
Chapter 2

Euclid’s Theorem

Theorem 2.1. There are an infinity of primes.
This is sometimes called Euclid’s Second Theorem, what we have called

Euclid’s Lemma being known as Euclid’s First Theorem.

Proof. Suppose to the contrary there are only a finite number of primes, say

p1, p2, . . . , pr.

Consider the number
N = p1p2 · · · pr + 1.

Then N is not divisible by pi for i = 1, . . . , r, since N has remainder 1
when divided by each of these primes.

Take any prime factor q of N . (We know from the Fundamental Theorem
that there is such a prime.)

Then q differs from all of the primes p1, . . . , pr, since it divides N .
Hence our assumption that the number of primes is finite is untenable.

2.1 Variants on Euclid’s proof
Proposition 2.1. There are an infinite number of primes of the form

p = 4n− 1.

Proof. Suppose there are only a finite number of such primes, say

p1, p2, . . . , pr.

Consider the number
N = 4p1p2 · · · pr − 1.

Since N is odd, it is a product of odd prime factors.
Any odd number is of the form 4n+ 1 or 4n− 1. If all the prime factors

of N were of the form 4n + 1 their product N would be of this form. Since
it is not, we conclude that N has a prime factor of the form 4n− 1.

This must differ from p1, . . . , pr, since none of these primes divides N .
Hence we have a further prime of the form 4n − 1, contradicting our

original assumption.

Rather suprisingly, perhaps, we cannot show in the same way that there
are an infinity of primes of the form 4n+ 1, although that is true.
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2.2 The zeta function
Having established that there are an infinity of primes, the question arises:
How are these primes distributed? Riemann’s zeta function is the major tool
in this study.

Definition 2.1. Riemann’s zeta function ζ(s) is defined by

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · ,

when this series converges.

Although Riemann’s name is given to this function, it was in fact in-
troduced by Euler. However, Euler only considered the function for real s.
Riemann’s contribution was to consider the function for complex s, in a revo-
lutionary paper “On the number of primes less than a given value”, published
in 1859, using the theory of complex functions laid down by Cauchy some 20
years before.

Note that the terms in the series can be defined, for real and complex s,
by

n−s = e−s lnn.

We see from this that

n−(x+iy)) = e−x lnn e−iy lnn,

and so

|n−s| = n−<(s),

since |eiθ| = 1 for all real θ.
A simple but useful tool allows us to determine when the series converges.

Lemma 2.1. If f(x) is a monotone function then∑
f(n) converges ⇐⇒

∫ ∞
f(x)dx converges.

The lower limits on each side so not matter; it is sufficient that f(x) is
defined for x ≥ X.

One might think it should be specified that f(x) is continuous. But
in fact any monotone function f(x) is necessarily Riemann integrable (and
so Lebesgue integrable). This follows from the fact that f(x) has only an
enumerable set of discontinuities, so the partitions in Riemann sums can be
chosen with end-points avoiding these points.

Proof. We may assume (replacing f(x) by −f(x) if necessary) that f(x) is
decreasing. We may also assume that f(x)→ 0 as x→∞; for we know that
f(x) tends to a limit ` (possibly −∞), and if ` 6= 0 then it is easy to see that
both sum and integral diverge.

If n ≤ x ≤ n+ 1 then

f(n) ≤ f(x) ≤ f(n+ 1).
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Hence

f(n) ≤
∫ n+1

n

f(x)dx ≤ f(n+ 1).

Thus

f(m)+f(m+1)+· · ·+f(n−1) ≥
∫ n

m

f(x)dx ≥ f(m+1)+f(m+2)+· · ·+f(n),

from which the result follows.

Proposition 2.2. The series for ζ(s) converges for <(s) > 1.

Proof. For real s > 1 this follows from the previous lemma, since∫
x−sdx = − 1

s− 1
x−(s−1).

And it follows from this that
∑
n−s is absolutely convergent if <(s) > 1,

since |n−s| = n−<(s).

2.3 Euler’s Product Formula
If a1, a2, . . . is an infinite sequence of real of complex numbers, we say that
the infinite product a1a2 · · · converges to ` 6= 0 if the partial products

An = a1a2 · · · an
converge to `. (If An → 0 then we say that the product diverges to 0.)

If the an are real and positive we can convert an infinite product to an
infinite series by taking logarithms:∏

an converges ⇐⇒
∑

ln an converges.

Because of this logarithmic connection we usually take the product in the
form

∏
(1 + an). This allows us to pass to complex an provided |(|an) < 1,

since in that case

ln(1 + an) = an −
1

2
a2n +

1

3
a3n −

1

4
a4n + · · · .

Lemma 2.2. Suppose
∑
a2n is absolutely convergent. Then∏

(1 + an) converges ⇐⇒
∑

an converges.

In particular the product is convergent if the series is absolutely convergent.

Proof. Since

|1
2
a2n −

1

3
a3n +

1

4
a4n − · · · |

≤ 1

2
|an|2 +

1

3
|an|3 +

1

4
|an|4 + · · ·

≤ 1

2

(
|an|2 + |an|3 + |an|4 + · · ·

)
=

1

2

|an|2

1− |an|2

≤ |an|2,
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if |an| ≤ 1/2.
It follows that

| ln
N∏
M

(1 + an)−
N∑
M

an| ≤
N∑
M

|an|2

provided |an| ≤ 1/2 for n ∈ [M,N ], from which the result follows.

Theorem 2.2. For <(s) > 1,

ζ(s) =
∏
p

(
1− p−s

)−1
,

where the infinite product extends over all prime numbers p.

Proof. The formula can be written

1 + 2−s + 3−s + 4−s + · · · =(
1 + 2−s + 2−2s + · · ·

) (
1 + 3−s + 3−2s + · · ·

) (
1 + 5−s + 5−2s + · · ·

)
· · · .

If n = 2e23e
3
5e5 · · · then

n−s = 2−e2s3−e
3s5−e5s · · · ;

and we see that n−s on the left is matched by 2−e2s from the first factor on
the right, 3−e3s from the second factor, and so on.

Theorem 2.3. The series ∑ 1

p

(where p runs over the primes) diverges.

Proof. Taking s = 1 in the above formula, the series∑ 1

n

diverges. So the product ∏(
1− 1

p

)−1
also diverges.

It follows that the inverse∏(
1− 1

p

)
= 0,

ie the partial product

Pn =
n∏
1

(
1− 1

p

)
→ 0

as n→∞.
We say that the infinite product ‘diverges to 0’.
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Taking logarithms, it follows that∑
p

log

(
1− 1

p

)
= −∞.

Recall that

log(1− x) = −x+ x2/2− x3/3 + · · · .

If x is small, say |x| < 1/2, we can combine the second and later terms:

|x2/2− x3/3 + · · · | ≤ x2/2(1 + x+ x2 + · · · )

=
x2

2(1− x)
≤ x2.

Thus
1

p
= − log(1− 1

p
) + ap.

where
∑
ap converges, since

|ap| ≤
1

p2
,

and
∑

1/p2 converges with
∑

1/n2.
We conclude that

∑
1/p is the sum of a divergent series and a convergent

series, and therefore diverges.

Note that ∑
p

1

pr

converges for r > 1, since ∑
n

1

nr

converges (by comparison with the integral
∫
1/xr).

2.4 Dirichlet’s Theorem
Theorem 2.4. There are an infinity of primes in any arithmetic sequence

a+ dn (n = 0, 1, 2, . . . )

with d > 0 and gcd(a, d) = 1.
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