
Chapter 9

Primitive Roots

9.1 The multiplicative group of a finite field

Theorem 9.1. The multiplicative group F× of a finite field is cyclic.

Remark: In particular, if p is a prime then (Z/p)× is cyclic.
In fact, this is the only case we are interested in. But since the proof

works equally well for any finite field we prove the more general result.

Proof. The exponent of a finite group G is the smallest number e > 0 such
that

ge = e

for all g ∈ G.
By Lagrange’s Theorem, if G is of order n

gn = e

for all g ∈ G. Hence e ≤ n.
In fact it is easy to see that e | n. For suppose d = gcd(e, n). Then

d = er + ns.

It follows that
gd = (ge)r(gn)s = e.

We assume in the rest of the proof that F is a finite field, containing q
elements.

Lemma 9.1. The exponent of F× is q − 1.
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Proof. Each of the q− 1 elements x ∈ F× (ie all the elements of F except 0)
satisfies the equation

xe − 1 = 0

over the field F .
But this equation has at most e roots. It follows that

q − 1 ≤ e.

Since e | q − 1 it follows that

e = q − 1.

Lemma 9.2. If A is a finite abelian group, and a, b ∈ A have coprime orders
r, s then

order(ab) = rs.

Proof. Suppose order(ab) = n. Then

(ab)rs = 1 =⇒ n | rs.

On the other hand, since r, s are coprime we can find x, y ∈ Z such that

rx+ sy = 1.

But then
(ab)sy = asy = a1−rx = a.

It follows that r | n. Similarly s | n. Since gcd(r, s) = 1 this implies that

rs | n.

Hence
n = rs.

Lemma 9.3. Suppose A is a finite abelian group of exponent e. Then A has
an element of order e.
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Proof. Let
e = pe1

1 · · · per
r ,

where p1, . . . , pr are distinct primes.
Suppose i ∈ [1, r]. There must be an element ai whose order is divisible

by pei
i ; for otherwise we could take e/pi as exponent in place of e. Let

order(ai) = pei
i qi.

Then
bi = aqi

i

has order pei
i .

Let
a = b1 · · · br.

Since the orders pe1
1 , . . . , p

er
r of b1, . . . , br are mutually coprime it follows from

the last Lemma that that the order of a is

pe1
1 · · · per

r = e.

It follows from the first and last of these 3 Lemmas that we can find an
element a ∈ F× of order q − 1. In other words, F× is cyclic.

9.2 Primitive roots

Definition 9.1. A generator of (Z/p)× is called a primitive root mod p.

Example: Take p = 7. Then

23 ≡ 1 mod 7;

so 2 has order 3 mod 7, and is not a primitive root.
However,

32 ≡ 2 mod 7, 33 ≡ 6 ≡ −1 mod 7.

Since the order of an element divides the order of the group, which is 6 in
this case, it follows that 3 has order 6 mod 7, and so is a primitive root.

If g generates the cyclic group G then so does g−1. Hence

3−1 ≡ 5 mod 7

is also a primitive root mod 7.
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Proposition 9.1. If a is a primitive root mod p then ar is a primitive root
if and only if gcd(r, p− 1) = 1.

Proof. This is really a result from elementary group theory: If G is a cyclic
group of order n generated by g, then gr is also a generator if and only if
gcd(r, n) = 1.

For suppose gcd(r, n) = 1. If gr has order d then

(gr)d = e,

ie

grd = e.

But since gcd(r, n) = 1
rd = n =⇒ d = n.

Conversely, suppose gr generates the group. Then g is a power of gr, say

g = (gr)s = grs.

Hence
rs ≡ 1 mod n,

and in particular gcd(r, n) = 1.

Corollary 9.1. There are φ(p− 1) primitive roots mod p.

Example: Suppose p = 11. Then (Z/11)× has order 10, so its elements
have orders 1,2,5 or 10. Now

25 = 32 ≡ −1 mod 11.

So 2 must be a primitive root mod 11.
There are

φ(10) = 4

primitive roots mod 11, namely

2, 23, 27, 29 mod 11,

ie

2, 8, 7, 6.
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9.3 Prime power moduli

Suppose
n = pe1

1 . . . per
r .

Then
(Z/n)× = (Z/pe1

1 )× × · · · × (Z/pe1
1 )×.

Thus the structure of the multiplicative groups (Z/n)× will be completely
determined once we know the structure of (Z/pe)× for each prime power pe.
It turns out that we have already done most of the work in determining the
structure of (Z/p)×.

Proposition 9.2. If p is an odd prime number then the multiplicative group

(Z/pe)×

is cyclic for all e ≥ 1.

Proof. We have proved the result for e = 1. We derive the result for e > 1
in the following way.

The group (Z/pe)× has order

φ(pe) = pe−1(p− 1).

By the Theorem, there exists an element a with

order(a mod p) = p− 1.

Evidently
order(a mod p) | order(a mod pe).

Thus the order of a mod pe is divisible by p− 1, say

order(a mod pe) = (p− 1)r.

Then
order(ar mod pe) = p− 1.

It is therefore sufficient by Lemma 9.2 to show that there exists an element
of order pe−1 in the group.

The elements in (Z/pe)× of the form x = 1 + py form a subgroup

S = {x ∈ (Z/pe)× : x ≡ 1 mod p}

of order pe−1. It suffices to show that this subgroup is cyclic.
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That is relatively straightforward. Each element of the group has order
pj for some j. We have to show that some element x = 1+py has order pe−1,
ie

(1 + py)pe−2 6≡ 1 mod pe.

By the binomial theorem,

(1 + py)pe−2

= 1 + pe−2py +

(
pe−2

2

)
p2y2 +

(
pe−2

3

)
p3y3 + · · · .

We claim that all the terms after the first two are divisible by pe, ie

pe |
(
pe−2

r

)
pryr

for r ≥ 2.
For (

pe−2

r

)
=
pe−2(pe−2 − 1) · · · (pe−2 − r + 1)

1 · 2 · · · r

=
pe−2

r
· (pe−2 − 1) · · · (pe−2 − r + 1)

1 · 2 · · · (r − 1)

=
pe−2

r
·
(
pe−2 − 1

r − 1

)
.

Thus if
pf ‖ r

(ie pf | r but pf+1 - r) then

pe−2−f |
(
pe−2

r

)
.

Hence

pe−2−f+r |
(
pe−2

r

)
pryr.

We must show that

e− 2− f + r ≥ e,

ie

r ≥ f + 2.
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Now r ≥ pf (since pf | r), so it is sufficient to show that

pf ≥ f + 2,

which is more or less obvious. (If f = 1 then p ≥ 3 since p is an odd prime,
and each time we increase f we multiply the left by p and add 1 to the right.)

It follows that

(1 + py)pe−2 ≡ 1 + pe−1y mod pe.

Thus any element of the form 1 + py where y is not divisible by p (for
example, 1 + p) must have multiplicative order pe−1, and so must generate
S. In particular the subgroup S is cyclic, and so (Z/pe)× is cyclic.

Turning to p = 2, it is evident that (Z/2)× is trivial, while (Z/4)× = C2.

Proposition 9.3. If e ≥ 3 then

(Z/2e)× ∼= C2 × C2e−2 .

Proof. Since
φ(2e) = 2e−1,

(Z/2e)× contains 2e−1 elements.
We argue as we did for odd p, except that now we take the elements in

(Z/2e)× of the form x = 1 + 22y, forming the subgroup

S = {x ∈ (Z/2e)× : x ≡ 1 mod 4}

or order 2e−2.
By the binomial theorem,

(1 + 22y)2e−3

= 1 + 2e−322y +

(
2e−3

2

)
24y2 +

(
2e−3

3

)
26y3 + · · · .

As before, all the terms after the first two are divisible by 2e, ie

2e |
(
pe−3

r

)
22ryr

for r ≥ 2. For (
2e−3

r

)
=

2e−3

r
·
(

2e−3 − 1

r − 1

)
.

Thus if 2f ‖ r it is sufficient to show that

e− 3− f + 2r ≥ e,
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ie

2r ≥ f + 3,

which follows easily from the fact that

r ≥ 2f .

Thus any element of the form 1 + 22y with y odd (for example, 5) must
have multiplicative order 2e−2. So the subgroup S is cyclic of this order.

Now let
C = {±1 mod 2e}.

This is a subgroup of order 2. Also it is clear that

C ∩ S = {1}.

It follows that
(Z/2e)× = C × S ∼= C2 × C2e−2 ,

as required.

Example: Consider
(Z/8)× = {1, 3, 5, 7}.

All the elements except 1 have order 2, so

(Z/8)× = C2 × C2.

Concretely,
(Z/8)× = {±1} × {1, 5}.

As we said, this allows us to determine the structure of any (Z/n)×.
Example: Suppose n = 48. Then

(Z/48)× = (Z/16)× × (Z/3)×

= (C2 × C8)× C2

= C2 × C2 × C8.
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9.4 Carmichael numbers, again

We can now complete the proof of our Proposition on Carmichael numbers
in the last Chapter:

Proposition 9.4. The number n is a Carmichael number if and only if it is
square-free, and

n = p1p2 · · · pr

where r ≥ 2 and
pi − 1 | n− 1

for i = 1, 2, . . . , r.

Proof. Suppose
n = pe1

1 · · · per
r

is a Carmichael number, ie

xn ≡ x mod n

for all x.
Note first that n must be odd; for otherwise

(−1)n ≡ 1 6≡ −1 mod n.

First we show that n is square-free. For suppose

pe ‖ n,

where e > 1. Then (Z/pe)×, and so (Z/n)×, contains an element x of order
p. But p | n. Hence

xn ≡ 1 6≡ x mod n.

Now suppose p | n.
Then (Z/p)×, and so (Z/n)×, contains an element x of order p− 1. This

element must be coprime to n, so

xn ≡ x mod n =⇒ xn−1 ≡ 1 mod n

=⇒ p− 1 | n− 1.
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