Chapter 4

Modular arithmetic

4.1 The modular ring

Definition 4.1. Suppose $n \in \mathbb{N}$ and $x, y \in \mathbb{Z}$. Then we say that x, y are equivalent modulo n, and we write

$$
x \equiv y \bmod n
$$

if

$$
n \mid x-y
$$

It is evident that equivalence modulo n is an equivalence relation, dividing \mathbb{Z} into equivalence or residue classes.

Definition 4.2. We denote the set of residue classes $\bmod n$ by $\mathbb{Z} /(n)$.
Evidently there are just n classes modulo n if $n \geq 1$;

$$
\#(\mathbb{Z} /(n))=n
$$

We denote the class containing $a \in \mathbb{Z}$ by \bar{a}, or just by a if this causes no ambiguity.

Proposition 4.1. If

$$
x \equiv x^{\prime}, y \equiv y^{\prime}
$$

then

$$
x+y \equiv x^{\prime}+y^{\prime}, x y \equiv x^{\prime} y^{\prime} .
$$

Thus we can add and multiply the residue classes $\bmod d$.
Corollary 4.1. If $n>0, \mathbb{Z} /(n)$ is a finite commutative ring (with 1).
Example: Suppose $n=6$. Then addition in $\mathbb{Z} /(6)$ is given by

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

while multiplication is given by

\times	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

4.2 The prime fields

Theorem 4.1. The ring $\mathbb{Z} /(n)$ is a field if and only if n is prime.
Proof. Recall that an integral domain is a commutative ring A with 1 having no zero divisors, ie

$$
x y=0 \Longrightarrow x=0 \text { or } y=0 .
$$

In particular, a field is an integral domain in which every non-zero element has a multiplicative inverse.

The result follows from the following two lemmas.
Lemma 4.1. $\mathbb{Z} /(n)$ is an integral domain if and only if n is prime.
Proof. Suppose n is not prime, say

$$
n=r s,
$$

where $1<r, s<n$. Then

$$
\bar{r} \bar{s}=\bar{n}=0 .
$$

So $\mathbb{Z} /(n)$ is not an integral domain.
Conversely, suppose n is prime; and suppose

$$
\bar{r} \bar{s}=\overline{r s}=0 .
$$

Then

$$
n|r s \Longrightarrow n| r \text { or } n \mid s \Longrightarrow \bar{r}=0 \text { or } \bar{s}=0 \text {. }
$$

Lemma 4.2. A finite integral domain A is a field.
Proof. Suppose $a \in A, a \neq 0$. Consider the map

$$
x \mapsto a x: A \rightarrow A .
$$

This map is injective; for

$$
a x=a y \Longrightarrow a(x-y)=0 \Longrightarrow x-y=0 \Longrightarrow x=y
$$

But an injective map

$$
f: X \rightarrow X
$$

from a finite set X to itself is necessarily surjective.
In particular there is an element $x \in A$ such that

$$
a x=1,
$$

ie a has an inverse. Thus A is a field.

4.3 The additive group

If we 'forget' multiplication in a ring A we obtain an additive group, which we normally denote by the same symbol A. (In the language of category theory we have a 'forgetful functor' from the category of rings to the category of abelian groups.)

Proposition 4.2. The additive group $\mathbb{Z} /(n)$ is a cyclic group of order n.
This is obvious; the group is generated by the element $1 \bmod n$.
Proposition 4.3. The element $a \bmod n$ is a generator of $\mathbb{Z} /(n)$ if and only if

$$
\operatorname{gcd}(a, n)=1
$$

Proof. Let

$$
d=\operatorname{gcd}(a, n) .
$$

If $d>1$ then 1 is not a multiple of $a \bmod n$, since

$$
1 \equiv r a \bmod n \Longrightarrow 1=r a+s n \Longrightarrow d \mid 1 .
$$

Conversely, if $d=1$ then we can find $r, s \in \mathbb{Z}$ such that

$$
r a+s n=1 ;
$$

so

$$
r a \equiv 1 \bmod n,
$$

Thus 1 is a multiple of $a \bmod n$, and so therefore is every element of $\mathbb{Z} /(n)$.

Note that there is only one cyclic group of order n, up to isomorphism. So any statement about the additive groups $\mathbb{Z} /(n)$ is a statement about finite cyclic groups, and vice versa. In particular, the result above is equivalent to the statement that if G is a cyclic group of order n generated by g then g^{r} is also a generator of G if and only if $\operatorname{gcd}(r, n)=1$.

Recall that a cyclic group G of order n has just one subgroup of each order $m \mid n$ allowed by Lagrange's Theorem, and this subgroup is cyclic. In the language of modular arithmetic this becomes:
Proposition 4.4. The additive group $\mathbb{Z} /(n)$ had just one subgroup of each order $m \mid n$. If $n=m r$ this is the subgroup

$$
\langle r\rangle=\{0, r, 2 r, \ldots,(m-1) r\} .
$$

4.4 The multiplicative group

If A is a ring (with 1 , but not necessarily commutative) then the invertible elements form a group; for if a, b are invertible, say

$$
a r=r a=1, b s=s b=1,
$$

then

$$
(a b)(r s)=(r s)(a b)=1,
$$

and so $a b$ is invertible.
We denote this group by A^{\times}.

Proposition 4.5. The element $a \in \mathbb{Z} /(n)$ is invertible if and only if

$$
\operatorname{gcd}(a, n)=1
$$

Proof. If a is invertible $\bmod n$, say

$$
a b \equiv 1 \bmod n,
$$

then

$$
a b=1+t n,
$$

and it follows that

$$
\operatorname{gcd}(a, n)=1
$$

Conversely, if this is so then

$$
a x+n y=1,
$$

and it follows that x is the inverse of $a \bmod n$.
We see that the invertible elements in $\mathbb{Z} /(n)$ are precisely those elements that generate the additive group $\mathbb{Z} /(n)$.

Definition 4.3. We denote the group of invertible elements in $\mathbb{Z} /(n)$ by $(\mathbb{Z} / n)^{\times}$. We call this group the multiplicative group $\bmod n$.

Thus $(\mathbb{Z} / n)^{\times}$consists of the residue classes $\bmod n$ coprime to n, ie all of whose elements are coprime to n.

Definition 4.4. If $n \in \mathbb{N}$, we denote by $\phi(n)$ the number of integers r such that

$$
0 \leq r<n \text { and } \operatorname{gcd}(r, n)=1 .
$$

This function is called Euler's totient function. As we shall see, it plays a very important role in elementary number theory.

Example:

$$
\begin{aligned}
& \phi(0)=0, \\
& \phi(1)=1, \\
& \phi(2)=1, \\
& \phi(3)=2, \\
& \phi(4)=2, \\
& \phi(5)=4, \\
& \phi(6)=2 .
\end{aligned}
$$

It is evident that if p is prime then

$$
\phi(p)=p-1,
$$

since every number in $[0, p)$ except 0 is coprime to p.
Proposition 4.6. The order of the multiplicative group $(\mathbb{Z} / n)^{\times}$is $\phi(n)$

This follows from the fact that each class can be represented by a remainder $r \in[0, n)$.

Example: Suppose $n=10$. Then the multiplication table for the group $(\mathbb{Z} / 10)^{\times}$is

	1	3	7	9
1	1	3	7	9
3	3	9	1	7.
7	7	1	9	3
9	9	7	3	1

We see that this is a cyclic group of order 4 , generated by 3 :

$$
(\mathbb{Z} / 10)^{\times}=C_{4} .
$$

Suppose $\operatorname{gcd}(a, n)=1$. To find the inverse x of $a \bmod n$ we have in effect to solve the equation

$$
a x+n y=1 .
$$

As we have seen, the standard way to solve this is to use the Euclidean Algorithm, in effect to determine $\operatorname{gcd}(a, n)$.

Example: Let us determine the inverse of 17 mod 23. Applying the Euclidean Algorithm,

$$
\begin{aligned}
& 23=17+6, \\
& 17=3 \cdot 6-1 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
1 & =3 \cdot 6-17 \\
& =3(23-17)-17 \\
& =3 \cdot 23-4 \cdot 17 .
\end{aligned}
$$

Hence

$$
17^{-1}=-4=19 \bmod 23 .
$$

Note that having found the inverse of a we can easily solve the congruence

$$
a x=b \bmod n
$$

In effect

$$
x=a^{-1} b .
$$

For example, the solution of

$$
17 x=9 \bmod 23
$$

is

$$
x=17^{-1} 9=-4 \cdot 9=-36 \equiv-13 \equiv 10 \bmod 23 .
$$

4.5 Homomorphisms

Suppose $m \mid n$. Then each remainder $\bmod n$ defines a remainder $\bmod m$.
For example, if $m=3, n=6$ then

$$
\begin{aligned}
& 0 \bmod 6 \mapsto 0 \bmod 3, \\
& 1 \bmod 6 \mapsto 1 \bmod 3, \\
& 2 \bmod 6 \mapsto 2 \bmod 3, \\
& 3 \bmod 6 \mapsto 0 \bmod 3, \\
& 4 \bmod 6 \mapsto 1 \bmod 3, \\
& 5 \bmod 6 \mapsto 2 \bmod 3 .
\end{aligned}
$$

Proposition 4.7. If $m \mid n$ the map

$$
r \quad \bmod n \mapsto r \quad \bmod n
$$

is a ring-homomorphism

$$
\mathbb{Z} /(n) \rightarrow \mathbb{Z} /(m)
$$

4.6 Finite fields

We have seen that $\mathbb{Z} /(p)$ is a field if p is prime.
Finite fields are important because linear algebra extends to vector spaces over any field; and vector spaces over finite fields are central to coding theory and cryptography, as well as other branches of pure mathematics.

Definition 4.5. The characteristic of a ring A is the least positive integer n such that

$$
\overbrace{1+1+\cdots+1}^{n 1^{\prime} s}=0 .
$$

If there is no such n then A is said to be of characteristic 0 .
Thus the characteristic of A, if finite, is the order of 1 in the additive group A.

Evidently $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all of characteristic 0 .
Proposition 4.8. The ring $\mathbb{Z} /(n)$ is of characteristic n.
Proposition 4.9. The characteristic of a finite field is a prime.
Proof. Let us write

$$
n \cdot 1 \text { for } \overbrace{1+1+\cdots+1}^{n 1^{\prime} \mathrm{s}} .
$$

Suppose the order n is composite, say $n=r s$. By the distributive law,

$$
n \cdot 1=(r \cdot 1)(s \cdot 1)
$$

There are no divisors of zero in a field; hence

$$
r \cdot 1=0 \text { of } s \cdot 1=0
$$

contradicting the minimality of n.

The proof shows in fact that the characteristic of any field is either a prime or 0 .

Proposition 4.10. Suppose F is a finite field of characteristic p. Then F contains a subfield isomorphic to $\mathbb{Z} /(p)$.

Proof. Consider the additive subgroup generated by 1:

$$
\langle 1\rangle=\{0,1,2 \cdot 1, \ldots,(p-1) \cdot 1\} .
$$

It is readily verified that this set is closed under addition and multiplication; and the map

$$
r \bmod p \mapsto r \cdot 1: \mathbb{Z} /(p) \rightarrow\langle 1\rangle
$$

is an isomorphism.
This field is called the prime subfield of F.
Corollary 4.2. There is just one field containing p elements, up to isomorphism, namely $\mathbb{Z} /(p)$.

Theorem 4.2. A finite field F of characteristic p contains p^{n} elements for some $n \geq 1$

Proof. We can consider F as a vector space over its prime subfield P. Suppose this vector space is of dimension n. Let e_{1}, \ldots, e_{n} be a basis for the space. Then each element of F is uniquely expressible in the form

$$
a_{1} e_{1}+\cdots+a_{n} e_{n},
$$

where $a_{1}, \ldots, a_{n} \in P$. There are just p choices for each a_{i}. Hence the total number of choices, ie the number of elements in F, is p^{n}.

Theorem 4.3. There is just one field F containing $q=p^{n}$ elements for each $n \geq 1$, up to isomorphism.

Thus there are fields containing 2,3,4 and 5 elements, but not field containing 6 elements.

We are not going to prove this theorem until later.
Definition 4.6. We denote the field containing $q=p^{n}$ elements by \mathbb{F}_{q}.
The finite fields are often called Galois fields, after Evariste Galois who discovered them.

