Chapter 1

The Fundamental Theorem of Arithmetic

1.1 Primes

Definition 1.1. We say that $p \in \mathbb{N}$ is prime if it has just two factors in \mathbb{N}, 1 and p itself.

Number theory might be described as the study of the sequence of primes

$$
2,3,5,7,11,13, \ldots
$$

Definition 1.2. 1. We denote the nth prime by p_{n}.
2. If $x \in \mathbb{R}$ then we denote the number of primes $\leq x$ by $\pi(x)$.

Thus

$$
p_{1}=2, p_{2}=3, p_{3}=5, \ldots
$$

while

$$
\pi(-2)=0, \pi(2)=1, \pi(\pi)=2, \ldots
$$

1.2 The fundamental theorem

Theorem 1.1. Every non-zero natural number $n \in \mathbb{N}$ can be expressed as a product of primes

$$
n=p_{1} \cdots p_{r}
$$

and this expression is unique up to order.
By convention, an empty sum has value 0 and an empty product has value 1 . Thus $n=1$ is the product of 0 primes.

Another way of putting the theorem is that each non-zero $n \in \mathbb{N}$ is uniquely expressible in the form

$$
n=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} \ldots
$$

where each $e_{p} \in \mathbb{N}$ with $e_{p}=0$ for all but a finite number of primes p.
The proof of the theorem, which we shall give later in this chapter, is non-trivial. It is easy to lose sight of this, since the theorem is normally met long before the concept of proof is encountered.

1.3 Euclid's Algorithm

Definition 1.3. Suppose $m, n \in \mathbb{Z}$. We say that $d \in \mathbb{N}$ is the greatest common divisor of m and n, and write

$$
d=\operatorname{gcd}(m, n),
$$

if

$$
d|m, d| n
$$

and if $e \in \mathbb{N}$ then

$$
e|m, e| n \Longrightarrow e \mid d
$$

The term highest common factor (or hcf), is often used in schools; but we shall always refer to it as the gcd.

Note that at this point we do not know that $\operatorname{gcd}(m, n)$ exists. This follows easily from the Fundamental Theorem; but we want to use it in proving the theorem, so that is not relevant.

It is however clear that if $\operatorname{gcd}(m, n)$ exists then it is unique. For if $d, d^{\prime} \in \mathbb{N}$ both satisfy the criteria then

$$
d\left|d^{\prime}, d^{\prime}\right| d \Longrightarrow d=d^{\prime}
$$

Theorem 1.2. Any two integers m, n have a greatest common divisor

$$
d=\operatorname{gcd}(m, n) .
$$

Moreover, we can find integers x, y such that

$$
d=m x+n y .
$$

Proof. We may assume that $m>0$; for if $m=0$ then it is clear that

$$
\operatorname{gcd}(m, n)=|n|,
$$

while if $m<0$ then we can replace m by $-m$.
Now we follow the Euclidean Algorithm. Divide n by m :

$$
n=q_{0} m+r_{0} \quad\left(0 \leq r_{0}<m\right) .
$$

If $r_{0} \neq 0$, divide m by r_{0} :

$$
m=q_{1} r_{0}+r_{1} \quad\left(0 \leq r_{1}<r_{0}\right) .
$$

If $r_{1} \neq 0$, divide r_{0} by r_{1} :

$$
r_{0}=q_{2} r_{1}+r_{2} \quad\left(0 \leq r_{2}<r_{1}\right) .
$$

Continue in this way.
Since the remainders are strictly decreasing:

$$
r_{0}>r_{1}>r_{2}>\cdots
$$

the sequence must end with remainder 0 , say

$$
r_{s+1}=0
$$

We assert that

$$
d=\operatorname{gcd}(m, n)=r_{s}
$$

ie the gcd is the last non-zero remainder.
For

$$
d=\mid r_{s-1} \text { since } r_{s-1}=q_{s+1} r_{s} .
$$

Now

$$
\begin{aligned}
& d \mid r_{s}, r_{s-1} \Longrightarrow d \mid r_{s-2} \text { since } r_{s-2}=r_{s}-q_{s} r_{s-1} ; \\
& d \mid r_{s-1}, r_{s-2} \Longrightarrow d \mid r_{s-3} \text { since } r_{s-3}=r_{s-1}-q_{s-1} r_{s-2} ; \\
& \ldots \ldots \\
& d \mid r_{2}, r_{1} \Longrightarrow d \mid m \\
& d \mid r_{1}, m \Longrightarrow d \mid n
\end{aligned}
$$

Thus

$$
d \mid m, n .
$$

Conversely, if $e \mid m, n$ then

$$
\begin{aligned}
& e \mid r_{0} \text { since } r_{0}=n-q_{0} m ; \\
& e \mid r_{1} \text { since } r_{1}=m-q_{1} r_{0} ; \\
& \quad \ldots \ldots \\
& e \mid r_{s} \text { since } r_{s}=r_{s-1}-q_{s} r_{s-1} .
\end{aligned}
$$

Thus

$$
e|m, n \Longrightarrow e| d
$$

We have proved therefore that $\operatorname{gcd}(m, n)$ exists and

$$
\operatorname{gcd}(m, n)=d=r_{s}
$$

To prove the second part of the theorem, which states that d is a linear combination of m and n (with integer coefficients), we note that if a, b are linear combinations of m, n then a linear combination of a, b is also a linear combination of m, n.

Now r_{1} is a linear combination of m, n, from the first step in the algorithm; r_{2} is a linear combination of m, r_{1}, and so of m, n, from the second step; and so on, until finally $d=r_{s}$ is a linear combination of m, n :

$$
d=m x+n y .
$$

We say that m, n are coprime if

$$
\operatorname{gcd}(m, n)=1
$$

Corollary 1.1. If m, n are coprime then there exist integers x, y such that

$$
m x+n y=1 .
$$

1.4 Speeding up the algorithm

Note that if we allow negative remainders then given $m, n \in \mathbb{Z}$ we can find $q, r \in \mathbb{Z}$ such that

$$
n=q m+r,
$$

where $|r| \leq|m| / 2$.
If we follow the Euclidean Algorithm allowing negative remainders then the remainder is at least halved at each step. It follows that if

$$
2^{r} \leq n<2^{r+1}
$$

then the algorithm will complete in $\leq r$ steps.
Another way to put this is to say that if n is written to base 2 then it contains at most r bits (each bit being 0 or 1).

When talking of the efficiency of algorithms we measure the input in terms of the number of bits. In particular, we define the length $\ell(n)$ to be the number of bits in n. We say that an algorithm completes in polynomial time, or that it is in class P, if the number of steps it takes to complete its task is $\leq P(r)$, where $P(x)$ is a polynomial and r is the number of bits in the input.

Evidently the Euclidian algorithm (allowing negative remainders) is a polynomial-time algorithm for computing $\operatorname{gcd}(m, n)$.

1.5 Example

Let us determine

$$
\operatorname{gcd}(1075,2468) .
$$

The algorithm goes:

$$
\begin{aligned}
2468 & =2 \cdot 1075+318, \\
1075 & =3 \cdot 318+121, \\
318 & =3 \cdot 121-45, \\
121 & =3 \cdot 45-14, \\
45 & =3 \cdot 14+3, \\
14 & =5 \cdot 3-1, \\
3 & =3 \cdot 1 .
\end{aligned}
$$

Thus

$$
\operatorname{gcd}(1075,2468)=1
$$

the numbers are coprime.
To solve

$$
1075 x+2468 y=1
$$

we start at the end:

$$
\begin{aligned}
1 & =5 \cdot 3-14 \\
& =5(45-3 \cdot 14)-14=5 \cdot 45-16 \cdot 14 \\
& =5 \cdot 45-16(3 \cdot 45-121)=16 \cdot 121-43 \cdot 45 \\
& =16 \cdot 121-43(3 \cdot 121-318)=43 \cdot 318-113 \cdot 121 \\
& =43 \cdot 318-113(1075-3 \cdot 318)=382 \cdot 318-113 \cdot 1075 \\
& =382(2468-2 \cdot 1075)-113 \cdot 1075=382 \cdot 2468-877 \cdot 1075 .
\end{aligned}
$$

Note that this solution is not unique; we could add any multiple $1075 t$ to x, and subtract $2468 t$ from y, eg

$$
\begin{aligned}
1 & =(382-1075) \cdot 2468+(2468-877) \cdot 1075 \\
& =1591 \cdot 2468-693 \cdot 1075 .
\end{aligned}
$$

We shall return to this point later.

1.6 An alternative proof

There is an apparently simpler way of establishing the result.
Proof. We may suppose that x, y are not both 0 , since in that case it is evident that $\operatorname{gcd}(m, n)=0$.

Consider the set S of all numbers of the form

$$
m x+n y \quad(x, y \in \mathbb{Z})
$$

There are evidently numbers >0 in this set. Let d be the smallest such integer; say

$$
d=m a+n b .
$$

We assert that

$$
d=\operatorname{gcd}(m, n) .
$$

For suppose $d \nmid m$. Divide m by d :

$$
m=q d+r,
$$

where $0<r<d$. Then

$$
r=m-q d=m(1-q a)-n q d,
$$

Thus $r \in S$, contradicting the minimality of d.
Hence $d \mid m$, and similarly $d \mid n$.
On the other hand

$$
d^{\prime}\left|m, n \Longrightarrow d^{\prime}\right| m a+n b=d .
$$

We conclude that

$$
d=\operatorname{gcd}(m, n) .
$$

The trouble with this proof is that it gives no idea of how to determine $\operatorname{gcd}(m, n)$. It appears to be non-constructive.

Actually, that is not technically correct. It is evident from the discussion above that there is a solution to

$$
m x+n y=d
$$

with

$$
|x| \leq|n|,|y| \leq|m| .
$$

So it would be theoretically possible to test all numbers (x, y) in this range, and find which minimises $m x+n y$.

However, if x, y are very large, say 100 digits, this is completely impractical.

1.7 Euclid's Lemma

Proposition 1.1. Suppose p is prime; and suppose $m, n \in \mathbb{Z}$. Then

$$
p|m n \Longrightarrow p| m \text { or } p \mid n .
$$

Proof. Suppose

$$
p \nmid m .
$$

Then p, m are coprime, and so there exist $a, b \in \mathbb{Z}$ such that

$$
p a+m b=1 .
$$

Multiplying by n,

$$
p n a+m n b=n .
$$

Now

$$
p|p n a, p| m n b \Longrightarrow p \mid n
$$

1.8 Proof of the Fundamental Theorem

Proof.
Lemma 1.1. n is a product of primes.
Proof. We argue by induction on n If n is composite, ie not prime, then

$$
n=r s,
$$

with

$$
1<r, s<n .
$$

By our inductive hypothesis, r, s are products of primes. Hence so is n.

To complete the proof, we argue again by induction. Suppose

$$
n=p_{1} \cdots p_{r}=q_{1} \cdots q_{s}
$$

are two expressions for n as a product of primes.
Then

$$
\begin{aligned}
p_{1} \mid n & \Longrightarrow p_{1} \mid q_{1} \cdots q_{s} \\
& \Longrightarrow p_{1} \mid q_{j}
\end{aligned}
$$

for some j.
But since q_{j} is prime this implies that

$$
q_{j}=p_{1} .
$$

Let us re-number the q 's so that q_{j} becomes q_{1}. Then we have

$$
n / p_{1}=p_{2} \cdots p_{r}=q_{2} \cdots q_{s} .
$$

Applying our inductive hypothesis we conclude that $r=s$, and the primes p_{2}, \ldots, p_{r} and q_{2}, \ldots, q_{s} are the same up to order.

The result follows.

1.9 A postscript

Suppose $\operatorname{gcd}(m, n)=1$. Then we have seen that we can find integers x_{0}, y_{0} such that

$$
m x_{0}+n y_{0}=1 .
$$

We can now give the general solution to this equation:

$$
(x, y)=\left(x_{0}+t n, y_{0}-t m\right)
$$

for $t \in \mathbb{Z}$.
Certainly this is a solution. To see that it is the general solution note that

$$
\begin{aligned}
m x+n y=d & \Longrightarrow m x+n y=m x_{0}+n y_{0} \\
& \Longrightarrow m\left(x-x_{0}\right)=n\left(y_{0}-y\right)
\end{aligned}
$$

Now n has no factor in common with m, by hypothesis. Hence all its factors divide $x-x_{0}$, ie

$$
\begin{aligned}
n \mid x-x_{0} & \Longrightarrow x-x_{0}=t n \\
& \Longrightarrow x=x_{0}+t n \\
& \Longrightarrow y=y_{0}-t m
\end{aligned}
$$

