Chapter 9

Primitive Roots

9.1 The multiplicative group of a finite field

Theorem 9.1. The multiplicative group F^{\times}of a finite field is cyclic.
Remark: In particular, if p is a prime then $(\mathbb{Z} / p)^{\times}$is cyclic.
In fact, this is the only case we are interested in. But since the proof works equally well for any finite field we prove the more general result.

Proof. The exponent of a finite group G is the smallest number $e>0$ such that

$$
g^{e}=e
$$

for all $g \in G$.
By Lagrange's Theorem, if G is of order n

$$
g^{n}=e
$$

for all $g \in G$. Hence $e \leq n$.
In fact it is easy to see that $e \mid n$. For suppose $d=\operatorname{gcd}(e, n)$. Then

$$
d=e r+n s .
$$

It follows that

$$
g^{d}=\left(g^{e}\right)^{r}\left(g^{n}\right)^{s}=e .
$$

We assume in the rest of the proof that F is a finite field, containing q elements.

Lemma 9.1. The exponent of F^{\times}is $q-1$.

Proof. Each of the $q-1$ elements $x \in F^{\times}$(ie all the elements of F except 0) satisfies the equation

$$
x^{e}-1=0
$$

over the field F.
But this equation has at most e roots. It follows that

$$
q-1 \leq e .
$$

Since $e \mid q-1$ it follows that

$$
e=q-1 .
$$

Lemma 9.2. If A is a finite abelian group, and $a, b \in A$ have coprime orders r, s then

$$
\operatorname{order}(a b)=r s
$$

Proof. Suppose order $(a b)=n$. Then

$$
(a b)^{r s}=1 \Longrightarrow n \mid r s
$$

On the other hand, since r, s are coprime we can find $x, y \in \mathbb{Z}$ such that

$$
r x+s y=1 .
$$

But then

$$
(a b)^{s y}=a^{s y}=a^{1-r x}=a .
$$

It follows that $r \mid n$. Similarly $s \mid n$. Since $\operatorname{gcd}(r, s)=1$ this implies that

$$
r s \mid n .
$$

Hence

$$
n=r s
$$

Lemma 9.3. Suppose A is a finite abelian group of exponent e. Then A has an element of order e.

Proof. Let

$$
e=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

where p_{1}, \ldots, p_{r} are distinct primes.
Suppose $i \in[1, r]$. There must be an element a_{i} whose order is divisible by $p_{i}^{e_{i}}$; for otherwise we could take e / p_{i} as exponent in place of e. Let

$$
\operatorname{order}\left(a_{i}\right)=p_{i}^{e_{i}} q_{i}
$$

Then

$$
b_{i}=a_{i}^{q_{i}}
$$

has order $p_{i}^{e_{i}}$.
Let

$$
a=b_{1} \cdots b_{r}
$$

Since the orders $p_{1}^{e_{1}}, \ldots, p_{r}^{e_{r}}$ of b_{1}, \ldots, b_{r} are mutually coprime it follows from the last Lemma that that the order of a is

$$
p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}=e
$$

It follows from the first and last of these 3 Lemmas that we can find an element $a \in F^{\times}$of order $q-1$. In other words, F^{\times}is cyclic.

9.2 Primitive roots

Definition 9.1. A generator of $(\mathbb{Z} / p)^{\times}$is called a primitive root $\bmod p$.
Example: Take $p=7$. Then

$$
2^{3} \equiv 1 \bmod 7
$$

so 2 has order $3 \bmod 7$, and is not a primitive root.
However,

$$
3^{2} \equiv 2 \bmod 7,3^{3} \equiv 6 \equiv-1 \bmod 7
$$

Since the order of an element divides the order of the group, which is 6 in this case, it follows that 3 has order $6 \bmod 7$, and so is a primitive root.

If g generates the cyclic group G then so does g^{-1}. Hence

$$
3^{-1} \equiv 5 \bmod 7
$$

is also a primitive root mod 7 .

Proposition 9.1. If a is a primitive root $\bmod p$ then a^{r} is a primitive root if and only if $\operatorname{gcd}(r, p-1)=1$.

Proof. This is really a result from elementary group theory: If G is a cyclic group of order n generated by g, then g^{r} is also a generator if and only if $\operatorname{gcd}(r, n)=1$.

For suppose $\operatorname{gcd}(r, n)=1$. If g^{r} has order d then

$$
\left(g^{r}\right)^{d}=e,
$$

ie

$$
g^{r d}=e .
$$

But since $\operatorname{gcd}(r, n)=1$

$$
r d=n \Longrightarrow d=n
$$

Conversely, suppose g^{r} generates the group. Then g is a power of g^{r}, say

$$
g=\left(g^{r}\right)^{s}=g^{r s} .
$$

Hence

$$
r s \equiv 1 \bmod n
$$

and in particular $\operatorname{gcd}(r, n)=1$.
Corollary 9.1. There are $\phi(p-1)$ primitive roots $\bmod p$.
Example: Suppose $p=11$. Then $(\mathbb{Z} / 11)^{\times}$has order 10 , so its elements have orders $1,2,5$ or 10 . Now

$$
2^{5}=32 \equiv-1 \bmod 11
$$

So 2 must be a primitive root $\bmod 11$.
There are

$$
\phi(10)=4
$$

primitive roots mod 11, namely

$$
2,2^{3}, 2^{7}, 2^{9} \bmod 11
$$

ie

$$
2,8,7,6
$$

9.3 Prime power moduli

Suppose

$$
n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}
$$

Then

$$
(\mathbb{Z} / n)^{\times}=\left(\mathbb{Z} / p_{1}^{e_{1}}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{1}^{e_{1}}\right)^{\times} .
$$

Thus the structure of the multiplicative groups $(\mathbb{Z} / n)^{\times}$will be completely determined once we know the structure of $\left(\mathbb{Z} / p^{e}\right)^{\times}$for each prime power p^{e}. It turns out that we have already done most of the work in determining the structure of $(\mathbb{Z} / p)^{\times}$.

Proposition 9.2. If p is an odd prime number then the multiplicative group

$$
\left(\mathbb{Z} / p^{e}\right)^{\times}
$$

is cyclic for all $e \geq 1$.
Proof. We have proved the result for $e=1$. We derive the result for $e>1$ in the following way.

The group $\left(\mathbb{Z} / p^{e}\right)^{\times}$has order

$$
\phi\left(p^{e}\right)=p^{e-1}(p-1) .
$$

By the Theorem, there exists an element a with

$$
\operatorname{order}(a \bmod p)=p-1
$$

Evidently

$$
\operatorname{order}(a \bmod p) \mid \operatorname{order}\left(a \bmod p^{e}\right) .
$$

Thus the order of $a \bmod p^{e}$ is divisible by $p-1$, say

$$
\operatorname{order}\left(a \bmod p^{e}\right)=(p-1) r .
$$

Then

$$
\operatorname{order}\left(a^{r} \bmod p^{e}\right)=p-1 .
$$

It is therefore sufficient by Lemma 9.2 to show that there exists an element of order p^{e-1} in the group.

The elements in $\left(\mathbb{Z} / p^{e}\right)^{\times}$of the form $x=1+p y$ form a subgroup

$$
S=\left\{x \in\left(\mathbb{Z} / p^{e}\right)^{\times}: x \equiv 1 \bmod p\right\}
$$

of order p^{e-1}. It suffices to show that this subgroup is cyclic.

That is relatively straightforward. Each element of the group has order p^{j} for some j. We have to show that some element $x=1+p y$ has order p^{e-1}, ie

$$
(1+p y)^{p^{e-2}} \not \equiv 1 \bmod p^{e} .
$$

By the binomial theorem,

$$
(1+p y)^{p^{e-2}}=1+p^{e-2} p y+\binom{p^{e-2}}{2} p^{2} y^{2}+\binom{p^{e-2}}{3} p^{3} y^{3}+\cdots
$$

We claim that all the terms after the first two are divisible by p^{e}, ie

$$
p^{e} \left\lvert\,\binom{ p^{e-2}}{r} p^{r} y^{r}\right.
$$

for $r \geq 2$.
For

$$
\begin{aligned}
\binom{p^{e-2}}{r} & =\frac{p^{e-2}\left(p^{e-2}-1\right) \cdots\left(p^{e-2}-r+1\right)}{1 \cdot 2 \cdots r} \\
& =\frac{p^{e-2}}{r} \cdot \frac{\left(p^{e-2}-1\right) \cdots\left(p^{e-2}-r+1\right)}{1 \cdot 2 \cdots(r-1)} \\
& =\frac{p^{e-2}}{r} \cdot\binom{p^{e-2}-1}{r-1} .
\end{aligned}
$$

Thus if

$$
p^{f} \| r
$$

(ie $p^{f} \mid r$ but $p^{f+1} \nmid r$) then

$$
p^{e-2-f} \left\lvert\,\binom{ p^{e-2}}{r}\right.
$$

Hence

$$
p^{e-2-f+r} \left\lvert\,\binom{ p^{e-2}}{r} p^{r} y^{r}\right.
$$

We must show that

$$
e-2-f+r \geq e,
$$

ie

$$
r \geq f+2
$$

Now $r \geq p^{f}$ (since $\left.p^{f} \mid r\right)$, so it is sufficient to show that

$$
p^{f} \geq f+2
$$

which is more or less obvious. (If $f=1$ then $p \geq 3$ since p is an odd prime, and each time we increase f we multiply the left by p and add 1 to the right.)

It follows that

$$
(1+p y)^{p^{e-2}} \equiv 1+p^{e-1} y \bmod p^{e} .
$$

Thus any element of the form $1+p y$ where y is not divisible by p (for example, $1+p$) must have multiplicative order p^{e-1}, and so must generate S. In particular the subgroup S is cyclic, and so $\left(\mathbb{Z} / p^{e}\right)^{\times}$is cyclic.

Turning to $p=2$, it is evident that $(\mathbb{Z} / 2)^{\times}$is trivial, while $(\mathbb{Z} / 4)^{\times}=C_{2}$.
Proposition 9.3. If $e \geq 3$ then

$$
\left(\mathbb{Z} / 2^{e}\right)^{\times} \cong C_{2} \times C_{2^{e-2}}
$$

Proof. Since

$$
\phi\left(2^{e}\right)=2^{e-1}
$$

$\left(\mathbb{Z} / 2^{e}\right)^{\times}$contains 2^{e-1} elements.
We argue as we did for odd p, except that now we take the elements in $\left(\mathbb{Z} / 2^{e}\right)^{\times}$of the form $x=1+2^{2} y$, forming the subgroup

$$
S=\left\{x \in\left(\mathbb{Z} / 2^{e}\right)^{\times}: x \equiv 1 \bmod 4\right\}
$$

or order 2^{e-2}.
By the binomial theorem,

$$
\left(1+2^{2} y\right)^{2^{e-3}}=1+2^{e-3} 2^{2} y+\binom{2^{e-3}}{2} 2^{4} y^{2}+\binom{2^{e-3}}{3} 2^{6} y^{3}+\cdots
$$

As before, all the terms after the first two are divisible by 2^{e}, ie

$$
2^{e} \left\lvert\,\binom{ p^{e-3}}{r} 2^{2 r} y^{r}\right.
$$

for $r \geq 2$. For

$$
\binom{2^{e-3}}{r}=\frac{2^{e-3}}{r} \cdot\binom{2^{e-3}-1}{r-1}
$$

Thus if $2^{f} \| r$ it is sufficient to show that

$$
e-3-f+2 r \geq e
$$

ie

$$
2 r \geq f+3
$$

which follows easily from the fact that

$$
r \geq 2^{f}
$$

Thus any element of the form $1+2^{2} y$ with y odd (for example, 5) must have multiplicative order 2^{e-2}. So the subgroup S is cyclic of this order.

Now let

$$
C=\left\{ \pm 1 \bmod 2^{e}\right\} .
$$

This is a subgroup of order 2 . Also it is clear that

$$
C \cap S=\{1\} .
$$

It follows that

$$
\left(\mathbb{Z} / 2^{e}\right)^{\times}=C \times S \cong C_{2} \times C_{2^{e-2}},
$$

as required.
Example: Consider

$$
(\mathbb{Z} / 8)^{\times}=\{1,3,5,7\}
$$

All the elements except 1 have order 2 , so

$$
(\mathbb{Z} / 8)^{\times}=C_{2} \times C_{2} .
$$

Concretely,

$$
(\mathbb{Z} / 8)^{\times}=\{ \pm 1\} \times\{1,5\}
$$

As we said, this allows us to determine the structure of any $(\mathbb{Z} / n)^{\times}$. Example: Suppose $n=48$. Then

$$
\begin{aligned}
(\mathbb{Z} / 48)^{\times} & =(\mathbb{Z} / 16)^{\times} \times(\mathbb{Z} / 3)^{\times} \\
& =\left(C_{2} \times C_{8}\right) \times C_{2} \\
& =C_{2} \times C_{2} \times C_{8} .
\end{aligned}
$$

9.4 Carmichael numbers, again

We can now complete the proof of our Proposition on Carmichael numbers in the last Chapter:

Proposition 9.4. The number n is a Carmichael number if and only if it is square-free, and

$$
n=p_{1} p_{2} \cdots p_{r}
$$

where $r \geq 2$ and

$$
p_{i}-1 \mid n-1
$$

for $i=1,2, \ldots, r$.
Proof. Suppose

$$
n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

is a Carmichael number, ie

$$
x^{n} \equiv x \bmod n
$$

for all x.
Note first that n must be odd; for otherwise

$$
(-1)^{n} \equiv 1 \not \equiv-1 \bmod n
$$

First we show that n is square-free. For suppose

$$
p^{e} \| n
$$

where $e>1$. Then $\left(\mathbb{Z} / p^{e}\right)^{\times}$, and so $(Z / n)^{\times}$, contains an element x of order p. But $p \mid n$. Hence

$$
x^{n} \equiv 1 \not \equiv x \bmod n .
$$

Now suppose $p \mid n$.
Then $(\mathbb{Z} / p)^{\times}$, and so $(Z / n)^{\times}$, contains an element x of order $p-1$. This element must be coprime to n, so

$$
\begin{aligned}
x^{n} \equiv x \bmod n & \Longrightarrow x^{n-1} \equiv 1 \bmod n \\
& \Longrightarrow p-1 \mid n-1
\end{aligned}
$$

