Exercise 1.5

We are supposing that

$$
\operatorname{gcd}(m, n)=1 \text { and } 0<N<m n,
$$

and we are looking for solutions of

$$
m x+n y=N
$$

with $x, y \geq 0$.
It is worth noting that this equation has at most one such solution. For evidently

$$
0 \leq x<n, 0 \leq y<m
$$

If now $\left.\left(x_{1}, y_{1}\right),\right)\left(x_{2}, y_{2}\right)$ are two solutions then

$$
m\left(x_{1}-x_{2}\right)=n\left(y_{2}-y_{1}\right) ;
$$

and so $($ since $\operatorname{gcd}(m, n)=1)$

$$
n \mid x_{1}-x_{2} \Longrightarrow x_{1}=x_{2} \Longrightarrow y_{1}=y_{2}
$$

To try to find a solution, we repeatedly subtract m from N, going through the n numbers

$$
N, N-m, N-2 m, \ldots, N-m(n-1)
$$

until we meet a number that is a multiple of n.
Note that the numbers in this sequence have different remainders modulo n. For if $N-r m$ and $N-s m$ have the same remainder then

$$
n|(r-s) m \Longrightarrow n| r-s \Longrightarrow r=s
$$

In particular, we must reach a number with remainder 0 , ie divisible by n.
We see that there is a solution with $x, y \geq 0$ if and only if this multiple of n, say $s n$, is reached while $N-t m \geq 0$; for then

$$
N=m t+n s
$$

If

$$
N \geq m(n-1)
$$

then this will certainly be the case, since all n numbers $N-t m$ will be ≥ 0.

But we can go further. If $N-t m<0$ the first time a multiple of n is encountered, then we must have

$$
N-t m=-n
$$

It follows that

$$
N-(n-1) m \leq-n .
$$

ie

$$
N \leq(n-1) m-n=m n-(m+n)
$$

and we see that for this value of N there is no solution with $x, y \geq 0$.
We conclude that the greatest number N not expressible in the form

$$
N=m x+n y
$$

is

$$
N=m n-(m+n) .
$$

For suppose there are two solutions, We can suppose that $x_{1}<=x_{2}$. Then

$$
m x_{1}+n y_{1}=N=m x_{2}+n y_{2}
$$

and so

$$
m\left(x_{2}-x_{1}\right)=n\left(y_{1}-y_{2}\right) .
$$

Since $\operatorname{gcd}(m, n)=1$ it follows that

$$
n \mid x_{2}-x_{1} .
$$

But $x_{1}, x_{2}<n$. It follows that $x_{1}=x_{2}$ and so also $y_{1}=y_{2}$.
Of course there may be no solution, eg if $r=1$ and $m, n \geq 2$ then there is obviously no solution.

On the other hand, suppose $m<n$ and suppose

$$
m(n-1) \leq N<m n
$$

Then we can find a solution as follows. Subtract m repeatedly from N, to give the n numbers

$$
N, N-m, N-2 m, \ldots, N-m(n-1) .
$$

These numbers all have different remainders $\bmod n$. For suppose $N-r m, N-$ $s m$ have the same remainder. Then

$$
n|m(r-s) \Longrightarrow n| r-s,
$$

which is impossible unless $r=s$ since $0 \leq r, s<n$. It follows that one of these numbers, say $N-r m$, has remainder 0 , ie

$$
N-r m=n q \Longrightarrow N=m r+n q .
$$

