Appendix B

RSA encryption

B.1 The RSA algorithm

Choose two distinct primes p, ¢, and let
n = pq.
We know that if x is coprime to n (ie ged(z,n) = 1) then
29 = P~V = 1 mod n.

Choose an exponent e coprime to ¢(n), and let a : Z/(n) — Z/(n) be the
map
x>t

Then we can determine f such that
ef =1 mod ¢(n),
eg by using the Euclidean algorithm. Let 5 :Z/(n) — Z/(n) be the map
a:x— ol
Then if x is coprime to n
¢ = 2 mod n,
ie
pla(x)) = =;

[ is the inverse of «, at least for x not divisible by p or q.
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B.2 Encryption

Let us choose very large primes p, ¢, say with about 150 digits, or about 500
bits, each.

This will not take long, using either the Miller-Rabin or the AKS test.
If we take an odd integer u with about 150 digits at random, and then test
u,u + 1,u + 2,... for primality we can be be reasonably sure that we will
meet a prime in about Inu ~ 151n 10 steps, by the Prime Number Theorem.
(Of course we can reduce the number of tests by omitting even numbers, and
perhaps numbers divisible by small primes, so the number might be reduced
to a dozen or so.)

Next we choose e € (1,¢(n)) at random. We publish the numbers n and
e — RSA is a public key encryption system, and these are our public keys.

Now if someone wants to send us a secret message they encode it using
our public keys. We have computed the secret key f, and thus can decode
the message.

We are betting that nobody can determine the factors p and g by fac-
torising n, or determine f in some other way. In effect, we are relying on
the belief that factorisation cannot be computed in polynomial time. More
precisely, there is no algorithm that can factorise any number n in less that
P(Inn) steps, where P(x) is some fixed polynomial.

For example, dividing by all numbers up to /n is an exponential time

algorithm since
\/E _ 61n:z:/2

Remarks:

1. If we want 1000-bit security, we would probably choose n to have 1024
bits, to simplify computation.

2. Note that ¢ mod n can be computed in polynomial time (probably in
quadratic time) by repeatedly squaring x, always working modulo n.

3. There is an extremely small probability that some block x of the mes-
sage will be divisible by p or ¢, and will therefore be “corrupted”. How-
ever, we can ignore this possibility on the grounds that is far more
likely to be corrupted in other ways.

B.3 Elliptic curve encryption

After the RSA encryption algorithm was published, it was realised that
other groups arising in number theory could perhaps be used in place

of (Z/n)*.

The most popular candidate was elliptic curves. A general curve of
degree 3 in x and y is an elliptic curve. An elliptic curve can be brought
to the standard form

y: = 2% + ax® 4 bx + c.

There ia a natural group structure on an elliptic curve, arising as fol-
lows. Suppose P, are 2 points on the curve. Suppose the line PQ
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has the equation L(x,y) = 0, where L(z,y) is linear. The points where
PQ meets the elliptic curve will be given by a cubic polynomial in z,
say. Two of the three roots of this polynomial will correspond to P
and (). Thus the cubic polynomail will factorise completely into linear
factors, and the third factor will correspond to a point R = Po ). If
the coefficients a, b, ¢ of the elliptic curve are rational, and the points
P, () have rational coordinates then the point R will also have ratio-
nal coordinates. This defines a natural group structure on the set of
rational points on the curve.

All this can be carried out with elliptic curves defined over a finite field,
eg Fon. The encryption generally corresponds to the map

P eP,

where e plays a similar réle to e in the RSA encryption, except that
now the bet is that nobody will be able to compute the inverse map

eP — P.

(This is known as the “discrete log problem”, and can be applied equally
to the group (Z/n)*.)

Elliptic curve cryptography (ECC) is gradually taking over from RSA
encryption. It is generally believed to be more secure, and the compu-
tations involve smaller numbers, so can be carried out in less time.

‘Arithmetic on elliptic curves’ is probably the most active area of re-
search in number theory today, and was the basic tool in Wiles’ proof
of Fermat’s Last Theorem. Elliptic curves give rise to zeta functions
like Riemann’s, with Euler-like factorisation into terms corresponding
to primes.
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