.

Proof. We know that if f(x) ∈ Fp[x] is of degree d, then Fp[x]/(f(x)) is a
field of order pn. Thus the result will follow if we can show that there exist
irreducible polynomials f(x) ∈ Fp[x] of all degrees n ≥ 1.

There are pn monic polynomials of degree n in Fp[x]. Let us associate
to each such polynomial the term xn. Then all these terms add up to the
generating function ∑

n∈N

pnxn =
1

1− px
.

7–7



Now consider the factorisation of each polynomial

f(x) = f1(x)e1 · · · fr(x)er

into irreducible polynomials. If the degree of fi(x) is di this product corre-
sponds to the power

xd1e1+···+drer .

Putting all these terms together, we obtain a product formula analagous to
Euler’s formula. Suppose there are σ(n) irreducible polynomials of degree n.
Let d(f) denote the degree of the polynomial f(x). Then

1

1− px
=

∏
irreducible f(x)

(
1 + xd(f) + x2d(f) + · · ·

)
=

∏
irreducible f(x)

1

1− xd(f)

=
∏
d∈N

(1− dn)−σ(d).

As we have seen, we can pass from infinite products to infinite series by
taking logarithms. When dealing with infinite products of functions it is
usually easier to use logarithmic differentiation:

f(x) = u1(x) · · ·ur(x) =⇒ f ′(x)

f(x)
=
u′1(x)

u1(x)
+ · · ·+ u′r(x)

ur(x)
.

Extending this to infinite products, and applying it to the product formula
above,

p

1− px
=
∑
d∈N

dσ(d)xd−1

1− xd
=
∑
d∈N

∑
t≥1

xtd−1

(This is justified by the fact that terms on the right after the nth only involve
powers greater than xn.)

Comparing the terms in xn−1 on each side,

pn =
∑
d|n

dσ(d).

Applying Möbius inversion,

nσ(n) =
∑
d|n

µ(n/d)pd.

The leading term pn (arising when d = 1) will dominate the remaining
terms. For these will consist of terms ±pe for various different e < n. Thus
their absolute sum is

≤
∑
e≤n−1

pe

=
pn − 1

p− 1

< pn.

It follows that σ(n) > 0. ie there exists at least one irreducible polynomial
of degree n.
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Corollary 7.2. The number of irreducible polynomials of degree n over Fp
is

1

n

∑
d|n

µ(n/d)pd.

Examples: The number of polynomials of degree 3 over F2 is

1

3

(
µ(1)23 + µ(3)2

)
=

23 − 2

3
= 2,

namely the polynmials x3 + x2 + 1, x3 + x+ 1.
The number of polynomials of degree 4 over F2 is

1

4

(
µ(1)24 + µ(3)22 + µ(1)2

)
=

24 − 22

4
= 3.

(Recall that µ(4) = 0, since 4 has a square factor.)
The number of polynomials of degree 10 over F2 is

1

10

(
210 − 25 − 22 + 2

)
=

990

10
= 99

The number of polynomials of degree 4 over F3 is

1

4

(
34 − 32

)
=

72

8
= 9.
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