Chapter 9

Primitive Roots

9.1 The multiplicative group of a finite field

Theorem 9.1. The multiplicative group F* of a finite field is cyclic.

Remark: In particular, if p is a prime then (Z/p)* is cyclic.
In fact, this is the only case we are interested in. But since the proof
works equally well for any finite field we prove the more general result.

Proof. The exponent of a finite group G is the smallest number e > 0 such
that

g =c
for all g € G.
By Lagrange’s Theorem, if G is of order n

g =c

for all ¢ € GG. Hence e < n.
In fact it is easy to see that e | n. For suppose d = ged(e,n). Then

d = er +ns.

It follows that
9" =(g)(g") =e.
We assume in the rest of the proof that F'is a finite field, containing ¢

elements.

Lemma 9.1. The exponent of F* is ¢ — 1.
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Proof. Each of the ¢ — 1 elements x € F* (ie all the elements of F' except 0)
satisfies the equation
xr*—1=0

over the field F'.
But this equation has at most e roots. It follows that

qg—1<e.
Since e | ¢ — 1 it follows that
e=q—1.
[l

Lemma 9.2. If A is a finite abelian group, and a,b € A have coprime orders
r,s then
order(ab) = rs.

Proof. Suppose order(ab) = n. Then
(ab)* =1 = n|rs.
On the other hand, since r, s are coprime we can find x,y € Z such that
re 4+ sy = 1.

But then
(ab)® = a® = o' = a.

It follows that = | n. Similarly s | n. Since ged(r, s) = 1 this implies that
rs | n.

Hence

]

Lemma 9.3. Suppose A is a finite abelian group of exponent e. Then A has
an element of order e.
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Proof. Let
e=pi'-p,
where pq, ..., p, are distinct primes.

Suppose i € [1,7]. There must be an element a; whose order is divisible
by p;*; for otherwise we could take e/p; as exponent in place of e. Let

order(a;) = p;'q;.

Then
bl‘ = (lgi
has order p'.
Let
a=by---b,.
Since the orders pi', ..., p< of by, ..., b, are mutually coprime it follows from

the last Lemma that that the order of a is

pil...pff = e.
O

It follows from the first and last of these 3 Lemmas that we can find an
element a € F* of order ¢ — 1. In other words, F'* is cyclic. ]

9.2 Primitive roots
Definition 9.1. A generator of (Z/p)* is called a primitive root mod p.
Example: Take p =7. Then
23 =1 mod T;

so 2 has order 3 mod 7, and is not a primitive root.

However,
32=2mod7, 3¥=6=—1mod 7.

Since the order of an element divides the order of the group, which is 6 in
this case, it follows that 3 has order 6 mod 7, and so is a primitive root.
If g generates the cyclic group G then so does g~'. Hence

37 ' =5mod7

is also a primitive root mod 7.
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Proposition 9.1. If a is a primitive root mod p then a” is a primitive root
if and only if ged(r,p — 1) = 1.

Proof. This is really a result from elementary group theory: If G is a cyclic
group of order n generated by g, then ¢" is also a generator if and only if

ged(r,n) = 1.
For suppose ged(r,n) = 1. If g" has order d then
(9" =e,
ie
gi=ec

But since ged(r,n) =1
rd=n = d=n.

Conversely, suppose ¢g" generates the group. Then ¢ is a power of ¢", say
g=1(")=4g".

Hence
rs = 1 mod n,

and in particular ged(r,n) = 1. O
Corollary 9.1. There are ¢(p — 1) primitive roots mod p.

Ezample: Suppose p = 11. Then (Z/11)* has order 10, so its elements
have orders 1,2,5 or 10. Now

25 =32= —1mod 11.

So 2 must be a primitive root mod 11.
There are

$(10) = 4

primitive roots mod 11, namely
2,23 27 29 mod 11,
ie

2,8,7,6.
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9.3 Prime power moduli

Suppose
n=p...pr.
Then
(Z/n)* = (Z[p')" x - x (Z/p]")".

Thus the structure of the multiplicative groups (Z/n)* will be completely
determined once we know the structure of (Z/p®)* for each prime power p°.
It turns out that we have already done most of the work in determining the
structure of (Z/p)*.

Proposition 9.2. If p is an odd prime number then the multiplicative group
(Z/p°)"
1s cyclic for all e > 1.

Proof. We have proved the result for e = 1. We derive the result for e > 1

in the following way.
The group (Z/p°)* has order

o) = (p - 1)
By the Theorem, there exists an element a with
order(a mod p) = p — 1.

Evidently
order(a mod p) | order(a mod p°).

Thus the order of a mod p¢ is divisible by p — 1, say
order(a mod p°) = (p — 1)r.

Then
order(a” mod p®) = p — 1.

It is therefore sufficient by Lemmal9.2)to show that there exists an element
of order p*~! in the group.
The elements in (Z/p°)* of the form x = 1 + py form a subgroup

S={xe(Z/p°)* : x=1mod p}

of order p*~!. It suffices to show that this subgroup is cyclic.
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That is relatively straightforward. Each element of the group has order
p’ for some j. We have to show that some element x = 1+ py has order p°~!,

ie
(1+ py)pe_2 # 1 mod p°.

By the binomial theorem,

e—2 e—2
e—2 e— p p
(L+py)” =1+p 2py+(2)p2y2+(3>p3y3+~'-

We claim that all the terms after the first two are divisible by p°, ie

e pe_Q T T
P° | Py
T

for r > 2.
For
P _ T ) (0 =+ )
r 1-2...r
:pe—Q ' <pe—2_1)'”<pe—2_r+1>
r 1-2--(r—1)
:pe—Z. pe—2_1
r r—1 )
Thus if
Pl

(ie p’ | r but p/*1 {r) then

Hence

We must show that

1e

r>f+2.
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Now r > p/ (since p/ | 7), so it is sufficient to show that
e

which is more or less obvious. (If f =1 then p > 3 since p is an odd prime,
and each time we increase f we multiply the left by p and add 1 to the right.)
It follows that

(1+py)” " =1+ p'y mod p°.

Thus any element of the form 1 + py where y is not divisible by p (for
example, 1 + p) must have multiplicative order p*~!, and so must generate
S. In particular the subgroup S is cyclic, and so (Z/p®)* is cyclic. ]

Turning to p = 2, it is evident that (Z/2)* is trivial, while (Z/4)* = Cs.
Proposition 9.3. Ife > 3 then
(Z/QE)X = 02 X 02672.

Proof. Since
5(2) =27,
(Z/2¢)* contains 2¢~! elements.

We argue as we did for odd p, except that now we take the elements in
(Z/2°)* of the form z = 1 + 22y, forming the subgroup

S={xe(Z/2°) : x =1 mod 4}

or order 2¢72,
By the binomial theorem,

o 28—3 26—3
(1+22y)2 3:1+26—322y+( ) )24y2+< 5 )26y3+

As before, all the terms after the first two are divisible by 2¢, ie

e—3
26 | (p )22ryr
T
2@—3 _ 2e—3 26—3 -1
r )] 7 r—1 )

Thus if 2/ || 7 it is sufficient to show that

for r > 2. For

e—3—f+2r>e,
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ie
2r > f+3,
which follows easily from the fact that
r> 27

Thus any element of the form 1 + 2%y with y odd (for example, 5) must
have multiplicative order 2°72. So the subgroup S is cyclic of this order.
Now let
C = {£1 mod 2°}.

This is a subgroup of order 2. Also it is clear that
cnsS={1}.

It follows that
(2)2°) = C x S = Cy x Coe-2,

as required. O

Example: Consider

(Z2/8)" ={1,3,5,7}.
All the elements except 1 have order 2, so
(Z/S)X = 02 X Cg.
Concretely,

(Z/8) = {£1} x {1,5).

As we said, this allows us to determine the structure of any (Z/n)*.
Ezxample: Suppose n = 48. Then
(Z/48)" = (Z/16)" x (Z/3)"
= (02 X CS) X 02
= 02 X CQ X Cg.
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9.4 Carmichael numbers, again

We can now complete the proof of our Proposition on Carmichael numbers
in the last Chapter:

Proposition 9.4. The number n is a Carmichael number if and only if it is
square-free, and
n=pip2---Pr

where r > 2 and
pi—1|n—1

foro=1,2,...,r.

Proof. Suppose
n = pil PP pf""

is a Carmichael number, ie
2" = x mod n

for all x.
Note first that n must be odd; for otherwise

(-=1)"=1%# —1 modn.
First we show that n is square-free. For suppose

p° |l n,

where e > 1. Then (Z/p®)*, and so (Z/n)*, contains an element x of order
p. But p | n. Hence
2" =1# r mod n.

Now suppose p | n.
Then (Z/p)*, and so (Z/n)*, contains an element x of order p — 1. This
element must be coprime to n, so

" =zmodn = 2" '=1modn
= p—1|n—-1
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